
Three-Dimensional Spectral POD of Supersonic
Twin-Rectangular Jet Flow

Brandon C. Y. Yeung∗ and Oliver T. Schmidt†
University of California San Diego, La Jolla, California 92093

Guillaume A. Brès‡

Cascade Technologies Inc., Palo Alto, California 94303

The statistical analysis of non-axisymmetric turbulent jets using spectral proper orthogonal
decomposition (SPOD) is computationally costly; in particular, their non-axisymmetry precludes
Fourier decomposition of the three-dimensional flow field into two-dimensional azimuthal modes.
Jets in the dihedral group 𝐷2, including rectangular, elliptic, and twin jets, are invariant under
reflection about their major and minor axes. For these jets, we propose an SPOD workflow that
exploits their 𝐷2 geometrical symmetry to obtain a reduction in computational effort, accelerate
statistical convergence, and improve the interpretability of results. We decompose the three-
dimensional snapshots into four symmetry components. For each symmetry component, we
independently perform SPOD on one quadrant of the domain. We demonstrate an application of
this 𝐷2-symmetric SPOD workflow on a large-eddy simulation of a twin-rectangular supersonic
jet. Our analysis indicates that the twin jet exhibits screech at Strouhal number 0.3, and
that this screech is dominated by components which are antisymmetric along the minor axis.
These observations are consistent with the results from companion experiments at Ohio State
University. Furthermore, the same workflow is used to analyze the symmetry-dependence of
far-field acoustics at low and high frequencies.

Nomenclature
C = cross-spectral density matrix
𝑐 = speed of sound
𝐷𝑒 = equivalent nozzle diameter 1.6ℎ
D𝑛 = dihedral group with 𝑛 mirror symmetries
ℎ = nozzle height
𝑀 = Mach number
𝑁 ( ·) = number of (·)
𝑝 = pressure
Q = data matrix
q = state vector
Re = Reynolds number
𝑆𝑡 = Strouhal number 𝑓 𝐷𝑒/𝑈 𝑗

𝑇 = temperature
𝑡 = time
𝑈 = mean streamwise velocity
𝑢, 𝑣, 𝑤 = Cartesian velocity components
W = weight matrix
𝑥, 𝑦, 𝑧 = Cartesian coordinates
𝛾 = adiabatic constant 𝑐𝑝/𝑐𝑉
𝜆 = SPOD eigenvalue
𝜇 = dynamic viscosity
𝝓 = SPOD eigenvector
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𝜌 = density

Subscript

𝑎 = acoustic property
blk = blocks
cv = control volumes
FFT = snapshots per block
𝑗 = fully-expanded nozzle exit property
max, min = maximum, minimum
ovlp = overlapping snapshots per block
𝑠 = sampling
sim = simulation
𝑡 = stagnation property
∞ = ambient property

Superscript

(·)H = Hermitian transpose
(·)⊤ = transpose
ˆ(·) = Fourier transform
¯(·) = long-time mean
(·) ′ = fluctuation

I. Introduction

Spectral proper orthogonal decomposition (SPOD) is a statistical technique which has been employed in numerical
studies of turbulent jets (see e.g. Towne et al. [1] and Schmidt et al. [2]). Part of the appeal of SPOD stems from

its ability to educe from turbulent flows structures which are temporally as well as spatially coherent [2]. Recent
applications of SPOD include the identification of Kelvin-Helmholtz (KH) type wavepackets within jet shear layers [2],
and the examination of far-field acoustic radiation from jets [3].

To date, the SPOD analysis of turbulent jets has been dominated by axisymmetric configurations. Their axisymmetry
can be exploited by performing a Fourier decomposition of the three-dimensional flow fields into two-dimensional
azimuthal wavenumber components: a significant simplification. Non-axisymmetric jets, in contrast, cannot be
azimuthally decomposed. SPOD of the large data set of a non-axisymmetric jet containing three-dimensional
snapshots is thus computationally challenging and—to our knowledge—has not been demonstrated. Although they
lack axisymmetry, rectangular, elliptic, and twin jets each possess two reflection symmetries: one about the major axis,
another about the minor axis. It is natural to consider whether the same benefits of symmetry decomposition can be
extended to these nozzle geometries as well. In this paper we present an SPOD workflow that respects the two mirror
symmetries, and decomposes the three-dimensional jet flow into symmetry components.

