The mechanics of extreme intensity events in the buffer and logarithmic layers of a turbulent channel at ๐‘…๐‘’๐œ=2000 is investigated. The 99.9th percentile of the most intense events in the dissipation of turbulent kinetic energy is analysed by means of conditional spaceโ€“time proper orthogonal decomposition. The computed spatio-temporal modes are coherent in space and over the considered time frame, and optimally capture the energy of the ensemble. The most energetic mode with transverse symmetric structure describes a turbulent burst event. The underlying mechanism is a varicose instability which generates localized extrema in the dissipation and production of turbulent kinetic energy and drives the formation of a hairpin vortex. The most energetic anti-symmetric mode is related to a sinuous-type instability that is situated in the shear layer between two very-large-scale streaks. Statistical results show the energy in the symmetric mode to exceed that in the anti-symmetric mode by a near constant factor for the considered wall distances. Both mechanisms occur throughout the range of wall distances in an effectively self-similar manner that is consistent with the attached-eddy hypothesis. By analogy with transitional flows, the results suggest that the events are induced by an exponential growth mechanism.

Literature:

  • [PDF] [DOI] Hack, M. J. P. and O. T. Schmidt. “Extreme events in wall turbulence.” Journal of fluid mechanics 907 (2020): A9.
    [Bibtex]
    @Article{hackschmidt_2020_jfm,
    author = {Hack, M. J. P. and Schmidt, O. T.},
    journal = {Journal of Fluid Mechanics},
    title = {Extreme events in wall turbulence},
    year = {2020},
    pages = {A9},
    volume = {907},
    doi = {10.1017/jfm.2020.798},
    file = {:HackSchmidt_2020_JFM.pdf:PDF},
    publisher = {Cambridge University Press},
    }