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We consider the frequency domain form of proper orthogonal decomposition (POD),
called spectral proper orthogonal decomposition (SPOD). Spectral POD is derived
from a space–time POD problem for statistically stationary flows and leads to modes
that each oscillate at a single frequency. This form of POD goes back to the original
work of Lumley (Stochastic Tools in Turbulence, Academic Press, 1970), but has
been overshadowed by a space-only form of POD since the 1990s. We clarify the
relationship between these two forms of POD and show that SPOD modes represent
structures that evolve coherently in space and time, while space-only POD modes
in general do not. We also establish a relationship between SPOD and dynamic
mode decomposition (DMD); we show that SPOD modes are in fact optimally
averaged DMD modes obtained from an ensemble DMD problem for stationary flows.
Accordingly, SPOD modes represent structures that are dynamic in the same sense
as DMD modes but also optimally account for the statistical variability of turbulent
flows. Finally, we establish a connection between SPOD and resolvent analysis. The
key observation is that the resolvent-mode expansion coefficients must be regarded as
statistical quantities to ensure convergent approximations of the flow statistics. When
the expansion coefficients are uncorrelated, we show that SPOD and resolvent modes
are identical. Our theoretical results and the overall utility of SPOD are demonstrated
using two example problems: the complex Ginzburg–Landau equation and a turbulent
jet.

Key words: computational methods, low-dimensional models, turbulent flows

1. Introduction

Coherent flow features, or structures, play an important role in turbulent flows. This
has lead to efforts to extract these structures from data as well as to model them using
simplified equations. Typically, this involves defining a set of modes that compactly
describe the structures. Some of the most widely used techniques are summarized in
recent reviews by Rowley & Dawson (2017) and Taira et al. (2017).

† Email address for correspondence: atowne@stanford.edu
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Fifty years after its introduction by Lumley (1967, 1970), proper orthogonal
decomposition (POD) remains one of the most widely used techniques for educing
coherent structures from flow data. The method is known in other disciplines by
a variety of names, including principal component analysis and Karhunen–Loève
decomposition. Proper orthogonal decomposition seeks a set of deterministic modes
that optimally capture the energy, or variance, of an ensemble of stochastic flow data.
A rigorous statement of this objective involves defining the ensemble of interest in
terms of flow data and choosing an associated inner product and expectation operator;
these choices determine the properties of the modes that are obtained.

This paper focuses on a specific form of POD called spectral proper orthogonal
decomposition (SPOD). To be clear, we are not referring to the method recently
proposed by Sieber, Paschereit & Oberleithner (2016) that was given the same name.
Instead, we are using the terminology introduced by Picard & Delville (2000) to
describe a space–time formulation of POD for statistically stationary flows that goes
back to Lumley (1967, 1970). This terminology is motivated by the fact that the
method involves decomposition of the cross-spectral density tensor and leads to
modes that each oscillate at a single frequency. Spectral POD has been applied
to a variety of flows, including pipes (Hellström & Smits 2014), boundary layers
(Tutkun & George 2017), mixing layers (Delville et al. 1999; Braud et al. 2004),
jets (Glauser, Leib & George 1987; Arndt, Long & Glauser 1997; Citriniti & George
2000; Gordeyev & Thomas 2000; Gudmundsson & Colonius 2011; Schmidt et al.
2017a), wakes (Tutkun, Johansson & George 2008; Araya, Colonius & Dabiri 2017)
and the flow around an airfoil (Abreu, Cavalieri & Wolf 2017).

Since its introduction and popularization by Sirovich (1987), Aubry et al. (1988)
and Aubry (1991), a different form of POD has come to dominate the literature.
This form of POD decomposes the spatial correlation tensor and leads to spatially
orthogonal modes that are modulated in time by expansion coefficients with random
time dependence. In what follows, we refer to this form of POD as space-only POD.

Several factors appear to have contributed to the dominance of space-only POD.
First, SPOD requires time-resolved data that were not available using particle
image velocimetry until recently. On the other hand, it is laborious to obtain the
cross-spectral densities for a large number of spatial points using hot wires, and
large arrays of hot wires (Citriniti & George 2000) become intrusive. In terms of
simulation data, SPOD requires relatively long-time integrations that would have been
prohibitive using computational resources available at that time. Finally, space-only
POD provides an appealing basis for Galerkin projection of the Navier–Stokes
equations, which became popular with the rise of the dynamical systems perspective
on turbulence (e.g. Aubry et al. 1988; Holmes et al. 1997; Noack et al. 2003).

Perhaps due to the dominance of the space-only variant, there is a lack of clarity
in the literature regarding the relationship between space-only and spectral POD. A
survey of some of the most cited and/or recent review articles that address POD
reveals a wide range of perspectives. Some articles describe POD in purely abstract
terms and make no distinction between the two versions of the method (Berkooz,
Holmes & Lumley 1993; Liang et al. 2002). Many papers exclusively present space-
only POD (Moin & Moser 1989; Sirovich 1989; Holmes et al. 1997; Chatterjee 2000;
Rowley, Colonius & Murray 2004; Cordier & Bergmann 2008; Rowley & Dawson
2017), while one early review (George 1988) considers only spectral POD. There
are some articles that treat the two variants as separate methods, but the relationship
between them is not explored in detail (Aubry et al. 1988; Picard & Delville 2000;
Chen & Kareem 2005; Tinney & Jordan 2008; Holmes et al. 2012; Taira et al. 2017).

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

8 
at

 1
6:

58
:5

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

28
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.283
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Finally, one recent review describes space-only POD as an approximation of spectral
POD (George 2017).

Compounding this lack of clarity is the inconsistent and incompatible use of the
terms ‘classical POD’ and ‘snapshot POD’. Some authors use these terms to refer to
the methods we are calling spectral and space-only POD respectively (e.g. Hellström
& Smits 2014; Mula & Tinney 2014; George 2017). Others use the name ‘classical
POD’ to refer to space-only POD and ‘snapshot POD’ to refer to a particular
computational shortcut for computing space-only POD modes (e.g. Hilberg, Lazik &
Fiedler 1994; Pinier et al. 2007; Cordier & Bergmann 2008).

The first part of this paper seeks to clarify the relationship between the space-only
and spectral formulations of POD. We will show that they are fundamentally different
from one another – whereas it is often stated that both methods identify coherent
structures, only SPOD modes evolve coherently in space and time. This suggests
that SPOD is better suited for identifying physically meaningful coherent structures
in stationary flows. We also derive formulae relating space-only and spectral POD
eigenvalues and eigenvectors.

The second part of the paper establishes a connection between SPOD and dynamic
mode decomposition (DMD). Dynamic mode decomposition was developed by Schmid
(2010) as an alternative to POD for identifying coherent structures from flow data with
the specific aim of obtaining modes that describe the flow dynamics, i.e. the evolution
of the flow from one time instant to the next. This objective was motivated in part by
criticism of space-only POD, specifically that the averaging process used to obtain the
spatial correlation tensor causes important dynamical information about the flow to be
lost. Our analysis affirms that this criticism is well founded for space-only POD but
shows that it does not apply to SPOD. Moreover, we will show that SPOD modes are
in fact optimally averaged DMD modes obtained from an ensemble DMD problem for
stationary flows.

Several other methods have been proposed in recent years to try to bridge the
gap between the spatial orthogonalization of space-only POD and the temporal
orthogonalization of DMD. Cammilleri et al. (2013) proposed Cronos–Koopman
analysis by treating the projection coefficients from space-only POD as observables in
a Koopman analysis (approximated by DMD). The aforementioned method of Sieber
et al. (2016) filters the temporal correlation tensor over a time horizon, leading to an
ad hoc interpolation between space-only POD, which is obtained when the filter width
is zero, and the discrete Fourier transform, which is recovered when the filter width
is the entire interval of the data. Noack et al. (2016) developed a method called
recursive DMD (RDMD) which combines features of space-only POD and DMD.
The first RDMD mode is given by the DMD mode that minimizes the time-averaged
residual between the modal expansion and the data. Subsequent modes achieve the
same objective under the constraint of orthogonality with previous modes. This leads
to modes that each oscillate at a single frequency and are spatially orthogonal to all
other modes at all frequencies. The unique properties of each of these methods make
them useful for different purposes. While a detailed comparison is beyond the scope
of this paper, our analysis shows that SPOD is optimal by construction for the task
of identifying flow structures that evolve coherently in both space and time.

The third part of the paper shows that SPOD is closely related to resolvent analysis.
Resolvent analysis (also called input/output analysis and frequency response analysis)
has its roots in linear systems and control theory. The resolvent operator is derived
from linearized flow equations and constitutes a transfer function between inputs
and outputs of interest. It has been used to study the linear response of flows to
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external body forces and perturbations (Trefethen et al. 1993; Farrell & Ioannou
2001; Schmid & Henningson 2001; Jovanović & Bamieh 2005; Bagheri et al. 2009;
Sipp et al. 2010) and to forcing from the nonlinear terms in the Navier–Stokes
equations (McKeon & Sharma 2010; Sharma & McKeon 2013). In the latter context,
the method can be derived by partitioning of the Navier–Stokes equations into terms
that are linear and nonlinear with respect to perturbations to the turbulent mean flow.
Resolvent analysis then identifies frequency-dependent modes that are optimal in
terms of their linear gain between the nonlinear terms and the output. The idea is to
then use a small set of the highest-gain modes as a basis for the output.

The connection we draw between SPOD and resolvent analysis is based on a
new statistical interpretation of the resolvent-mode reconstruction of turbulent flows.
Due to the sensitivity of the Navier–Stokes equations to small perturbations, each
realization of a turbulent flow, e.g. a different run of the same experiment, produces
a unique time history that cannot be reliably predicted by knowledge of the time
history of a different realization. In other words, turbulent flows are random in the
sense defined by Landahl & Mollo Christensen (1992) and Pope (2000), among
others. Accordingly, a statistical description that accounts for many such trajectories
provides more information about the likely properties of any specific realization. This
leads to a statistical interpretation of the expansion coefficients that are used in the
resolvent-mode reconstruction of the flow, which is a departure from past studies that
have described them as deterministic quantities described entirely by their amplitude
and phase.

We will show that SPOD and resolvent modes are identical when these expansion
coefficients are uncorrelated, which is typically associated with white-noise forcing.
This can be viewed as a statistical counterpart to the relationship between DMD
and resolvent analysis recently shown by Sharma, Mezić & McKeon (2016).
More generally, we will demonstrate the importance of properly accounting for
the cross-correlations between the expansion coefficients. We will show that if
the expansion coefficients are not treated as statistical quantities, the optimal
reconstruction of the flow is always governed by the leading SPOD mode at each
frequency; thus, the quality of the approximation is dependent first and foremost
on the low-rank nature of the cross-spectral density tensor rather than the resolvent
operator. This limitation can be overcome by using SPOD modes to estimate the
statistics of the expansion coefficients.

The remainder of the paper is organized as follows. Section 2 describes and
compares the space-only and spectral formulations of POD. Section 3 outlines a
procedure for estimating SPOD modes using time-resolved flow data. The relationship
between SPOD and DMD is explored in § 4. Section 5 establishes a connection
between SPOD and resolvent analysis, and shows the key role of the statistics of the
resolvent-mode expansion coefficients. Two example problems that demonstrate the
relationships between the various decompositions are given in § 6, and § 7 summarizes
and concludes the paper.