We demonstrate this workflow on a time-resolved database collected from large-eddy simulation (LES) of the
supersonic twin-rectangular jet experimentally investigated by Esfahani et al. [4] at Ohio State University (OSU). Their
results have shown that the jet emits screech at the experimentally-determined, nominally ideally-expanded condition.
This same condition is matched by our LES. The earliest model for screech in imperfecty expanded supersonic jets dates
back to Powell [5], who proposed that screech is a resonance phenomenon involving interactions between the shear layer
and shocks. Though the existence of the screech feedback loop is now widely accepted, the production and nature of the
waves that sustain the loop continue to be subjects of active research. In particular, whereas the downstream-propagating
waves are generally accepted to be KH instabilities [6], universal consensus regarding the upstream-propagating waves
that close the loop remains elusive. Powell’s original model described the upstream-propagating waves as acoustic waves
traveling in the free stream [5]. However, recent findings by Gojon et al. [7] and Edgington-Mitchell et al. [8] suggest
the upstream-propagating component is more likely to be a neutrally-stable acoustic mode of the mean flow, which
has also been identified by Towne et al. [9] in subsonic jets. A comprehensive review of screech has been provided by
Edgington-Mitchell [6].

Section II.A describes our LES of the supersonic twin-rectangular jet. The details of the symmetry-enforcing
SPOD workflow are discussed in Section II.B. We demonstrate this workflow on our database in Section III, then offer
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(a) Nozzle (b) Nozzle lip

Fig. 1 Twin-rectangular nozzle geometry [11], which is explicitly included in the computational domain: (a)
nozzle external and internal surfaces; (b) cutaway view of the groove near the nozzle exit.

Table 1 LES parameters.

Case 𝑀 𝑗 𝑀𝑎 𝑅𝑒 𝑗 𝑝𝑡/𝑝∞ 𝑝 𝑗/𝑝∞ 𝑇𝑡/𝑇∞ 𝑇𝑗/𝑇∞ 𝑁cv d𝑡𝑐∞/ℎ 𝑡sim𝑐∞/ℎ

Baseline 1.5 1.25 1.07 × 106 3.671 1 1 0.69 77 × 106 0.002 500

concluding remarks in Section IV.

II. Numerical setup

A. Large-eddy simulation
The LES is carried out using the unstructured compressible flow solver ‘Charles’ [10], to simulate the twin-rectangular

jet of aspect ratio two at OSU [4]. The twin-nozzle geometry is shown in Fig. 1. Fig. 1(b) highlights the nozzle lip,
which includes a groove designed to house plasma actuators. For more details on the OSU facility, we refer the reader to
Esfahani et al. [4].

The jet is nominally ideally-expanded and cold, at 𝑀 𝑗 = 𝑈 𝑗/𝑐 𝑗 = 1.5 and 𝑇𝑗/𝑇∞ = 0.69. The density, temperature,
and velocities are nondimensionalized by 𝜌∞, 𝑇∞, and 𝑐∞ =

√︁
𝛾𝑝∞/𝜌∞, respectively. Lengths are nondimensionalized

by ℎ, giving 𝐷𝑒/ℎ = 1.6. The simulation Reynolds number, Re 𝑗 = 𝜌 𝑗𝑈 𝑗𝐷𝑒/𝜇 𝑗 = 1.07 × 106, approximately matches
the OSU experiments. The nozzle pressure ratio (NPR) and nozzle temperature ratio (NTR) are 𝑝𝑡/𝑝∞ = 3.671 and
𝑇𝑡/𝑇∞ = 1, respectively. An LES of this setup was recently performed by Brès et al. [11] and validated against
experimental data from OSU. To demonstrate the symmetry-enforcing SPOD workflow, we carry out an LES to collect
a time-resolved flow database. Table 1 summarizes the simulation parameters.

Figure 2 visualizes the magnitude of the gradient of the instantaneous density, |∇𝜌 |. Fig. 2(a) is taken from the
𝑧 = 1.8ℎ plane, which intersects the center line of a single nozzle; the major-axis view in Fig. 2(b) is taken from the
𝑦 = 0 plane, which intersects the center lines of both nozzles. Although the jets are nominally ideally-expanded at
the experimentally-determined design Mach number, 𝑀 𝑗 = 1.5, the rectangular nozzles, sharp throats, and the groove
immediately upstream of each exit lead to shock cells that are visible within the potential cores.

B. Three-dimensional, 𝐷2-symmetric SPOD
Unlike an axisymmetric jet, a twin-rectangular jet does not enjoy azimuthal symmetry; as such, its three-dimensional

flow field cannot be Fourier decomposed into two-dimensional flow fields, each with a different azimuthal wavenumber.
It does, however, belong in the dihedral group 𝐷2, i.e., its geometry is invariant under reflection about the 𝑦- and
𝑧-axes. By accounting for these mirror symmetries, we propose a 𝐷2 symmetry decomposition. Other common 𝐷2
nozzle geometries include twin-round, single rectangular, and elliptic jets, to all of which the procedure below directly
generalizes.

For the twin-rectangular jet, 𝐷2 geometrical symmetry permits a total of four symmetric and antisymmetric
components [12], which the flow must recover in a statistical sense. To describe these symmetry components
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(a)

(b)

(c) (d) (e)

Fig. 2 Numerical schlieren ( 0 ≤ |∇𝜌 | ≤ 6): (a) 𝑧 = 1.8ℎ plane through the center line of a single nozzle;
(b) 𝑦 = 0 plane through the center lines of both nozzles; (c–e) transverse planes through 𝑥 = 2ℎ, 𝑥 = 10ℎ, and
𝑥 = 20ℎ, respectively.

unambiguously, we adopt the nomenclature proposed by Rodríguez et al. [13] and subsequently used for single
rectangular jets [14] as well as twin-round jets [15, 16]. Each symmetry component is denoted by two letters: SS, SA,
AS, or AA. The first letter indicates symmetry (S) or antisymmetry (A) about 𝑦 = 0; the second indicates symmetry (S)
or antisymmetry (A) about 𝑧 = 0 (see Fig. 1(a)).

To compute the 𝐷2-symmetric SPOD, we first compute the long-time mean, q. Exploiting 𝐷2 symmetry, we enforce
SS symmetry on the estimated mean by averaging its four quadrants,

qSS (𝑥, 𝑦, 𝑧) =
1
4



𝜌(𝑥, 𝑦, 𝑧) + 𝜌(𝑥,−𝑦, 𝑧) + 𝜌(𝑥, 𝑦,−𝑧) + 𝜌(𝑥,−𝑦,−𝑧)
𝑢(𝑥, 𝑦, 𝑧) + 𝑢(𝑥,−𝑦, 𝑧) + 𝑢(𝑥, 𝑦,−𝑧) + 𝑢(𝑥,−𝑦,−𝑧)
𝑣(𝑥, 𝑦, 𝑧) − 𝑣(𝑥,−𝑦, 𝑧) + 𝑣(𝑥, 𝑦,−𝑧) − 𝑣(𝑥,−𝑦,−𝑧)
𝑤(𝑥, 𝑦, 𝑧) + 𝑤(𝑥,−𝑦, 𝑧) − 𝑤(𝑥, 𝑦,−𝑧) − 𝑤(𝑥,−𝑦,−𝑧)
𝑇 (𝑥, 𝑦, 𝑧) + 𝑇 (𝑥,−𝑦, 𝑧) + 𝑇 (𝑥, 𝑦,−𝑧) + 𝑇 (𝑥,−𝑦,−𝑧)


. (1)

Note the sign changes in the 𝑣 and 𝑤 components. If 𝑣 is symmetric about 𝑦 = 0, then 𝑣(𝑥, 𝑦, 𝑧) = −𝑣(𝑥,−𝑦, 𝑧); similarly,
if 𝑤 is symmetric about 𝑧 = 0, then 𝑤(𝑥, 𝑦, 𝑧) = −𝑤(𝑥, 𝑦,−𝑧). Using the improved estimate of the mean, we apply the
Reynolds decomposition to the instantaneous flow field to obtain the fluctuations,

q′(𝑥, 𝑦, 𝑧, 𝑡) = q(𝑥, 𝑦, 𝑧, 𝑡) − qSS (𝑥, 𝑦, 𝑧) . (2)
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Next we enforce 𝐷2 symmetry, and decompose q′ into four symmetry components:

q′
SS (𝑥, 𝑦, 𝑧, 𝑡) =

1
4



𝜌′(𝑥, 𝑦, 𝑧, 𝑡) + 𝜌′(𝑥,−𝑦, 𝑧, 𝑡) + 𝜌′(𝑥, 𝑦,−𝑧, 𝑡) + 𝜌′(𝑥,−𝑦,−𝑧, 𝑡)
𝑢′(𝑥, 𝑦, 𝑧, 𝑡) + 𝑢′(𝑥,−𝑦, 𝑧, 𝑡) + 𝑢′(𝑥, 𝑦,−𝑧, 𝑡) + 𝑢′(𝑥,−𝑦,−𝑧, 𝑡)
𝑣′(𝑥, 𝑦, 𝑧, 𝑡) − 𝑣′(𝑥,−𝑦, 𝑧, 𝑡) + 𝑣′(𝑥, 𝑦,−𝑧, 𝑡) − 𝑣′(𝑥,−𝑦,−𝑧, 𝑡)
𝑤′(𝑥, 𝑦, 𝑧, 𝑡) + 𝑤′(𝑥,−𝑦, 𝑧, 𝑡) − 𝑤′(𝑥, 𝑦,−𝑧, 𝑡) − 𝑤′(𝑥,−𝑦,−𝑧, 𝑡)
𝑇 ′(𝑥, 𝑦, 𝑧, 𝑡) + 𝑇 ′(𝑥,−𝑦, 𝑧, 𝑡) + 𝑇 ′(𝑥, 𝑦,−𝑧, 𝑡) + 𝑇 ′(𝑥,−𝑦,−𝑧, 𝑡)