2. Proper orthogonal decomposition

The basic objective underlying POD is this: given a zero-mean stochastic process
{q(z; ξ)}, find the deterministic function φ(z) that best approximates the stochastic
function on average (Lumley 1967, 1970). Here, z is a set of independent variables
and ξ is an element in the probability space that parameterizes the stochastic variable.
We assume that each realization of the stochastic process belongs to a Hilbert space
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Spectral POD, DMD and resolvent analysis 825

H with inner product 〈·, ·〉 and define E{·} to be the expectation operator over the
probability space. With these definitions, this objective is formalized by maximizing
the quantity

λ=
E{|〈q(z; ξ), φ(z)〉|2}
〈φ(z), φ(z)〉

(2.1)

over all φ(z) ∈ H. That is, we wish to find the deterministic function φ(z) that
maximizes the expected value of the normalized projection of the stochastic function.

A standard variational approach can be used to show that the function φ(z) that
maximizes (2.1) must satisfy the eigenvalue problem

〈C(z, z′), φ(z′)〉∗ = λφ(z), (2.2)

where
C(z, z′)= E{q(z; ξ)q∗(z′; ξ)} (2.3)

is the two-point correlation tensor. Throughout this paper, we use an asterisk
superscript to denote both the complex conjugate of a scalar and the Hermitian
transpose of a vector or tensor. The properties of the solutions of the eigenvalue
problem (2.2) depend critically on the properties of the kernel C, which in turn
depend on the definition of the stochastic ensemble. Fluid flows are described by
space–time fields q(x, t), and the space-only and spectral variants of POD are obtained
by using these flow data to define the stochastic ensemble and the associated inner
product and averaging operation in two different ways, as described in the following
sections.

2.1. Space-only POD
The most commonly employed form of POD generates spatial modes φ(x). This is
accomplished by defining the stochastic ensemble to consist of snapshots of the flow
field at different time instances. In other words, the flow at each instant is treated as
a realization of a stochastic process. The appropriate inner product is then

〈u, v〉x =
∫
Ω

v∗(x, t)W (x)u(x, t) dx, (2.4)

where u and v are any two elements in H, Ω denotes the spatial domain over which
the flow is defined, and the weight W is a positive-definite Hermitian tensor of
appropriate dimension. We will restrict our attention to bounded spatial domains, but
note that unbounded homogeneous dimensions can be accommodated by transforming
those directions to Fourier space (Lumley 1967, 1970; George 2017). The expectation
operator for this definition of the stochastic ensemble is simply a time average, so
we are restricted to statistically stationary flows.

The quantity to maximize is

λ=
E{|〈q(x, t), φ(x)〉x|2}
〈φ(x), φ(x)〉x

(2.5)

and the resulting Fredholm eigenvalue problem is∫
Ω

C(x, x′)W (x′)φ(x′) dx′ = λφ(x), (2.6)
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826 A. Towne, O. T. Schmidt and T. Colonius

where
C(x, x′)= E{q(x, t)q∗(x′, t)} (2.7)

is the two-point spatial correlation tensor. This tensor is a nuclear kernel, i.e. it is
compact and

∫
Ω

C(x, x) dx<∞. As a result, Hilbert–Schmidt theory guarantees that
the eigenmodes satisfying (2.6) have a number of special properties. First, there exists
a countably infinite set of eigenmodes, {φj, λj}, that can be ranked according to their
eigenvalue, λ1 > λ2 > · · ·> 0. Each eigenvalue gives the average energy captured by
that mode, measured in the spatial norm induced by the inner product (2.4), and the
total energy of the flow is given by the sum of the eigenvalues.

The eigenvectors are orthogonal, 〈φj, φk〉x= δjk, and provide a complete basis for q.
Accordingly, the flow field can be expanded as

q(x, t)=
∞∑

j=1

aj(t)φj(x), (2.8)

with aj(t) = 〈q(x, t), φj(x)〉x. This expansion is optimal in its ability to capture the
flow energy; if the expansion is truncated at order n, any other orthogonal expansion
of the same order will capture less energy. The expansion coefficients are uncorrelated
at zero time lag,

E{aj(t)a∗k(t)} = λjδjk. (2.9)

Finally, the eigenmodes provide a diagonal representation of the two-point spatial
correlation tensor

C(x, x′)=
∞∑

j=1

λjφj(x)φ∗j (x
′) (2.10)

and are therefore its principal components. Accordingly, space-only POD modes
optimally represent spatial correlations within the flow.

2.2. Spectral proper orthogonal decomposition
Alternatively, we can seek modes that depend on both space and time. This is
accomplished by defining the stochastic ensemble to consist of a collection of
realizations of the time-dependent flow. For example, different runs of the same
experiment are considered to be realizations of a stochastic process. The appropriate
inner product is then

〈u, v〉x,t =
∫
∞

−∞

∫
Ω

v∗(x, t)W (x)u(x, t) dx dt (2.11)

and the expectation operator is an ensemble average over different stochastic
realizations of the flow. The quantity to maximize is then

λ=
E{|〈q(x, t), φ(x, t)〉x,t|2}
〈φ(x, t), φ(x, t)〉x,t

, (2.12)

which leads to the eigenvalue problem∫
∞

−∞

∫
Ω

C(x, x′, t, t′)W (x′)φ(x′, t′) dx′ dt′ = λφ(x, t), (2.13)
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Spectral POD, DMD and resolvent analysis 827

where
C(x, x′, t, t′)= E{q(x, t)q∗(x′, t′)} (2.14)

is the two-point space–time correlation tensor.
Because they persist indefinitely, statistically stationary flows have infinite energy in

a space–time norm. As a result, the space–time correlation tensor (2.14) is not nuclear
and the eigenmodes of (2.13) do not posses the properties generally associated with
POD. To remedy this, a new eigenvalue problem can be obtained in spectral space
from which modes with useful properties can be obtained. In what follows, we focus
exclusively on stationary flows.

To derive the spectral eigenvalue problem, we recall that the correlation tensor of a
wide-sense stationary flow depends only on the difference between two times,

C(x, x′, t, t′)→ C(x, x′, t− t′). (2.15)

Then, the cross-spectral density tensor S can be defined as the Fourier transform pair
of the correlation tensor,

S(x, x′, f )=
∫
∞

−∞

C(x, x′, τ )e−i2πf τ dτ (2.16)

and

C(x, x′, τ )=
∫
∞

−∞

S(x, x′, f )ei2πf τ df . (2.17)

Using these definitions, the following result can be derived: for any frequency f ′,
the function φ(x, t)=ψ(x, f ′)ei2πf ′t is a solution of the eigenvalue problem (2.13) with
eigenvalue λ( f ′), where ψ(x, f ′) and λ( f ′) satisfy the spectral eigenvalue problem∫

Ω

S(x, x′, f ′)W (x′)ψ(x′, f ′) dx′ = λ( f ′)ψ(x, f ′). (2.18)

This result was first given by Lumley (1967, 1970); we offer an alternative derivation
in appendix A.

The cross-spectral density tensor is nuclear, so the eigenmodes of (2.18) at each
frequency inherit properties analogous to those of space-only POD modes. There is a
countably infinite set of eigenfunctions ψj(x, f ) at each frequency that are orthogonal
to all other modes at the same frequency in the spatial inner product (2.4), i.e.
〈ψj,ψk〉x= δjk. The Fourier modes of each flow realization are optimally expanded as

q̂(x, f )=
∞∑

j=1

aj( f )ψj(x, f ), (2.19)

with aj( f )= 〈q̂(x, f ),ψj(x, f )〉x, and the expansion coefficients are uncorrelated,

E{aj( f )a∗k( f )} = λj( f )δjk. (2.20)

The cross-spectral density tensor has the diagonal representation

S(x, x′, f )=
∞∑

j=1

λj( f )ψj(x, f )ψ∗j (x
′, f ), (2.21)
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828 A. Towne, O. T. Schmidt and T. Colonius

so the SPOD modes are its principal components. Furthermore, the modes ψj(x, f )ei2πft

are orthogonal in the space–time inner product (2.11), so each mode at each frequency
can be viewed as a distinct space–time mode. The space–time correlation tensor can
be written as

C(x, x′, τ )=
∫
∞

−∞

∞∑
j=1

λj( f )ψj(x, f )ψ∗j (x
′, f )ei2πf τ df . (2.22)

In summary, for stationary flows, the space–time POD formulation leads to spectral
POD modes that each oscillate at a single frequency and optimally represent the
second-order space–time flow statistics.

2.3. Spectral versus space-only POD
The essential difference between spectral and space-only POD is that the former yields
modes that are coherent in space and time, whereas the later gives modes that are only
spatially coherent. First, consider space-only POD. The time dependence of the flow
field q(x, t) is treated as a stochastic parameter, with different time instances taken
to represent different members in an ensemble of spatially dependent fields. Once
interpreted in this way, the flow snapshots that make up the ensemble lose any concept
of sequential ordering, so the time-dependent evolution of the flow has no impact
on the definition of the POD modes. Therefore, the POD modes are impervious to
temporal correlation within the data, which is an essential feature of physical coherent
structures. Because of this, POD modes do not necessarily represent structures that
evolve coherently in space and time. This can be shown explicitly by writing the
space–time correlation tensor in terms of space-only POD modes,

C(x, x′, τ ) = E

{(
∞∑

j=1

aj(t)φj(x)

)(
∞∑

k=1

ak(t+ τ)φk(x′)

)∗}
(2.23a)

=

∞∑
j=1

∞∑
k=1

CPOD
ajak
(τ )φj(x)φ∗k (x

′), (2.23b)

with
CPOD

ajak
(τ )= E{aj(t)a∗k(t+ τ)}. (2.24)

When τ = 0, (2.9) ensures that CPOD
ajak
(τ ) = λjδjk and (2.23) reduces to the spatial

correlation tensor. On the other hand, (2.9) is not applicable when τ 6= 0, and, as a
result, POD theory does not guarantee any special properties for CPOD

ajak
(τ ); thus, the

temporal correlation of two terms in the POD expansion is not known a priori. This
means that the part of the flow described by a given POD mode is not necessarily
correlated with the part of the flow described by the same POD mode at a later time,
nor is it necessarily uncorrelated with the part of the flow described by a different
mode at a later time. Therefore, contrary to some previous statements, space-only
POD modes do not necessarily represent flow structures that evolve coherently.
A recent analysis of space-only POD by George (2017) erroneously assumed the
expansion coefficients to be uncorrelated at different times.

In contrast, SPOD modes do represent structures that evolve coherently. The space–
time correlation tensor is written in terms of SPOD modes in (2.22). This form of the
space–time correlation tensor is the result of special properties of the correlations

CSPOD
ajak

( f , f ′), E{aj( f )a∗k( f ′)} = λjδjkδ( f − f ′), (2.25)
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which govern the correlation between the part of the flow described by individual
SPOD modes. Specifically, (2.22) can be obtained by inserting (2.25) along with the
inverse Fourier transform of (2.19) into the definition of the space–time correlation
tensor given by (2.14) and (2.15). The first two terms in the final form of (2.25)
follow from (2.20) and ensure that two terms in the SPOD expansion at the same
frequency are uncorrelated. The final term is a consequence of the fact that the
frequency components from the Fourier transform of a stationary random process are
uncorrelated (Lumley 1970; George 1988).

In sum, (2.22) and (2.25) show that the part of the flow described by a particular
SPOD mode is perfectly correlated with the part of the flow described by that same
mode at all times and entirely uncorrelated with the part of the flow described by all
other modes at all times. In other words, each SPOD mode describes a structure that
evolves coherently in space and time.

The preceding analysis does not imply that space-only POD modes can never
exhibit space–time coherence. For example, Rowley et al. (2004) observed that
some of the leading space-only POD modes of a compressible cavity flow capture
single-frequency Rossiter modes. Rather, our analysis shows that space-only POD
modes do not have this property by construction, in contrast to SPOD modes which
evolve coherently in space and time by construction.

It is also possible to derive equations relating space-only and spectral POD modes
and eigenvalues. Using the fact that the spatial correlation tensor is equivalent to the
zero-time-lag space–time correlation tensor, (2.17) implies that

C(x, x′)=
∫
∞

−∞

S(x, x′, f ) df . (2.26)

Expanding C and S in terms of POD and SPOD modes respectively gives
∞∑

j=1

λjφj(x)φj(x′)∗ =
∫
∞

−∞

∞∑
k=1

λk( f )ψk(x, f )ψk(x′, f )∗ df . (2.27)

Applying the operation 〈φj, ·〉x to both sides of (2.27) and dividing by λj leads to the
expression

φj(x)=
∫
∞

−∞

∞∑
k=1

λk( f )
λj

cjk( f )ψk(x, f ) df , (2.28)

where cjk( f )= 〈φj(x),ψk(x, f )〉x. Taking the same inner product again and moving λj
back to the left-hand side yields

λj =

∫
∞

−∞

∞∑
k=1

λk( f )|cjk( f )|2 df . (2.29)

Equations (2.28) and (2.29) show that each space-only POD mode is potentially made
up of many SPOD modes. Physically, this means that the spatially coherent structures
represented by space-only POD are composed of contributions from spatiotemporal
coherent structures at many frequencies. Practically, this is manifested as broadband
frequency content within the coefficients aj(t). This highlights the fact that each
space-only POD mode typically represents flow phenomena at many different time
scales, which muddies their interpretation. In contrast, SPOD modes decouple flow
phenomena at different time scales, which can be helpful for understanding the flow
dynamics and deriving non-empirical models.
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3. Computing SPOD modes from data

An efficient algorithm for computing space-only POD modes from snapshots of
discrete flow data using the method of snapshots (Sirovich 1987) is well known and
described in detail in numerous publications (e.g. Rowley & Dawson 2017; Taira et al.
2017). Techniques for computing SPOD modes from snapshots of the flow are not as
well documented. Here, we outline a procedure similar to the one used by Citriniti &
George (2000) and Gordeyev & Thomas (2000) but with an additional simplification
that reduces the computational cost in most cases.

Let the vector qk ∈ RN represent the instantaneous state of q(x, t) at time tk on a
discrete set of points in the spatial domain Ω . The total length N of the vector is
equal to the number of grid points times the number of flow variables, since all of
these values have been stacked into the vector qk, which we call a snapshot of the
flow. Now, suppose that these data are available for M equally spaced time instances,
tk+1 = tk +1t. This data set can be compactly represented by the data matrix

Q= [q1, q2, . . . , qM] ∈RN×M. (3.1)

The cross-spectral density tensor could be naively estimated using the discrete
Fourier transform (DFT) of the data matrix Q. However, it is well known that
spectral estimates obtained in this way do not converge as the number of snapshots
M is increased. In fact, the uncertainty in the estimate at each frequency is as large
as the magnitude of the estimate itself (George, Beuther & Lumley 1978; Bendat &
Piersol 2000). To obtain convergent estimates of the spectral densities, it is necessary
to appropriately average the spectra over multiple realizations of the flow. This can
be accomplished using Welch’s (1967) method, which is represented schematically in
figure 1. The first step is to partition the data matrix into a set of smaller, possibly
overlapping, blocks. Precisely, if we write each block as

Q(n)
= [q(n)1 , q(n)2 , . . . , q(n)Nf

] ∈RN×Nf , (3.2)

then the kth entry in the nth block is q(n)k = qk+(n−1)(Nf−No)
, where Nf is the number of

snapshots in each block, No is the number of snapshots by which the blocks overlap
and Nb is the total number of blocks. By the ergodicity hypothesis, each of these
blocks can be regarded as a member of an ensemble of realizations of the flow.

Next, the DFT is computed for each block,

Q̂
(n)
= [q̂(n)1 , q̂(n)2 , . . . , q̂(n)Nf

], (3.3)

with

q̂(n)k =
1√
Nf

Nf∑
j=1

wjq(n)j e−i2π(k−1)[(j−1)/Nf ] (3.4)

for k = 1, . . . , Nf and n = 1, . . . , Nb. The scalar weights wj are nodal values of a
window function that can be used to reduce spectral leakage due to non-periodicity of
the data in each block (e.g. Heinzel, Rüdiger & Schilling 2002). We have included the
1/
√

Nf factor to make the discrete transform unitary for a rectangular window (wj= 1
for all j), which will be convenient later in § 4. Here, q̂(n)k is the Fourier component
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DFT

(1) (3)

(2)

FIGURE 1. (Colour online) Schematic depiction of Welch’s method for estimating SPOD
modes. A detailed description of each step is given in the text.

at frequency fk in the nth block and the resolved frequencies are

fk =


k− 1
Nf1t

for k 6 Nf /2,

k− 1−Nf

Nf1t
for k>Nf /2.

(3.5)

The cross-spectral density tensor S(x, x′, f ) can be estimated at frequency fk by the
average

Sfk =
1t
sNb

Nb∑
n=1

q̂(n)k (q̂
(n)
k )
∗, (3.6)

where s=
∑Nf

j=1 w2
j . This can be written compactly by arranging the Fourier coefficients

at frequency fk from each block into the new data matrix

Q̂fk =
√
κ[q̂(1)k , q̂(2)k , . . . , q̂(Nb)

k ] ∈R
N×Nb, (3.7)

where κ =1t/(sNb). Then, the estimated cross-spectral density tensor at frequency fk
can be written as

Sfk = Q̂fk Q̂
∗

fk . (3.8)

This estimate converges as the number of blocks Nb and the number of snapshots in
each block Nf are increased together (Welch 1967; Bendat & Piersol 2000).

Using this estimate, the infinite-dimensional SPOD eigenvalue problem (2.18)
reduces to an N ×N matrix eigenvalue problem,

Sfk W9fk =9fk3fk (3.9)

at each frequency. Here, the spatial inner product (2.4) is approximated as 〈q̂1, q̂2〉x=

q̂∗2Wq̂1; the positive-definite Hermitian matrix W ∈ CN×N accounts for both the
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weight W (x) and the numerical quadrature of the integral on the discrete grid. The
approximate SPOD modes are given by the columns of 9fk and are ranked according
to their corresponding eigenvalues given by the diagonal matrix 3fk . Note that at
most Nb non-zero eigenvalues can be obtained. The approximate modes mimic the
properties of the continuous modes. For example, they are discretely orthogonal,
9∗fk W9fk = I, and the estimated cross-spectral density tensor can be expanded as
Sfk =9fk3fk9

∗

fk .
In practice, the number of blocks Nb is typically much smaller than the discretized

problem size N. Using the definition of Sfk from (3.8), it is possible to show that the
Nb ×Nb eigenvalue problem

Q̂
∗

fk WQ̂fk2fk =2fk3̃fk (3.10)

supports the same non-zero eigenvalues as (3.9). The eigenvectors corresponding to
these non-zero eigenvalues can be exactly recovered as

9̃fk = Q̂fk2fk3̃
−1/2
fk . (3.11)

The complete procedure for computing SPOD modes from data snapshots is
outlined in the following algorithm. Variables that are assigned using the ‘←’
operator can be deleted or overwritten after each iteration in their respective loop to
reduce memory usage. A MATLAB implementation is available at https://github.com/
SpectralPOD/spod_matlab. We also note that Schmidt (2017) recently formulated a
streaming version of the algorithm that can reduce computational cost for large data
sets.

Algorithm (SPOD)

1. For each data block n= 1, 2, . . . ,Nb:

(a) assemble the data matrix

Q(n)
←[q1+(n−1)(Nf−No)

, q2+(n−1)(Nf−No)
, . . . , qNf+(n−1)(Nω−No)

];

(b) using a (windowed) fast Fourier transform, calculate and store the row-wise
DFT

Q̂
(n)
= FFT(Q(n))= [q̂(n)1 , q̂(n)2 , . . . , q̂(n)Nω ].

The column q̂(n)k contains the nth realization of the Fourier mode at the kth
discrete frequency fk.

2. For each frequency k= 1, 2, . . . ,Nf (or some subset of interest):

(a) assemble the matrix Q̂fk ←
√
κ[q̂(1)k , q̂(2)k , . . . , q̂(Nb)

k ] of Fourier realizations

from the kth column of each Q̂
(n)

;

(b) calculate the matrix Mfk← Q̂
∗

fk WQ̂fk ;

(c) compute the eigenvalue decomposition Mfk =2fk3̃fk2
∗

fk ;

(d) obtain and store the SPOD modes 9̃fk = Q̂fk2fk3̃
−1/2
fk and modal energies 3̃fk

for the kth discrete frequency.
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4. Spectral POD and DMD
In this section, we investigate the relationship between SPOD and DMD, and

show that SPOD can be understood as an optimal form of DMD for statistically
stationary turbulent flows. Dynamic mode decomposition was developed as an
alternative to POD for identifying coherent structures from flow data (Schmid &
Sesterhenn 2008; Rowley et al. 2009; Schmid 2010). The method approximates the
eigenmodes of a linear operator that maps the state of the flow from one time
instant to the next. Since the operator is linear, the temporal evolution of each mode
is described by a single frequency and growth/decay rate, and the modes are in
general spatially non-orthogonal. Just as space-only POD can be described as a
spatial orthogonalization of the flow data, DMD can be understood as a temporal
orthogonalization of the data (Schmid 2010).

4.1. DMD and the DFT
For zero-mean data that are uniformly sampled in time, Chen, Tu & Rowley (2012)
showed that DMD is formally equivalent to the DFT (the flow snapshots must also be
linearly independent for this to hold, which is true in most applications). As a result,
each DMD mode has zero growth/decay rate. This formal DMD–DFT equivalence
does not hold for data with a non-zero mean, but in practice the physically relevant
DMD modes tend to have nearly zero growth/decay rates for stationary flows (e.g.
Rowley et al. 2009; Chen et al. 2012; Schmid, Violato & Scarano 2012; Semeraro,
Bellani & Lundell 2012), which is logical since stationary flows are persistent by
definition.

This tendency is explained more rigorously by the connection between DMD
and Koopman operator theory (Mezić 2005; Rowley et al. 2009). The Koopman
operator is an infinite-dimensional linear operator that describes the evolution of
scalar observables of a nonlinear dynamical system on a finite manifold. The
eigenvectors of the Koopman operator can be used to decompose vector-valued
observables (equivalent to our q) into modes that evolve with a single frequency and
growth/decay rate. Mezić (2005) showed that for any dynamical system with a Borel
probability measure, the growth/decay rate is zero and Koopman modes are equivalent
to Fourier modes. Stationary flows possess an ergodic measure by definition, so their
Koopman modes are simply Fourier modes.