, (3)

q′
SA (𝑥, 𝑦, 𝑧, 𝑡) =

1
4



𝜌′(𝑥, 𝑦, 𝑧, 𝑡) + 𝜌′(𝑥,−𝑦, 𝑧, 𝑡) − 𝜌′(𝑥, 𝑦,−𝑧, 𝑡) − 𝜌′(𝑥,−𝑦,−𝑧, 𝑡)
𝑢′(𝑥, 𝑦, 𝑧, 𝑡) + 𝑢′(𝑥,−𝑦, 𝑧, 𝑡) − 𝑢′(𝑥, 𝑦,−𝑧, 𝑡) − 𝑢′(𝑥,−𝑦,−𝑧, 𝑡)
𝑣′(𝑥, 𝑦, 𝑧, 𝑡) − 𝑣′(𝑥,−𝑦, 𝑧, 𝑡) − 𝑣′(𝑥, 𝑦,−𝑧, 𝑡) + 𝑣′(𝑥,−𝑦,−𝑧, 𝑡)
𝑤′(𝑥, 𝑦, 𝑧, 𝑡) + 𝑤′(𝑥,−𝑦, 𝑧, 𝑡) + 𝑤′(𝑥, 𝑦,−𝑧, 𝑡) + 𝑤′(𝑥,−𝑦,−𝑧, 𝑡)
𝑇 ′(𝑥, 𝑦, 𝑧, 𝑡) + 𝑇 ′(𝑥,−𝑦, 𝑧, 𝑡) − 𝑇 ′(𝑥, 𝑦,−𝑧, 𝑡) − 𝑇 ′(𝑥,−𝑦,−𝑧, 𝑡)


, (4)

q′
AS (𝑥, 𝑦, 𝑧, 𝑡) =

1
4



𝜌′(𝑥, 𝑦, 𝑧, 𝑡) − 𝜌′(𝑥,−𝑦, 𝑧, 𝑡) + 𝜌′(𝑥, 𝑦,−𝑧, 𝑡) − 𝜌′(𝑥,−𝑦,−𝑧, 𝑡)
𝑢′(𝑥, 𝑦, 𝑧, 𝑡) − 𝑢′(𝑥,−𝑦, 𝑧, 𝑡) + 𝑢′(𝑥, 𝑦,−𝑧, 𝑡) − 𝑢′(𝑥,−𝑦,−𝑧, 𝑡)
𝑣′(𝑥, 𝑦, 𝑧, 𝑡) + 𝑣′(𝑥,−𝑦, 𝑧, 𝑡) + 𝑣′(𝑥, 𝑦,−𝑧, 𝑡) + 𝑣′(𝑥,−𝑦,−𝑧, 𝑡)

𝑤′(𝑥, 𝑦, 𝑧, 𝑡) − 𝑤′(𝑥,−𝑦, 𝑧, 𝑡) − 𝑤′(𝑥, 𝑦,−𝑧, 𝑡) + 𝑤′(𝑥,−𝑦,−𝑧, 𝑡)
𝑇 ′(𝑥, 𝑦, 𝑧, 𝑡) − 𝑇 ′(𝑥,−𝑦, 𝑧, 𝑡) + 𝑇 ′(𝑥, 𝑦,−𝑧, 𝑡) − 𝑇 ′(𝑥,−𝑦,−𝑧, 𝑡)


, (5)

and

q′
AA (𝑥, 𝑦, 𝑧, 𝑡) =

1
4



𝜌′(𝑥, 𝑦, 𝑧, 𝑡) − 𝜌′(𝑥,−𝑦, 𝑧, 𝑡) − 𝜌′(𝑥, 𝑦,−𝑧, 𝑡) + 𝜌′(𝑥,−𝑦,−𝑧, 𝑡)
𝑢′(𝑥, 𝑦, 𝑧, 𝑡) − 𝑢′(𝑥,−𝑦, 𝑧, 𝑡) − 𝑢′(𝑥, 𝑦,−𝑧, 𝑡) + 𝑢′(𝑥,−𝑦,−𝑧, 𝑡)
𝑣′(𝑥, 𝑦, 𝑧, 𝑡) + 𝑣′(𝑥,−𝑦, 𝑧, 𝑡) − 𝑣′(𝑥, 𝑦,−𝑧, 𝑡) − 𝑣′(𝑥,−𝑦,−𝑧, 𝑡)
𝑤′(𝑥, 𝑦, 𝑧, 𝑡) − 𝑤′(𝑥,−𝑦, 𝑧, 𝑡) + 𝑤′(𝑥, 𝑦,−𝑧, 𝑡) − 𝑤′(𝑥,−𝑦,−𝑧, 𝑡)
𝑇 ′(𝑥, 𝑦, 𝑧, 𝑡) − 𝑇 ′(𝑥,−𝑦, 𝑧, 𝑡) − 𝑇 ′(𝑥, 𝑦,−𝑧, 𝑡) + 𝑇 ′(𝑥,−𝑦,−𝑧, 𝑡)


. (6)

This decomposition is analogous to the Fourier decomposition of a round jet, which belongs in the orthogonal group
𝑂 (2), into azimuthal wavenumber components. Like azimuthal Fourier modes, 𝐷2 symmetry components are mutually
orthogonal. As an example, by linearity of inner products,

⟨q′
SS (𝑥, 𝑦, 𝑧, 𝑡), q

′
SA (𝑥, 𝑦, 𝑧, 𝑡)⟩ = ⟨q′

SS (𝑥, 𝑦, 𝑧 > 0, 𝑡), q′
SA (𝑥, 𝑦, 𝑧 > 0, 𝑡)⟩

+ ⟨q′
SS (𝑥, 𝑦, 𝑧 < 0, 𝑡), q′

SA (𝑥, 𝑦, 𝑧 < 0, 𝑡)⟩ , (7)

where we have used the fact that q′
SA (𝑥, 𝑦, 0, 𝑡) = 0 due to antisymmetry. Recognizing that

q′
SS (𝑥, 𝑦, 𝑧 < 0, 𝑡) = q′

SS (𝑥, 𝑦, 𝑧 > 0, 𝑡) and q′
SA (𝑥, 𝑦, 𝑧 < 0, 𝑡) = −q′

SA (𝑥, 𝑦, 𝑧 > 0, 𝑡) , (8)

we get
⟨q′

SS (𝑥, 𝑦, 𝑧, 𝑡), q
′
SA (𝑥, 𝑦, 𝑧, 𝑡)⟩ = 0 . (9)

Therefore q′
SS and q′

SA are orthogonal, and the same can be shown for any pair of components. Furthermore, 𝐷2
decomposition permits the exact reconstruction of the original flow field, q′, by summing the four components,

q′(𝑥, 𝑦, 𝑧, 𝑡) = q′
SS (𝑥, 𝑦, 𝑧, 𝑡) + q′

SA (𝑥, 𝑦, 𝑧, 𝑡) + q′
AS (𝑥, 𝑦, 𝑧, 𝑡) + q′

AA (𝑥, 𝑦, 𝑧, 𝑡) , (10)

with no loss of generality. In each component, all four quadrants now contain the same information. As we seek
structures which are coherent over the three-dimensional domain, having to process just one quadrant leads to substantial
memory savings for the SPOD algorithm, or indeed for any modal decomposition technique. More importantly, explicitly
imposing symmetry on the fluctuations significantly accelerates the convergence of the SPOD; we will elaborate on this
point in Section III.

Without loss of generality, we proceed to perform SPOD on each symmetry component independently. For each
component, after taking the temporal Fourier transform of the first quadrant, at each frequency we construct the data
matrix,

Q̂ =

[
q̂′(1) q̂′(2) · · · q̂′(𝑁blk)

]
. (11)
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Fig. 3 Schematic of the 𝐷2-symmetric SPOD workflow, which enforces 𝐷2 symmetry, both minimizing memory
requirement and accelerating statistical convergence.

Table 2 Interpolation and SPOD parameters.

Database Parameters

Case 𝑁𝑥 𝑁𝑦 𝑁𝑧 [𝑥min, 𝑥max] [𝑦min, 𝑦max] [𝑧min, 𝑧max] 𝑁𝑡 𝑆𝑡𝑠 𝑁FFT 𝑁ovlp 𝑁blk

Baseline 469 202 254 [0, 85ℎ] [−16ℎ, 16ℎ] [−16ℎ, 16ℎ] 5000 12.8 256 128 38

The eigenvalue decomposition of the cross-spectral density (CSD) matrix,

Ĉ =
1

𝑁blk − 1
Q̂Q̂H, (12)

is the SPOD. The weighted eigenvectors and eigenvalues of the CSD correspond to the SPOD modes and energies,
respectively. In practice, we compute a smaller eigenvalue decomposition using the method of snapshots [17]. The
weight matrix, W, allows the inner product, ⟨q1, q2⟩ = qH

1 Wq2, and by extension the eigenvalues, to be physically
interpreted as mode energies. Two choices of weights will be used in this work. For q′ = 𝑝′(𝑥, 𝑦, 𝑧, 𝑡), we choose

W =

∫ 𝑧max

0

∫ 𝑦max

0

∫ 𝑥max

𝑥min

d𝑥 d𝑦 d𝑧 , (13)

such that the SPOD eigenvalues represent the volume-integrated variance of the pressure fluctuations; for q′ =

[𝜌, 𝑢, 𝑣, 𝑤, 𝑇]⊤ (𝑥, 𝑦, 𝑧, 𝑡), we choose

W =

∫ 𝑧max

0

∫ 𝑦max

0

∫ 𝑥max

𝑥min

diag

(
𝑇

𝛾𝜌𝑀2
𝑗

, 𝜌, 𝜌, 𝜌,
𝜌

𝛾(𝛾 − 1)𝑇𝑀2
𝑗

)
d𝑥 d𝑦 d𝑧 , (14)

such that the eigenvalues represent the volume-integrated compressible energy density [18].
The 𝐷2-symmetric SPOD workflow is illustrated in Fig. 3. For an in-depth discussion of the SPOD algorithm itself,

we direct the reader to Schmidt and Colonius [19].