Rowley et al. (2009) showed that DMD modes approximate Koopman modes when
the flow snapshots used to compute the modes are linearly independent, and Tu et al.
(2014) showed that this holds under a slightly weaker condition on the data termed
linear consistency. In light of this, it is not surprising that DMD modes tend to be
similar to DFT modes for stationary flows. Moreover, deviations of the DMD modes
from Fourier modes can be viewed as artefacts of the DMD approximation of the
underlying Koopman operator. This suggests that, contrary to prevailing wisdom, it is
advantageous to subtract the mean when applying DMD to stationary flows to ensure
that the DMD modes mimic the zero-growth-rate property of the underlying Koopman
modes.

4.2. An ensemble DMD problem for stationary flows
To conceptually relate SPOD and DMD, imagine that we have an ensemble of
Ne data sets, each representing a stochastic realization of the same stationary flow.
There are at least two approaches one could adopt for applying DMD to this problem.
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The first would be to simply perform separate DMD computations for each realization
of the flow. If we agree to subtract the mean to ensure zero growth rates as described
previously, each DMD mode will exactly correspond to a DFT mode, but in general
the mode at a given frequency will be different for each realization.

A more sophisticated approach for applying DMD to this problem would be to use
the approach of Tu et al. (2014) to combine multiple flow realization into a single
DMD calculation. Their variant of DMD, which they call ‘exact DMD’, is defined in
terms of the operator

A , YX+, (4.1)

where X+ is the pseudo-inverse of X and the columns of the matrices X and Y are
input–output data pairs that are related by a linear operator that is to be approximated
by the matrix A. The DMD modes and eigenvalues are then given by the eigenvectors
and eigenvalues of A respectively.

For a standard application in which the flow data consist of sequential snapshots of
the flow, the input and output matrices are

X , [q1, q2, . . . , qM−1] =QTX, (4.2a)

Y , [q2, q3, . . . , qM] =QTY, (4.2b)

where each qj ∈ RN is a snapshot of the flow as defined in § 3 and Q ∈ RN×M is
the data matrix given by (3.1). The matrices TX, TY ∈RM×M−1 select the appropriate
columns of Q and are given by

TX ,


1 0 · · · 0

0 1
. . .

...
...
. . .

. . . 0
0 · · · 0 1
0 0 · · · 0

, TY ,


0 0 · · · 0
1 0 · · · 0

0 1
. . .

...
...
. . .

. . . 0
0 · · · 0 1

. (4.3a,b)

As described by Tu et al. (2014), multiple realizations of a flow can be accommo-
dated within the exact DMD framework by arranging the realizations together into
ensemble input and output matrices,

X , [Q(1)TX, . . . ,Q(Ne)TX], (4.4a)
Y , [Q(1)TY, . . . ,Q(Ne)TY], (4.4b)

where each Q(n)
∈ RN×M contains snapshots from the nth realization of the flow, as

in (3.2).
The DMD/DFT equivalence for zero-mean data proven by Chen et al. (2012) was

derived within the context of the original Arnoldi-based formulation of DMD given
by Schmid (2010) and was restricted to the case of sequential linearly independent
snapshots. Accordingly, it does not apply to the ensemble DMD problem defined
by (4.1) and (4.4).

In appendix B, we prove that the DMD modes obtained from this ensemble
formulation are precisely the DFT modes of each realization of the flow if each
realization has zero mean (i.e. we have subtracted the mean in line with our earlier
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arguments for stationary flows) and the ensemble input/output data matrices are
linearly consistent. Under these conditions, (4.1) and (4.4) reduce to

A
[
Q̃
(1)
, . . . , Q̃

(Ne)
]
=

[
Q̃
(1)
, . . . , Q̃

(Ne)
] 3DMD

. . .

3DMD

 , (4.5)

where the columns of Q̃
(n)

contain the DFT modes of Q(n) excluding the mean
component,

3DMD =


z

z2

. . .

zM−1

 , (4.6)

and z = e−i2π/M is the primitive Mth root of unity. Therefore, each DFT mode q̂(n)k ,
k= 2, . . . ,M, is an eigenvector of A with eigenvalue zk−1. These eigenvalues have unit
magnitude, so the growth/decay rate is zero, as expected. The frequency corresponding
to each DFT mode is recovered from the eigenvalue as fk = Re[ln(zk−1)/(−i2π1t)],
and it is easy to verify that these frequencies match those given by (3.5). Therefore,
each DFT mode from each realization of the flow is a DMD mode that oscillates at
the corresponding DFT frequency. Since each eigenvalue is repeated Ne times, any
linear combination of the DFT modes at a given frequency is also a DMD mode.

4.3. DMD and SPOD
Overall, for either the simple approach in which a separate A operator is defined for
each flow realization or the more sophisticated approach in which multiple realizations
are incorporated into a single ensemble DMD computation, the end result is a set of
DMD modes at each frequency consisting of the DFT mode of each realization (or
a linear combination thereof). Because of the random nature of turbulent flows and
the uncertainty inherent to the DFT, the mode for a given frequency obtained from
each flow realization will in general be different. This statistical variability may seem
undesirable, but in fact it exposes an important characteristic of turbulent flows – the
behaviour at a given frequency cannot be described by a single deterministic mode,
i.e. the cross-spectral density tensor is not rank one. In light of this, how can useful
information be extracted from this set of differing DMD modes? A sensible approach
is to search for functions that best represent the ensemble of DMD modes at each
frequency; these are given precisely by the SPOD modes at that frequency. In other
words, SPOD modes provide the optimal basis, as defined by (2.12), for describing
the variability within the ensemble of DMD modes. Said the other way around, each
DMD mode in the ensemble at a particular frequency represents one of the possible
ways in which the coherent structures represented by the SPOD modes can coexist in
one particular realization of the turbulent flow.

The preceding analysis of the ensemble DMD problem enables us to make a
still stronger connection between DMD and SPOD for stationary flows. As already
mentioned, any linear combination of the set of DFT modes at a given frequency
is also a DMD mode. Recall from (3.11) that each SPOD mode can be written as
a linear combination of the DFT modes used to estimate the cross-spectral density
tensor. Therefore, each SPOD mode is itself a DMD mode. Specifically, SPOD modes
are given by the particular linear combination, or weighted average, of DFT/DMD

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

8 
at

 1
6:

58
:5

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

28
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.283


836 A. Towne, O. T. Schmidt and T. Colonius

modes that yields uncorrelated modes that optimally capture the flow energy, as
defined by (2.12). Therefore, SPOD modes are ensemble DMD modes that have been
optimally averaged to provide the best possible representation of the second-order
space–time flow statistics. This means that SPOD modes are dynamically significant in
the same sense as standard DMD modes, but at the same time optimally describe the
random nature of turbulent flows. This connection between SPOD and DMD suggests
that SPOD could be directly related to the concept of the stochastic Koopman operator
(Mezić 2005), but this remains to be explored in detail.

5. Spectral POD and resolvent analysis
In this section, a connection is made between SPOD and resolvent analysis for

stationary flows. Resolvent analysis (Jovanović & Bamieh 2005; Bagheri et al. 2009;
McKeon & Sharma 2010; Sipp et al. 2010) identifies modes that optimally describe
the linear growth/amplification mechanisms within the Navier–Stokes equations, and is
based on analysis of the linearized Navier–Stokes equations rather than time-resolved
data. This approach has been previously related to other modal decomposition
techniques. Dergham, Sipp & Robinet (2013) showed that resolvent modes can be
used to approximate the controllability Gramian of a linear time-invariant system, the
eigenvectors of which are equivalent to space-only POD modes if the system is forced
by white noise (Rowley 2005; Bagheri et al. 2009). Sharma et al. (2016) recently
suggested a connection between DMD/Koopman operator theory and resolvent
analysis. Specifically, they showed that the resolvent operator relates Koopman modes
of the input and output for a flow on an attractor.

The connection that we make between SPOD and resolvent modes is based on a
statistical perspective on the resolvent-mode expansion of stationary turbulent flows. In
the following sections, we provide a brief development of the basic resolvent theory
to introduce our notation and terminology, make a connection between SPOD and
resolvent modes, and discuss the implications of this connection.

5.1. Resolvent analysis
We begin with nonlinear flow equations of the form

∂χ

∂t
=F(χ), (5.1)

where χ is a state vector of flow variables. The compressible Navier–Stokes equations
are naturally written in the form of (5.1), whereas the incompressible Navier–Stokes
equations can be written in this form by eliminating the pressure by projecting
the velocity field onto a divergence-free basis. Substituting the standard Reynolds
decomposition

χ(x, t)= χ̄(x)+ χ ′(x, t) (5.2)
into (5.1) and isolating the terms that are linear in χ ′ yields an equation of the form

∂χ ′

∂t
−A(χ̄)χ ′ = h(χ̄ , χ ′), (5.3)

where
A(χ̄)=

∂F
∂χ

(χ̄) (5.4)

is the linearized flow operator and h contains the remaining nonlinear terms as well
as any exogenous inputs such as incoming fluctuations at boundaries or environmental
disturbances.
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Spectral POD, DMD and resolvent analysis 837

To make the ensuing analysis as flexible as possible, it is useful to introduce two
new variables: an input variable η and an output variable y, defined by the relations

h(x, t)=Bη(x, t) (5.5)

and
y(x, t)= Cχ ′(x, t) (5.6)

respectively. The linear operator C = C(x) can be used to select certain flow variables
and/or spatial regions that are of particular interest, or in general any linear function
of the state perturbation. Similarly, the linear operator B = B(x) limits the allowable
form of h, which can be useful for enforcing known properties of the nonlinearity
in certain flows, e.g. that the incompressible continuity equation is linear so that the
corresponding component of h must be zero. Since the flow is stationary, all quantities
can be Fourier decomposed, and (5.3), (5.5) and (5.6) can be written in the frequency
domain as

(i2πfI −A)χ̂ = ĥ=Bη̂ (5.7)

and
ŷ= Cχ̂ . (5.8)

Following McKeon & Sharma (2010), the basic objective of resolvent analysis is to
find pairs of inputs and outputs at each frequency that are optimal in terms of their
linear gain

σ 2
=
〈 ŷ, ŷ〉y
〈η̂, η̂〉η

, (5.9)

where
〈 ŷ1, ŷ2〉y =

∫
Ω

ŷ∗2(x, f )W y(x)ŷ1(x, f ) dx (5.10)

and
〈η̂1, η̂2〉η =

∫
Ω

η̂∗2(x, f )W η(x)η̂1(x, f ) dx (5.11)

are inner products on the output and input spaces respectively.
Using (5.7) and (5.8), the input and output are related as

ŷ(x, f )=R(x, f )η̂(x, f ), (5.12)

where
R(x, f )= C(x)(i2πfI −A(x))−1B(x) (5.13)

is termed the resolvent operator. Note that (i2πfI −A) is invertible for all f if A is
stable; i.e. the real part of all of its eigenvalues is negative.

The optimal inputs and outputs are defined by the Schmidt decomposition of the
resolvent operator

R(x, f )=
∞∑

j=1

σj( f )ûj(x, f )⊗ v̂j(x, f ), (5.14)

defined in terms of the inner products (5.10) and (5.11). The input modes v̂j and
output modes ûj provide complete bases for their respective spaces and are orthogonal
in their respective inner products (i.e. 〈ûj, ûk〉y=〈v̂j, v̂k〉η= δjk). The modes are ordered
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by their singular value σj, and the gain between v̂j and ûj is σ 2
j . The resolvent operator

is said to be low rank if the magnitude of the singular values falls off rapidly with
increasing j.

Since the bases are complete, the output can be expanded as

ŷ(x, f )=
∞∑

j=1

ûj(x, f )σj( f )βj( f ), (5.15)

where
βj( f )= 〈η̂(x, f ), v̂j(x, f )〉η (5.16)

is the projection of the forcing onto the jth input mode (McKeon & Sharma 2010). In
some flows, reduced-order models have been obtained by retaining a limited number
of terms in the expansion when the resolvent operator is low rank (e.g. Beneddine
et al. 2016; Gómez et al. 2016b).

5.2. Spectral densities in terms of resolvent modes
A connection between resolvent analysis and SPOD can be obtained by writing the
cross-spectral density tensor in terms of resolvent modes. To do so, it is convenient
to write the cross-spectral density tensor as

Syy(x, x′, f )= E{ ŷ(x, f )ŷ∗(x′, f )}, (5.17)

which can be proven to be equivalent to the previous definition given by (2.16)
(Bendat & Piersol 2000). Inserting the resolvent-mode expansion (5.15) leads to the
expression

Syy(x, x′, f )=
∞∑

j=1

∞∑
k=1

ûj(x, f )û∗k(x
′, f )σj( f )σk( f )Sβjβk( f ), (5.18)

where
Sβjβk( f )= E{βj( f )β∗k ( f )} (5.19)

is the scalar-valued cross-spectral density between the jth and kth expansion
coefficients. In obtaining (5.19), the output resolvent modes and singular values
were moved outside of the expectation operator, which is permitted because they
are deterministic quantities, depending only on the resolvent operator and the inner
products. On the other hand, the expansion coefficients depend on the forcing term
η̂, which is stochastic due to the random nature of turbulent flows, so the expansion
coefficients must be described by their cross-spectral density. This fact is central to
the remainder of this section.

A connection between SPOD and resolvent analysis is obtained by choosing the
SPOD quantity of interest q and the resolvent output y to be the same, with the same
inner products, 〈·, ·〉x = 〈·, ·〉y. Then, the cross-spectral density tensors S and Syy are
identical and the SPOD expansion (2.21) and resolvent-mode expansion (5.18) can be
equated,

Syy(x, x′, f ) =
∞∑

j=1

λj( f )ψj(x, f )ψ∗j (x
′, f ) (5.20a)

=

∞∑
j=1

∞∑
k=1

ûj(x, f )û∗k(x
′, f )σj( f )σk( f )Sβjβk( f ). (5.20b)

The implications of (5.20) will be explored in the following two subsections.
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5.3. Special case: uncorrelated expansion coefficients
The resolvent-mode expansion of the cross-spectral density tensor can be simplified
in the special case in which the βj expansion coefficients are uncorrelated from one
another, which is expressed as Sβjβk( f )=µj( f )δjk. Substituting this into (5.20b) leads
to the simplified expression

Syy(x, x′, f ) =
∞∑

j=1

ψj(x, f )ψ∗j (x
′, f )λj( f ) (5.21a)

=

∞∑
j=1

ûj(x, f )û∗j (x
′, f )σ 2

j ( f )µj( f ). (5.21b)

Since the diagonalization of a normal operator via a basis that is orthogonal in a given
inner product is unique, (5.21) shows that the sets of SPOD and resolvent modes are
identical. Specifically, the resolvent mode with maximum σ 2

j µj corresponds to the first
SPOD mode, and so on. If µj = 1 for every j, then the ordering of the two sets of
modes is the same and σ 2

j ( f )= λj( f ), ûj(x, f )=ψj(x, f ).
The conditions for which the expansion coefficients are uncorrelated can be

elucidated by manipulating the definition of Sβjβk using properties of inner products,

Sβjβk = E{〈η̂, v̂j〉η〈η̂, v̂k〉
∗

η} = E{〈〈η̂, v̂j〉ηη̂
∗, v̂k〉

∗

η} = 〈〈Sηη, v̂j〉
∗

η, v̂k〉
∗

η, (5.22)

where Sηη(x, x′, f ) = E{η̂(x, f )η̂∗(x′, f )} is the cross-spectral density tensor of the
input η. Recalling the orthogonality of the resolvent output modes, the last form
of (5.22) shows that Sβjβk = µjδjk only if 〈Sηη(x, x′, f ), v̂j(x′, f )〉∗η = µjv̂j(x, f ). Using
the definition of the inner product, this can be written as∫

Ω

Sηη(x, x′, f ′)W η(x′)vj(x′, f ′) dx′ =µ( f ′)vj(x, f ′). (5.23)

This is precisely the eigenvalue problem that defines the SPOD modes of the input.
Thus, uncorrelated expansion coefficients imply that the resolvent input modes are
the same as the SPOD modes of the input (if there are repeated eigenvalues/singular
values, then the corresponding modes must span the same subspace). Conversely, if
the SPOD modes of the input are the same as the input resolvent modes, inserting
the SPOD expansion of Sηη into (5.22) shows that the expansion coefficients are
uncorrelated. Therefore, the expansion coefficients are uncorrelated if and only if the
resolvent input modes correspond exactly with the SPOD modes of the input.

On inspection of (5.23), the stronger condition that µj = 1 for every j requires that

Sηη(x, x′, f )W η(x′)= Iδ(x− x′). (5.24)
When W η = I , this condition takes on physical significance: Sηη(x, x′, f ) = Iδ(x −
x′) corresponds to an input that is completely uncorrelated in space and time and
has unit amplitude everywhere, i.e. unit-amplitude white noise. While the nonlinear
forcing terms in any real flow are unlikely to be white, this approximation has been
shown to be reasonable in some flows and is frequently used for the construction
of low-order models (Farrell & Ioannou 1993, 1996, 2001), including resolvent-based
models (Jovanović & Bamieh 2001; Bagheri et al. 2009; Sipp et al. 2010; Moarref
& Jovanović 2012; Dergham et al. 2013). In these models, then, resolvent modes
can be understood as approximations of SPOD modes. The equivalence of SPOD
and resolvent modes in the case of white-noise forcing has been recently pointed out
by multiple authors working in the area of jet-noise modelling (Towne et al. 2015;
Semeraro et al. 2016a; Towne, Brès & Lele 2016).
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5.4. General case: flow reconstruction with correlated expansion coefficients
The nonlinear forcing terms in real flows are not white (Towne, Brès & Lele
2017; Zare, Jovanović & Georgiou 2017), which leads to correlated resolvent-mode
expansion coefficients. In this case, a more general relationship between SPOD and
resolvent modes can be derived that provides insight into how the resolvent-mode
expansion coefficients can be chosen to optimally reconstruct the flow.

A number of strategies for choosing the resolvent-mode expansion coefficients have
been proposed and employed in the last few years. Perhaps the most straightforward
approach, used for example by Jeun, Nichols & Jovanović (2016), is to use simulation
data to compute η, estimate η̂ using a single DFT of the time series, and calculate
the expansion coefficients using their definition in (5.16). However, this method
suffers from the uncertainty inherent in the DFT, as discussed earlier. Methods using
converged statistics of the flow must be used to eliminate this uncertainty.

Moarref et al. (2014) formulated a convex optimization problem to find a vector of
expansion coefficients that optimally reproduce experimentally measured streamwise
energy spectra, averaged in the other directions, for a turbulent channel flow. The
coefficients that were optimal in the sense they defined led to qualitative agreement
with the statistics, but notably the error did not tend towards zero as the number of
resolvent modes was increased.

Gómez et al. (2016a) derived an equation for the power spectral densities of
the expansion coefficients, which define their magnitude. These are obtained by
projecting the time-varying forcing term η onto the resolvent input basis for a
range of frequencies, and computing the power spectral densities of these terms.
In a separate paper (Gómez et al. 2016b), the same authors suggested a somewhat
different method using a time series of data at one location in the flow. In this
approach, the resolvent expansion is inverse Fourier transformed back into the time
domain and the coefficients for all frequencies are simultaneously determined by
matching the time series in a least-squares sense.

Beneddine et al. (2016) used two different approaches for finding the coefficient
for (only) the leading resolvent mode at each frequency for the flow over a
backward-facing step. In the first approach, the amplitudes of the expansion
coefficients were chosen so that the rank-one resolvent-mode reconstruction matched
the power spectral density of the spanwise-averaged streamwise velocity at a single
location in the flow. In the second approach, the expansion coefficient for the leading
mode at each frequency was chosen so that the rank-one resolvent expansion matched
the leading SPOD mode, again at a single location. They found this second method
to provide improved estimates of the power spectral density at other spatial locations
in the flow. Their results were further improved by attempting to match the SPOD
mode at several locations using a least-squares approach.

All of these methods assume that each expansion coefficient can be described by
a single deterministic amplitude and phase. In contrast, (5.18) shows that the cross-
spectral densities of the expansion coefficients are required to properly reconstruct the
second-order statistics of the flow. Notably, this includes the power spectral density,
which is obtained by setting x′=x. Treating the expansion coefficients as deterministic
quantities imposes a fundamental limitation on the quality of the flow approximation
that can be achieved by the resolvent model. For clarity, we will use the symbol bj in
place of βj to denote these deterministic expansion coefficients. Regardless of how the
bj values are chosen, the approximation of Sβjβk implied by these coefficients is Sbjbk =

bjb∗k . Making this substitution in (5.18), the resulting cross-spectral density tensor can
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be factored into the form

Syy(x, x′, f )=

(
∞∑

j=1

ûj(x, f )σj( f )bj( f )

)(
∞∑

k=1

ûk(x′, f )σk( f )bk( f )

)∗
. (5.25)

Since the right-hand side is the product of two vectors, this approximation of the
cross-spectral density tensor has rank equal to one, whereas the correct cross-spectral
density tensor has rank equal to the number of non-zero SPOD eigenvalues at each
frequency. This limits the quality of the flow approximation that can be achieved
with the resolvent model using deterministic expansion coefficients, no matter how
their amplitudes and phases are chosen. Specifically, we will see that convergent
approximations of the power spectral and cross-spectral densities are not possible
when the statistical nature of the expansion coefficients is not respected.

A few specific choices of bj are worth a closer look. First, we consider the
case where the bj values are chosen to have the correct magnitude, so that their
power spectral densities Sbjbj = |bj|

2 match the correct values Sβjβj . This could
be accomplished, for example, using the approach of Gómez et al. (2016a).
Equation (5.18) shows that the cross-spectral and power spectral densities depend
also on off-diagonal terms Sβjβk . These will be replaced by the values Sbjbk = bjb∗k ,
and there is no reason to expect this to provide a good approximation. For example,
in the case of uncorrelated expansion coefficients, the off-diagonal terms of Sβjβk are
zero, but bjb∗k is non-zero unless either mode j or mode k has zero magnitude. Thus,
even though the power spectral densities of the expansion coefficients are correct, the
power spectral densities of the output will be incorrect. To make the error explicit,
(5.25) can be manipulated into the form

Syy(x, x′, f ) =
∞∑

j=1

ûj(x, f )û∗j (x
′, f )σ 2

j ( f )|bj( f )|2

+

∞∑
j=1

∞∑
k=1
k 6=j

ûj(x, f )û∗k(x
′, f )σj( f )σk( f )bj( f )b∗k( f ). (5.26)

Using the power-spectral-density-based expansion coefficients, the first term in (5.26)
is correct, while the second term is incorrect no matter how many terms are included
in the expansion.