III. Results
To perform 𝐷2-symmetric SPOD, the unstructured LES data are first interpolated onto a Cartesian grid; the

interpolation parameters are summarized in Table 2. The data are then Reynolds- and 𝐷2-decomposed according
to Eqs. (2) and (10), respectively. To exemplify 𝐷2 decomposition, Fig. 4 shows representative snapshots of the
SS, SA, AS, and AA components of the instantaneous streamwise velocity fluctuations, 𝑢′. In Fig. 4(a,c,e,f), for
instance, 𝑢′SS is symmetric about both 𝑦 = 0 and 𝑧 = 0. By analogy, 𝑢′SA, 𝑢′AS, and 𝑢′AA are symmetric or antisymmetric
about 𝑦 = 0 or 𝑧 = 0. For each symmetry component, we independently compute the SPOD using the parameters
listed in Table 2. The eigenvalue spectra from the SPOD of the pressure are shown in Fig. 5(b–e). The blue curves
represent the volume-integrated power spectral densities (PSD), reconstructed by summing all the eigenvalues at each
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(a) (b)

(c) (d)

(e) (f) (g) (h)

(i) (j)

(k) (l)

(m) (n) (o) (p)

Fig. 4 Symmetry-decomposed instantaneous streamwise velocity fluctuations: (a,c,e,f) SS component (++ +
+;

−0.47 ≤ 𝑢′SS ≤ 0.47); (b,d,g,h) SA component (++ −−; −0.38 ≤ 𝑢′SA ≤ 0.38); (i,k,m,n) AS component
(+− +−); −0.37 ≤ 𝑢′AS ≤ 0.37); (j,l,o,p) AA component (+− −

+; −0.38 ≤ 𝑢′AA ≤ 0.38). (a,b,i,j) show the
𝑧 = 1.8ℎ plane through the center line of a single nozzle; (c,d,k,l) show the 𝑦 = 0.5ℎ plane through the lip lines of
both nozzles; (e,g,m,o) show the 𝑥 = 10ℎ plane; (f,h,n,p) show the 𝑥 = 20ℎ plane.
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frequency. Highlighted in red are the separations between the leading and first suboptimal eigenvalues. In the AA and
AS components (Fig. 5(b,c)), there is a distinct peak at 𝑆𝑡 = 0.3. At this frequency, the large separation brought about
by the peak in turn indicates the dominance of a physical instability [2], in this case the screech tone [4, 11]. The
absence of this low-rank behavior from the SS or SA components (Fig. 5(d,e)) suggests the AA and AS components are
primarily responsible for screech.

For comparison only, we also compute the SPOD of the pressure over the entire flow field, without 𝐷2 decomposition.
The resulting spectra are shown in Fig. 5(a). The leading and first suboptimal eigenvalues show a prominent peak at
𝑆𝑡 = 0.3, corresponding to the peak at the same frequency in the leading eigenvalues of the AA and AS components.
By energy conservation, the PSD is four times the sum of the PSDs of the individual symmetry components, which
reflects the fact that SPOD of the non-𝐷2-decomposed data is carried out over all four quadrants, while SPOD of each
symmetry component is carried out over only a single quadrant.

Given that SPOD seeks orthogonal modes, and that different symmetry components are mutually orthogonal, the
SPOD of non-𝐷2-decomposed data must eventually recover all four symmetry components, provided the number
of realizations is sufficiently large to converge them. This means that in general, given a finite sample, without 𝐷2
decomposition there is no guarantee SPOD will recover all four symmetries. In the case of our twin jet, however, the
four leading modes of the full data correspond to the leading mode of each symmetry component, with the caveat that
the fourth mode cannot be unambiguously characterized due to lack of convergence. Figures 6, 7, 8, and 9 compare
the four leading SPOD modes at 𝑆𝑡 = 0.3, with (right column) and without (left column) 𝐷2 decomposition. Recall
that when 𝐷2 symmetry is enforced, the eigenvectors need only be computed and stored in the first quadrant, i.e.,
𝑥, 𝑦, 𝑧 ∈ [0, 85ℎ] × [0, 16ℎ] × [0, 16ℎ]; here these eigenvectors have been unfolded into the remaining three quadrants
for visual clarity. The first, second, and third SPOD modes of the non-𝐷2-decomposed pressure clearly resemble the
first SPOD mode of the AA, AS, and SS components, respectively. However, with 𝐷2 decomposition, the mode shapes
appear smoother, implying better statistical convergence. They are also perfectly (anti-)symmetric by construction.
The fourth SPOD mode of the non-𝐷2-decomposed pressure is too poorly converged for visual confirmation that it
is equivalent to the first SPOD mode of the SA component. Nevertheless it is noteworthy that both modes show the
wavenumber has doubled in the 𝑧-direction, relative to the three preceding pairs of modes.

Figure 10 shows the eigenvalues of the SPOD of the primitive variables vector, [𝜌, 𝑢, 𝑣, 𝑤, 𝑇]⊤, decomposed into
symmetry components. As with the pressure SPOD spectra in Fig. 5, we observe a peak corresponding to the screech
tone at 𝑆𝑡 = 0.3, only in the AA and AS components, not SS or SA. For each symmetry component, the normalized
pressure components of the leading SPOD modes at 𝑆𝑡 = 0.3 and 0.9 are visualized as 3D isosurfaces of 𝝓/∥𝝓∥ ∞ = ±0.3
in Fig. 11. We select this isovalue, ±0.3, to highlight the near-field hydrodynamic structures. KH-type wavepackets,
previously observed in axisymmetric jets [2], are evident here in the shear layers. At higher frequency, the maximum
amplitude of the modes is localized further upstream, and the modes do not extend as far downstream.

Figure 12 visualizes the 3D isosurfaces of 𝝓/∥𝝓∥ ∞ = ±0.025. The smaller isovalue highlights the acoustic radiation
into the far field. The acoustical structures are very well-defined, and are distinctly characterized by a single wavenumber,
which is consistent with the observation that the most coherent structures in the jet are the ones that most efficiently
radiate sound into the far field [20]. At 𝑆𝑡 = 0.3 (Fig. 12(a,c,e,g)), only the AA, AS, and SS components produce
large acoustic perturbations. Such perturbations are much less visible in the SA component. Note that each mode
is normalized with its maximum amplitude, not scaled by energy. Among the AA, AS, and SS components, SS
demonstrates increasing amplitude with downstream distance, whereas the amplitudes of AA and AS decrease with
downstream distance. This should come as no surprise: at 𝑆𝑡 = 0.3, AA and AS exhibit screech (Fig. 5 and 10), which
originates in the interaction between the shear layers and the shocks [6]. As the shocks weaken with downstream
distance, so does the shock-associated far-field sound. At 𝑆𝑡 = 0.9, the AA, AS, and SA components show distinct
far-field acoustic fields (Fig. 12(b,d,h)), whereas the SS component does not (Fig. 12(f)).

IV. Conclusion
Geometrical symmetries in a turbulent flow give rise to symmetries in its turbulent statistics. When such symmetries

exist, they should always be exploited for statistical analysis. In the SPOD framework, we exploit stationarity by
taking the temporal Fourier transform. When analyzing an axisymmetric jet, we exploit azimuthal homogeneity by
decomposing the flow into azimuthal wavenumber components. In this work, we extend symmetry decomposition to jets
in the 𝐷2 symmetry group, i.e., nozzle geometries that possess two planes of reflection symmetry. As a demonstration
of 𝐷2-symmetric SPOD, we carried out the LES of a Mach 1.5, nominally ideally-expanded twin-rectangular jet. We
decomposed the resulting snapshots into four symmetry components, SS, SA, AS, and AA. For each component,
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(e)

Fig. 5 Eigenvalue spectra of the SPOD of pressure: (a) non-𝐷2-decomposed fluctuations; (b) AA component
(+− −

+); (c) AS component (+− +−); (d) SS component (++ +
+); (e) SA component (++ −−). The separation between the

leading and first suboptimal eigenvalues is highlighted in red. The volume-integrated PSD, reconstructed by
summing the eigenvalues at each frequency, is shown in blue. The modes marked with cyan circles are shown in
Fig. 6, 7, 8, and 9.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Comparison between SPOD mode 1 of the non-𝐷2-decomposed pressure fluctuations (a,c,e,g) and SPOD
mode 1 of the AA component (+− −

+) of the pressure fluctuations (b,d,f,h), at 𝑆𝑡 = 0.3. (a,b) show the 𝑧 = 1.8ℎ plane
though the center line of a single nozzle; (c,d) show the 𝑦 = 0.5ℎ plane through the lip lines of both nozzles; (e,f)
show the 𝑥 = 4ℎ plane; (g,h) show the 𝑥 = 9ℎ plane. Modes have been normalized ( −1 ≤ 𝝓/∥𝝓∥ ∞ ≤ 1). The
corresponding eigenvalues are marked with cyan circles in Fig. 5. Nozzle lip lines are marked with black lines.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7 Comparison between SPOD mode 2 of the non-𝐷2-decomposed pressure fluctuations (a,c,e,g) and SPOD
mode 1 of the AS component (+− +−) of the pressure fluctuations (b,d,f,h), at 𝑆𝑡 = 0.3. (a,b) show the 𝑧 = 1.8ℎ plane
though the center line of a single nozzle; (c,d) show the 𝑦 = 0.5ℎ plane through the lip lines of both nozzles; (e,f)
show the 𝑥 = 4ℎ plane; (g,h) show the 𝑥 = 9ℎ plane. Modes have been normalized ( −1 ≤ 𝝓/∥𝝓∥ ∞ ≤ 1). The
corresponding eigenvalues are marked with cyan circles in Fig. 5. Nozzle lip lines are marked with black lines.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8 Comparison between SPOD mode 3 of the non-𝐷2-decomposed pressure fluctuations (a,c,e,g) and SPOD
mode 1 of the SS component (++ +