An alternative approach would be to choose the bj coefficients such that the
resolvent-mode expansion optimally matches the data, as defined by the inner
product 〈·, ·〉y, in the limit of high Nr. Spectral POD theory tells us that the optimal
representation of the data under the rank-one limitation is given by the leading SPOD
mode. Therefore, the optimal bj values are those that reconstruct the leading SPOD
mode at each frequency. These values can be obtained by directly projecting the
leading SPOD mode onto the resolvent modes, giving

bj( f )=
√
λ1( f )
σj( f )

〈ψ1, ûj〉y. (5.27)

By construction, these expansion coefficients guarantee that the first SPOD mode at
each frequency is recovered when enough terms are retained in the resolvent-mode
expansion. Even though this is the optimal expansion possible using a deterministic
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vector of expansion coefficients, it will provide a good approximation of the flow
only if λ1( f )� λ2( f ) over the range of relevant frequencies. Therefore, the quality of
the resolvent-mode expansion using optimal (or any other) deterministic coefficients
is dependent first and foremost on the low-rank nature of the cross-spectral density
tensor rather than of the resolvent operator.

In contrast, convergent approximations of the flow statistics can be achieved if the
statistical nature of the resolvent-mode expansion coefficients is incorporated at the
outset. Accordingly, we propose a practical method for approximating the required
cross-spectral densities Sβjβk using the leading SPOD modes. The resolvent-mode
expansion coefficients are related to SPOD modes by comparing the SPOD and
resolvent expansions of the cross-spectral density tensor given in (5.20). By taking
two successive inner products of both expansions with respect to ûj and ûk and
dividing by σj( f ) and σk( f ), we obtain the expression

Sβjβk =

∞∑
n=1

λn( f )
σj( f )σk( f )

γnj( f )γ ∗nk( f ), (5.28)

where
γjk( f )= 〈ψj, ûk〉y (5.29)

is the projection between the jth SPOD mode and the kth resolvent output mode.
Using the first Ns terms in (5.28) to approximate Sβjβk and a resolvent-mode

expansion with Nr terms leads to the approximation of the second-order flow statistics,

Syy(x, x′, f )≈
Ns∑

n=1

λn( f )

(
Nr∑

j=1

γnj( f )ûj(x, f )

)(
Nr∑

k=1

γnk( f )ûk(x′, f )

)∗
. (5.30)

From the definition of γjk and the fact that the input resolvent modes are complete,
we have that

Nr∑
j=1

γnj( f )ûj(x, f )→ψn(x, f ) as Nr→∞. (5.31)

Therefore, using the first Ns SPOD modes to approximate Sβjβk leads to a resolvent-
mode expansion capable of capturing the first Ns SPOD modes, if enough resolvent
modes are retained. The approximation is therefore convergent as Ns and Nr are
increased, and if the SPOD spectrum falls off rapidly, accurate approximations of the
flow are possible using only a few SPOD modes to compute the expansion coefficients.
If a sufficiently high value of Ns is used, then the quality of the approximation that
can be obtained with a limited number of resolvent modes is determined by the
convergence of the limit in (5.31). It is notable that the resolvent gains do not appear
explicitly in (5.30) or (5.31). Instead, the efficacy of the resolvent expansion is
determined by the efficiency of the leading resolvent modes in providing a basis for
the leading SPOD modes.

6. Examples

This section contains two example problems that demonstrate our theoretical results
as well as the overall utility of SPOD.
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6.1. Complex Ginzburg–Landau equation
Our first example consists of the linearized complex Ginzburg–Landau equation, which
is frequently used as a model for instabilities in spatially evolving flows. The equation
can be written in the form of (5.3) with

A=−ν
∂

∂x
+ γ

∂2

∂x2
+µ(x). (6.1)

The spatial dependence of the solution is a consequence of the parameter µ(x), for
which we adopt the quadratic form

µ(x)= (µ0 − c2
µ)+

µ2

2
x2 (6.2)

used previously by several authors (Hunt & Crighton 1991; Bagheri et al. 2009; Chen
& Rowley 2011). We take µ0 = 0.23, and all other parameters in (6.1) and (6.2) are
set to the values used by Bagheri et al. (2009). The resulting model is globally stable
(all eigenvalues of A have negative real part) but is susceptible to non-modal growth
due to the non-normality of A, which within the context of resolvent analysis leads to
gains much larger than one. The input and output operators and inner-product matrices
(B, C, W y and W η respectively) are all set to unity. The value of µ0 was chosen so
that the gain of the leading resolvent mode at its peak frequency is 100 times larger
than the gain of the second mode, which is a typical value for real flows.

The equations are discretized with a pseudo-spectral approach using Hermite
polynomials, as in Bagheri et al. (2009) and Chen & Rowley (2011). The collocation
points correspond to the roots of the first N Hermite polynomials; following Bagheri
et al. (2009), we use N = 220. This leads to a computational domain x ∈ [−85, 85],
which is large enough to mimic an infinite domain. Since the collocation points are
unevenly distributed, the discretized form of the inner product would contain matrices
different from the identity. To avoid this, we define the input η and output y on a
different uniformly spaced grid. This is accomplished by setting the discretized forms
of the input and output matrices B and C so that they represent an interpolation from
the uniform grid to the Hermite grid and from the Hermite grid to the uniform grid
respectively. On the uniform input/output grid, the discrete inner-product matrices Wy
and Wη are the identity matrix.

To generate data for our analysis, the discretized equations are stochastically excited
in the time domain using forcing terms with prescribed statistics. In the following two
subsections, we consider cases of white-noise and correlated forcing respectively.

6.1.1. White-noise forcing
We begin by forcing the linearized Ginzburg–Landau equations with band-limited

white noise that is spatially uncorrelated. This forcing is realized by setting the
value at each grid point and at each discrete time instance to a random complex
number with uniformly distributed phase (between 0 and 2π) and normally distributed
amplitude with unit variance. This signal is then low-pass filtered in time using a
10th-order finite-impulse-response filter with a cutoff frequency equal to 60 % of the
Nyquist frequency. Additionally, the forcing is spatially limited to the interior portion
of the domain using an exponential envelope of the form exp[(x/L)p] with L = 60
and p= 10.

The equations are integrated using a fourth-order embedded Runge–Kutta method
(Shampine & Reichelt 1997), and a total of 40 000 snapshots of the solution are
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FIGURE 2. (Colour online) Comparison of the first four resolvent gains σ 2
j (lines) and

SPOD eigenvalues λj (symbols) as a function of frequency for the Ginzburg–Landau model
forced with white noise: (E, blue) mode 1; (@, green) mode 2; (A, red) mode 3; (C, cyan)
mode 4. For each mode, every other SPOD eigenvalue has been omitted from the plot to
improve readability.

collected with spacing 1t= 0.5, leading to a Nyquist frequency of fNyquist= 1. A large
number of snapshots are required for this problem because of the slow statistical
convergence of the white-noise forcing; problems with correlated forcing, as is
typical in real flows, tend to require fewer snapshots. Spectra and SPOD modes
are computed as outlined in § 3 with a Hann window function, 75 % overlap and
Nf = 384.

Since the forcing is white and the input inner product has unit weight, the
conditions are met under which resolvent and SPOD modes are theoretically
equivalent. The first four SPOD eigenvalues and resolvent gains are shown in
figure 2 as a function of frequency. For consistency with previous publications,
frequencies are reported in terms of the angular frequency ω = 2πf . Overall, the
SPOD eigenvalues agree with the resolvent gains, but two minor differences can
be observed which are related to the finite level of convergence of the spectral
estimates used to approximate the SPOD modes. First, the SPOD eigenvalues are not
completely smooth as a function of frequency. This is indicative of the remaining
uncertainty in the spectral estimates, which can be further reduced by averaging over
more data ensembles. Second, there is a small overshoot in the value of the second
SPOD eigenvalue at the peak frequency of the first mode. This overshoot is related to
spectral leakage, which can be reduced by increasing the frequency resolution of the
spectral estimates by increasing the length of the data ensembles. When estimating
the cross-spectral density using a data set of finite length, increasing the number of
ensembles reduces the length of each ensemble and vice versa. Therefore, decreasing
one of the two types of errors tends to increase the other. The proper compromise
will in general be problem-dependent. As a general rule, SPOD modes are more
difficult to converge for flows that exhibit sharp spectral peaks.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

8 
at

 1
6:

58
:5

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

28
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.283


Spectral POD, DMD and resolvent analysis 845

–20

–10

0

10

20

x

–20

–10

0

10

20

x

–20

–10

0

10

20

x

1–1–2–3 0 2 3 1–1–2–3 0 2 3 1–1–2–3 0 2 3

Mode 1

Mode 2

Mode 3
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(e)

(h) (i)

(c)

( f )(d )

(g)

Resolvent SPOD POD

FIGURE 3. Weighted mode shapes in ω–x space for the Ginzburg–Landau equation forced
with white noise. (a,d,g) Resolvent modes σj(ω)|ûj(x, ω)|. (b,e,h) Spectral POD modes√
λj(ω)|ψj(x, ω)|. (c, f,i) Space-only POD modes |âj(ω)| |φj(x)|.

The structure of the first three resolvent and SPOD modes is depicted in figure 3
as a function of x and ω (space-only POD results are also shown and will be
discussed later). Specifically, we plot the weighted quantities σj(ω)|ûj(x, ω)| and√
λj(ω)|ψj(x, ω)| to clearly show where each mode is active in ω–x space. The

contour levels in each plot are distributed between zero and the maximum value of
the weighted mode.

The first resolvent and SPOD modes are nearly indistinguishable. The suboptimal
SPOD modes likewise closely mimic their corresponding resolvent modes, although
the limited smoothness as a function of frequency is again evident. The match
between the resolvent and SPOD modes can be quantified using the projection γjk,
defined in (5.29). This is shown for the peak frequency of the leading resolvent mode,
ω = −0.6, in figure 4(a). The diagonal ( j = k) entries dominate up to j = k = 12,
indicating that the first 12 resolvent and SPOD modes are nearly the same. Finally,
figure 4(b) shows the expansion-coefficient cross-spectral density tensor Sβjβk for the
same frequency, normalized by its maximum value. As expected, it is nearly diagonal,
which is the root cause of the approximate equivalence of the resolvent and SPOD
modes for this problem.

We also briefly compare the SPOD results with those obtained using space-only
POD. Figure 3(c, f,i) shows the ω–x distribution of the first three POD modes. The
frequency distribution was obtained by computing the power spectral densities of the
time-dependent expansion coefficients aj(t) using Welch’s method, which is similar to
the method of Cammilleri et al. (2013) except that we use proper spectral averaging
rather than a single DFT to obtain frequency information. The quantity plotted is
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FIGURE 4. Spectral POD/resolvent-mode projection coefficient (a) and resolvent-mode
expansion-coefficient cross-spectral density (b) at the frequency of highest gain for the
Ginzburg–Landau model forced with white noise. The first 12 SPOD and resolvent modes
are nearly identical (diagonal γjk) because the resolvent-mode expansion coefficients are
almost completely uncorrelated (diagonal Sβjβk ).

then |âj(ω)| |φj(x)|. As expected, each space-only POD mode represents a range of
frequencies. The first space-only POD mode is relatively similar to the leading SPOD
mode, but subsequent POD modes represent structures that are quite different. Two
things stand out. First, since the spatial shape of each space-only POD mode does
not depend on frequency, they are unable to capture the frequency-dependent shape
of the resolvent modes that is captured by the SPOD modes. Second, the frequency-
dependent magnitude of each suboptimal space-only POD mode exhibits a clear dip
at the frequencies at which previous modes peak. Overall, the SPOD modes provide
a better representation than the space-only POD modes of the underlying dynamics
and non-normal growth mechanisms, which are completely described by the resolvent
modes for this problem since the forcing is white.

Finally, we demonstrate the result from § 2.3 that space-only POD modes do not
represent structures that are uncorrelated from one another in time. Figure 5 shows
the correlation CPOD

a1aj
(τ )=E{a1(t)a∗j (t+ τ)} of the first POD expansion coefficient with

the first three expansion coefficients ( j= 1, 2, 3) as a function of the temporal lag τ ,
scaled by

√
λ1λj. The solid and broken lines show the real part and magnitude of

the correlations respectively. At zero time lag, the scaled autocorrelation CPOD
a1a1
(0)/λ1

is one and the cross-correlations CPOD
a1ak
(0) are zero. Both of these values follow

theoretically from (2.9). However, for τ > 0, the autocorrelation quickly drops and
the cross-correlations become non-zero. Accordingly, the space-only POD modes do
not represent structures that evolve coherently in time.

6.1.2. Correlated forcing
Next, we force the linearized Ginzburg–Landau equations with forcing terms that

are spatially correlated. This forcing is generated by convolving the same band-limited
white-noise signal used previously with a kernel of the form

g(x, x′)=
1

√
2πση

exp

[
−

1
2

(
x− x′

ση

)2
]

exp
[

i2π
x− x′

λη

]
, (6.3)

where ση is the standard deviation of the envelope and λη is the wavelength of the
filter. This leads to a forcing that is white-in-time up to the cutoff frequency but that
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3010 20 40 500

0.5

0

–0.5

1.0

FIGURE 5. (Colour online) Temporal correlation of the first three space-only POD
expansion coefficients with the first coefficient (see (2.24)) for the Ginzburg–Landau model
forced with white noise. Real part of the correlation for (——, blue) mode 1; (– – –,
green) mode 2; (– · – · –, red) mode 3. The light dotted lines show the magnitude of each
correlation. Since the autocorrelation of the first mode decays and the cross-correlation
with the suboptimal modes becomes non-zero for τ > 0, the space-only POD modes do
not represent structures that evolve coherently in space and time.
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FIGURE 6. Spectral POD/resolvent projection coefficients γjk at two frequencies for the
Ginzburg–Landau model forced by spatially correlated input. Since the tensors are not
diagonal, the resolvent and SPOD modes are not the same in this case.

has non-zero spatial correlation in the form of (6.3) but with ση replaced with
√

2ση.
This form of the forcing statistics is qualitatively similar to those of the nonlinear
forcing terms in real flows, such as a turbulent jet (Towne et al. 2017). We use ση= 4
and λη = 20. The statistics of the response converge more rapidly in this case due to
the correlated forcing, so we use a smaller number of snapshots, N = 10 000, than in
the uncorrelated case.

The correlation of the forcing leads to differences between the output resolvent and
SPOD modes. This is clearly demonstrated by the γjk projection coefficients, which
are shown for ω=−0.6 and 0.4 in figure 6. The first of these frequencies is near the
peak frequency of the leading resolvent mode where σ 2

1 ≈ 560 and σ 2
1 /σ

2
2 ≈ 100, while

the second is away from the peak and σ 2
1 ≈ 20 and σ 2

1 /σ
2
2 ≈ 10. In both cases, the

diagonal character of γjk observed for the white-noise forcing (figure 4a) is no longer
observed, indicating that the SPOD and resolvent modes are no longer the same.

As discussed in § 5, this can be attributed to the fact that the correlated forcing
produces correlated resolvent-mode expansion coefficients. The magnitude of the cross-
spectral density of the expansion coefficients Sβjβk is shown in figure 7(a,d) for the
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FIGURE 7. Cross-spectral density of the resolvent-mode expansion coefficients for (a,b,c)
ω=−0.6 and (d,e, f ) ω= 0.4. (a,d) Correct values. (b,e) Values implied by deterministic
coefficients based on a single long-time DFT of the solution. (c, f ) Values implied by
deterministic coefficients with correct power spectral density.

same two frequencies. The strictly diagonal correlation tensor observed for the white-
noise forcing (figure 4b) has been replaced by a more complicated banded structure,
indicating substantial correlations between different expansion coefficients.

The expansion-coefficient correlations are not captured by standard approaches to
computing the expansion coefficients that treat them as deterministic quantities. For
example, figures 7(b,e) and 7(c, f ) show the correlations implied using the DFT- and
power spectral density (PSD)-based methods discussed in § 5.4, both of which lead to
large errors away from the main correlation bands.

As indicated by (5.18), these errors in the expansion-coefficient cross-spectral
density lead to errors in the resolvent-mode reconstruction of the output statistics.
Figure 8 compares the true power spectral density of the output as a function of ω
and x with the power spectral densities obtained from resolvent-mode reconstructions
of the flow with Nr = 1, 5, 10 and 30 modes and with the expansion coefficients
specified in four different ways. Figure 8(a) shows the true power spectral density,
which does not depend on Nr. Figure 8(b) shows the power spectral density obtained
using the correct values of Sβjβk , computed using (5.28). Figures 8(c) and 8(d) show
the power spectral densities obtained using the DFT- and PSD-based deterministic
expansion coefficients respectively, and figure 8(e) shows results for the optimal bj
values given by (5.27). The contour levels in all of the panels are the same and span
six orders of magnitude, with the upper bound set to the maximum value of the true
power spectral density.

All four resolvent-mode reconstructions produce similar power spectral densities
for Nr = 1, but the DFT-based expansion is noticeably noisy due to the uncertainty
implicit in this approach. As the number of resolvent modes included in the expansion
increases, the power spectral density obtained using the proper Sβjβk values converges
to the true power spectral density. In contrast, none of the three methods using
deterministic expansion coefficients converge to the true PSD due to their incorrect
implied correlations. For the DFT- and PSD-based methods, the reconstructed power
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FIGURE 8. (Colour online) Resolvent-mode reconstructions of the PSD of the solution of
the Ginzburg–Landau equation for spatially correlated forcing using different expansion
coefficients. Rows: the number of resolvent modes in the expansion increases from
top to bottom. Columns: (a) True PSD (same in every row). (b) Reconstruction with
correct statistical expansion coefficients. (c) Reconstruction with deterministic expansion
coefficients based on a single long-time DFT. (d) Reconstruction with deterministic
PSD-based expansion coefficients. (e) Reconstruction with optimal deterministic expansion
coefficients.

spectral densities improve with increasing Nr in low-energy regions of ω–x space but
do not improve in high-energy regions. In fact, the reconstruction of the high-energy
regions actually worsens with increasing Nr for the PSD-based expansion coefficients
due to accumulation of the error terms from (5.26) as more modes are included in
the expansion. On the other hand, the inclusion of more terms in the resolvent-mode
expansion using the optimal bj values has less effect on the low-energy regions
but does not degrade the approximation of the high-energy regions. This is because
the resolvent-mode reconstruction using these expansion coefficients is converging
towards the leading SPOD mode at each frequency, and these modes effectively
represent high-energy regions by construction. The expansion with optimal bj values
is well converged using 30 resolvent modes, so this is the best approximation of
the second-order output statistics that can be obtained using deterministic expansion
coefficients.

6.2. Turbulent jet
Our second example is a subsonic turbulent jet issued from a round convergent-straight
nozzle. The Mach number, temperature ratio and Reynolds number of the jet are M=
Uj/cj=0.4, Tj/T∞=1 and Re=ρjUjD/µj≈106 respectively, where U is the velocity, c
is the speed of sound, T is the temperature, ρ is the density, D is the nozzle diameter,
µ is the dynamic viscosity, and the subscripts j and ∞ indicate mean conditions at
the nozzle exit and in the ambient far field respectively.
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Nozzle
x

r

FIGURE 9. (Colour online) Instantaneous snapshot of the Mach 0.4 turbulent jet.
Greyscale: pressure fluctuations. Colour: vorticity magnitude.

We use data from a large-eddy simulation (LES) as input for the various empirical
modal decomposition methods discussed in this paper. The simulation was performed
using the compressible flow solver ‘Charles’ developed at Cascade Technologies (Brès
et al. 2017a), which solves the spatially filtered compressible Navier–Stokes equations
on unstructured grids using a finite-volume method and third-order Runge–Kutta time
integration. The simulation used approximately sixteen million control volumes and
was run for a duration of 2000 acoustic time units (tc∞/D). The numerical methods,
geometry and grid are identical to those used in a previous simulation at a higher
Mach number, which was validated using double-blind comparisons with an extensive
set of experimental measurements (Brès et al. 2015, 2016, 2017b).

The available LES database consists of 10 000 snapshots of the jet (velocities,
density and pressure) sampled every 0.2 acoustic time units on a structured cylindrical
output grid that approximately mirrors the underlying LES resolution and extends a
distance of 30 jet diameters in the streamwise direction and six jet diameters in the
radial direction. The azimuthal vorticity magnitude and pressure fluctuations from one
of the snapshots are shown in figure 9. These snapshots are used to compute SPOD,
space-only POD, DMD and DFT modes. Since the azimuthal coordinate is periodic,
the snapshots can be decomposed into azimuthal Fourier modes, and each azimuthal
mode can treated independently within the context of the modal decompositions. For
the sake of brevity, we exclusively present results for the axisymmetric component,
and all modes are visualized using the pressure field.

6.2.1. Spectral POD modes
First, we study the SPOD modes of the jet. Spectral POD has been applied to

jets before using data from both experiments (Glauser et al. 1987; Arndt et al.
1997; Citriniti & George 2000; Gudmundsson & Colonius 2011; Sinha et al. 2014;
Semeraro et al. 2016a) and simulations (Towne et al. 2015; Schmidt et al. 2017b).
These studies have used a variety of different definitions of the quantity of interest
q, spatial domain Ω and inner-product weight W . Here, we use the full state
vector q = [ρ, ux, ur, uθ , p] in the domain described previously, and we define
the inner-product weight such that the induced norm is equivalent to the compressible
energy norm proposed by Chu (1965). The SPOD modes are estimated using the
procedure outlined in § 3 using blocks containing Nf = 256 snapshots, leading to
Nb = 78 realizations of the jet. A standard Hann window is used to reduce spectral
leakage. Frequencies are reported in terms of the Strouhal number St= fD/Uj.
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FIGURE 10. Spectral POD modes of the Mach 0.4 turbulent jet: (a) SPOD eigenvalues
at St = 0.6, normalized by the total energy at that frequency; (b) SPOD eigenvalues
as a function of frequency, normalized by the total flow energy; (c–l) real part of the
pressure field of the first (c,e,g,i,k) and second (d, f,h,j,l) SPOD modes at the five indicated
frequencies.