+) of the pressure fluctuations (b,d,f,h), at 𝑆𝑡 = 0.3. (a,b) show the 𝑧 = 1.8ℎ plane
though the center line of a single nozzle; (c,d) show the 𝑦 = 0.5ℎ plane through the lip lines of both nozzles; (e,f)
show the 𝑥 = 4ℎ plane; (g,h) show the 𝑥 = 9ℎ plane. Modes have been normalized ( −1 ≤ 𝝓/∥𝝓∥ ∞ ≤ 1). The
corresponding eigenvalues are marked with cyan circles in Fig. 5. Nozzle lip lines are marked with black lines.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9 Comparison between SPOD mode 4 of the non-𝐷2-decomposed pressure fluctuations (a,c,e,g) and SPOD
mode 1 of the SA component (++ −−) of the pressure fluctuations (b,d,f,h), at 𝑆𝑡 = 0.3. (a,b) show the 𝑧 = 1.8ℎ plane
though the center line of a single nozzle; (c,d) show the 𝑦 = 0.5ℎ plane through the lip lines of both nozzles; (e,f)
show the 𝑥 = 4ℎ plane; (g,h) show the 𝑥 = 9ℎ plane. Modes have been normalized ( −1 ≤ 𝝓/∥𝝓∥ ∞ ≤ 1). The
corresponding eigenvalues are marked with cyan circles in Fig. 5. Nozzle lip lines are marked with black lines.
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Fig. 10 Eigenvalue spectra of the SPOD of the primitive variables vector, [𝜌, 𝑢, 𝑣, 𝑤, 𝑇]⊤: (a) AA component
(+− −

+); (b) AS component (+− +−); (c) SS component (++ +
+); (d) SA component (++ −−). The separation between the

leading and first suboptimal eigenvalues is highlighted in red. The volume-integrated PSD, reconstructed by
summing the eigenvalues at each frequency, is shown in blue. The modes marked with cyan circles are shown in
Fig. 11 and 12.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11 The pressure components of the leading SPOD modes of the primitive variables vector, decomposed into
AA (a,b), AS (c,d), SS (e,f), and SA (g,h) components, at 𝑆𝑡 = 0.3 (a,c,e,g) and 𝑆𝑡 = 0.9 (b,d,f,h). Isosurfaces of
𝝓/∥𝝓∥ ∞ = ±0.3 ( ) are shown. The corresponding eigenvalues are marked with cyan circles in Fig. 10.

15

D
ow

nl
oa

de
d 

by
 B

ra
nd

on
 Y

eu
ng

 o
n 

Ju
ne

 2
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

33
45

 



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12 The pressure components of the leading SPOD modes of the primitive variables vector, decomposed into
AA (a,b), AS (c,d), SS (e,f), and SA (g,h) components, at 𝑆𝑡 = 0.3 (a,c,e,g) and 𝑆𝑡 = 0.9 (b,d,f,h). Isosurfaces of
𝝓/∥𝝓∥ ∞ = ±0.025 ( ) are shown. The corresponding eigenvalues are marked with cyan circles in Fig. 10.
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we performed an independent SPOD analysis, without loss of generality. A comparison between SPOD with and
without 𝐷2 decomposition confirms that 𝐷2 decomposition both accelerates statistical convergence and reduces memory
requirement—crucial to the efficient use of high-performance computing and local post-processing resources. In terms
of flow physics, the eigenvalue spectra confirm the screech tone at 𝑆𝑡 = 0.3 observed in LES by Brès et al. [11] as well
as in companion experiments by Esfahani et al. [4]. Microphone measurements from Esfahani et al. [4] also showed
that the screech mode is antisymmetric along the minor axis. This is again confirmed by our analysis: 𝐷2-symmetric
SPOD identifies the AA and AS components, both of which are antisymmetric along the minor axis, as the primary
sources of screech. Our SPOD, which is carried out in 3D, further suggests the screech mode can be either symmetric
or antisymmetric along the major axis. 3D isosurfaces of the SPOD modes reveal the symmetry-dependence of the
far-field acoustics. At low frequency, the AA, AS, and SS components produce clear acoustic structures. At higher
frequency, however, AA, AS, and SA are the components that radiate well-defined acoustic fields. These observations
suggest that 𝐷2 decomposition offers more than computational convenience: it improves the interpretability of results.

The twin-rectangular jet’s natural preference for the AA and AS components at the screech frequency opens up
the possibility for the dominant instabilities of the jet to be controlled through external forcing. We plan to apply
𝐷2-symmetric SPOD to the simulation of a forced, twin-rectangular jet. As part of future work, we will also apply 𝐷2
decomposition to other modal decomposition techniques to analyze the twin jet.
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