The SPOD modes are summarized in figure 10. The eigenvalues are depicted in two
different ways in figure 10(a,b). Figure 10(a) shows the eigenvalues as a function of
the mode number for St = 0.6. The eigenvalues are normalized by the total energy
at this frequency, so each scaled eigenvalue represents the fraction of the energy at
St = 0.6 described by that mode. The leading mode is substantially more energetic
than the suboptimal modes and captures ∼22 % of the flow energy at this frequency.
This is indicative of low-rank dynamics at this frequency (Schmidt et al. 2017b). The
full spectrum of SPOD eigenvalues is shown in figure 10(b) as a function of the
frequency. All eigenvalues have been normalized by the total flow energy integrated
over all frequencies, so each one can be interpreted as the fraction of the total flow
energy described by that mode. The shading of the curves varies linearly from black
to white as the mode number increases from 1 to Nb = 78. The low-rank behaviour

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

8 
at

 1
6:

58
:5

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

28
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.283


852 A. Towne, O. T. Schmidt and T. Colonius

observed at St = 0.6, indicated by a large gap between the first and second SPOD
eigenvalues, persists in the range 0.3 . St . 1.

The pressure fields of the first two SPOD modes are plotted for several frequencies
in figure 10(c–l). All of the modes take the form of coherent wavepacket structures.
The wavelength and spatial support of the wavepackets are strongly dependent on
the frequency; both quantities increase with decreasing frequency. The wavepacket
described by the first mode at each frequency has a single streamwise maximum.
These wavepackets have been linked to the Kelvin–Helmholtz instability of the
annular jet shear layer for St & 0.3 (Suzuki & Colonius 2006; Gudmundsson &
Colonius 2011) and to a superposition of non-normal modes for St . 0.3 (Jordan
et al. 2017; Schmidt et al. 2017b). This link between the real turbulent jet and
these simple concepts from linear stability theory provides a starting point for the
construction of non-empirical reduced-order models. The wavepackets described by
the second mode at each frequency have two streamwise maxima, and subsequent
modes have increasingly complex structure. These modes optimally describe the
variability in the shape of the wavepackets observed in the jet at different times
(see § 6.2.3). These variations are central to the acoustic characteristics of the jet
(Cavalieri et al. 2011; Cavalieri & Agarwal 2014).

Overall, the SPOD modes provide valuable insights that enhance physical
understanding of the jet dynamics and motivate reduced-order models. In particular,
the wavepackets represented by the SPOD modes have been shown to play a key role
in generating acoustic radiation and provide a rigorous starting point for modelling
and mitigating jet noise.

6.2.2. Space-only POD modes
Second, we examine the space-only POD modes of the jet. We will see that,

in contrast to SPOD, the space-only POD modes provide little insight into the
jet dynamics. The space-only POD eigenvalues are shown in figure 11(a). The
eigenvalues decay slowly and give no indication of the low-rank behaviour of the jet
revealed by SPOD. The power spectral density of each expansion coefficient is shown
in figure 11(b). The contour levels are logarithmically distributed over three orders of
magnitude, with the upper limit equal to the maximum value. The first approximately
10 modes are dominated by low frequencies that are below the relevant range for
jet-noise research; even though these are the highest-energy structures in the jet, they
are of little interest. All of the modes, and especially for j& 10, contain contributions
from a wide range of frequencies – each mode represents behaviour at many different
time scales.

Because of this mixing of different time scales, the space-only POD modes cannot
reproduce the orderly wavepacket structures identified by SPOD. The pressure fields
of several modes are shown in figure 11(c–h). Modes 1 and 10 are dominated by
large structures associated with the low frequencies that these modes represent. The
higher modes have a disorganized appearance caused by the superposition of many
different spatial scales associated with the wide range of time scales contained in
each mode. Fragments of different wavepackets can be observed in these modes, but a
clean separation of distinct structures is not achieved; as indicated by (2.28), the space-
only POD modes are made up of a combination of many SPOD modes at different
frequencies. This scale mixing makes the space-only POD modes far less helpful for
understanding and modelling the jet dynamics. This is perhaps unsurprising in light of
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FIGURE 11. Space-only POD modes of the Mach 0.4 turbulent jet: (a) space-only
POD eigenvalues, normalized by the total flow energy; (b) PSD of the space-only POD
expansion coefficients; (c–j) real part of the pressure field of space-only POD modes 1,
10, 20, 40, 60, 80, 100 and 200.

the analysis in § 2.3 showing that space-only POD modes do not represent physically
meaningful coherent structures.

6.2.3. DMD modes
Third, we compare four different types of DMD modes. In all cases, we use the

formulation given by (4.1) with different choices of the matrices X and Y. The first
set of DMD modes is obtained using all 10 000 snapshots of the jet to define X and
Y as in (4.2) without subtracting the mean – this is the standard way in which DMD
would be applied to the jet database. The second set of DMD modes is obtained
again using all 10 000 snapshots in the same way, but the mean is subtracted – this
is equivalent to taking a single long-time DFT of the database. The third set of DMD
modes is obtained from the ensemble DMD problem defined by (4.4) and the mean is
subtracted from each flow realization – the DMD modes are thus the short-time DFT
modes of each realization, as shown in § 4. The details of the ensemble definition are
the same as described in § 6.2.1 for the SPOD computation. The fourth and final set
of DMD modes is the SPOD modes constructed from the ensemble of short-time DFT
modes.
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FIGURE 12. (Colour online) Dynamic mode decomposition/DFT modes of the Mach 0.4
turbulent jet: (a) eigenvalues for DMD without mean subtraction; (b) eigenvalues in the
vicinity of St= 0.8 for (u) DMD without mean subtraction; (E, green) DMD with mean
subtraction, i.e. a long-time DFT; (p, blue) ensemble DMD, i.e. short-time DFT; (c–l) real
part of the pressure field of the different types of DMD modes; (c,d) DMD without mean
subtraction; (e, f ) long-time DFT; (g–l) three realizations of the short-time DFT. Panels
(c,e,g,i,k) and (d, f,h,j,l) show the modes nearest to St= 0.4 and 0.8 respectively.

The DMD eigenvalues associated with the different sets of DMD modes are
depicted in figure 12(a,b). Figure 12(a) shows the full set of eigenvalues for the
standard DMD calculation in which the mean is not removed. With the exception of
a small number of outliers, the eigenvalues are tightly clustered along the unit circle
and therefore have nearly zero growth/decay rates. This is expected since the jet is a
stationary flow. Figure 12(b) focuses on the portion of the unit circle corresponding
to St≈ 0.8 and confirms that the growth/decay rates of the standard DMD modes are
indeed small. Also shown in this plot are the DMD eigenvalues associated with the
long-time and short-time DFT (only one short-time eigenvalue is visible). Most of
the eigenvalues from the standard DMD calculation lie near one of the eigenvalues
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from the long-time DFT, which shows that the standard DMD eigenvalues are nearly
evenly spaced and suggests that each standard DMD mode is probably similar to one
of the long-time DFT modes, even without mean subtraction.

The pressure fields of some of the DMD modes are shown in figure 12(c–l).
Specifically, we show the modes from each different type of DMD that are nearest to
the frequencies St = 0.4 and 0.8. The standard DMD and long-time DFT modes are
shown in figures 12(c,d) and 12(e, f ) respectively. We see that these modes are quite
similar, which is expected both from examination of the associated DMD eigenvalues
and from the theoretical connection between DMD modes, Koopman modes and
Fourier modes discussed in § 4. Three of the short-time DFT modes associated with
the ensemble DMD problem are shown for the two frequencies in figure 12(g–l).
Significant variability is observed between the different realizations, which is a
consequence of the physical flow variability in different short-time intervals and
the uncertainty inherent to the DFT. The SPOD modes shown in figure 10 provide
an optimal basis for describing the ensemble of short-time DFT modes at each
frequency. It is thus not surprising that traces of the wavepackets described by the
first two SPOD modes can be observed in the short-time DFT modes and indeed in
all of the different types of DMD modes. However, none of these other DMD/DFT
modes clearly isolate the coherent wavepacket structures. Instead, they each show
one of the many ways in which the coherent structures represented by the SPOD
modes can coexist in one particular realization of the turbulent flow. Clearly, the
elementary coherent structures provided by SPOD are more useful for understanding
and modelling the jet than these random realizations provided by the other forms of
DMD.

6.2.4. Resolvent modes
Fourth, we compute resolvent modes of the jet and compare them with the SPOD

modes. Several authors have computed resolvent modes for jets in recent years
(Garnaud et al. 2013; Jeun et al. 2016; Semeraro et al. 2016a,b; Schmidt et al.
2017b), and their properties have been shown to predict certain properties of the jet.
Our focus here is on making comparisons with SPOD, as suggested by our analysis
in § 5.

The jet is governed by the compressible Navier–Stokes equations, so the flow
operator A in (5.3) corresponds to these equations linearized about the mean
flow computed from the LES data. The output operator C selects the domain
Ω = {x, r ∈ [0, 30] × [0, 6]} in order to match the support of the LES snapshots
used for the empirical methods. The input operator B multiplies each component of
η by the turbulent kinetic energy of the jet (again computed from the LES data).
This choice is motivated by the analysis of Towne et al. (2017) and emphasizes the
forcing terms in regions of the jet where turbulent fluctuations are of high enough
amplitude to interact nonlinearly. The same compressible energy inner product (Chu
1965) as used for the POD modes is adopted for both the input and output spaces.

The equations are discretized using fourth-order finite differences on a grid with
950 × 250 points in x and r respectively. The computational domain includes the
physical domain described above plus a surrounding sponge region that prevents
waves from being reflected back into the computational domain at its boundaries.
The overall numerical scheme is the same as in Schmidt et al. (2017a); additional
details are available in that reference. As indicated by the above definition of Ω , the
sponge regions carry zero weight in the discretized inner products. The numerical
approximations of the leading resolvent output modes Ũ and singular values 6 are
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FIGURE 13. Resolvent modes of the Mach 0.4 turbulent jet: gain as a function of mode
number for (a) St = 0.6 and (b) St = 0.2; (c–l) comparison between the leading SPOD
mode (c,e,g,i,k) and the resolvent output mode (d, f,h,j,l) at the five indicated frequencies.
The real part of the pressure field of each mode is shown.

calculated from the eigenvalue decomposition R̃R̃
∗

= Ũ62Ũ
∗

using a standard Arnoldi
method (see appendix C for a description of the preceding notation for the discretized
equations).

The theory developed in § 5 provides a rigorous basis for comparing SPOD and
resolvent modes. Figure 13(a,b) shows the gains of the first 100 resolvent modes
for St = 0.6 and 0.2. A large gain separation between the first and second modes
is observed for St = 0.6 but not for St = 0.2. This mirrors the behaviour of the
SPOD eigenvalues observed in figure 10(b). The leading resolvent modes provide
an accurate approximation of the leading SPOD modes at frequencies that exhibit
this low-rank behaviour. For example, the pressure fields of the leading SPOD and
resolvent output modes are compared for several frequencies in figure 13(c–l). The
low-rank behaviour is observed in the resolvent gain and SPOD eigenvalue spectra
for all but the lowest frequency shown in the figure, and for these frequencies the
resolvent modes approximate the corresponding SPOD modes with striking accuracy.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

8 
at

 1
6:

58
:5

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

28
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.283


Spectral POD, DMD and resolvent analysis 857

The only discernible difference is that the resolvent-mode wavepackets tend to be
slightly longer. On the other hand, the leading resolvent mode at St = 0.2 is quite
different from the corresponding SPOD mode. Similarly, the suboptimal resolvent
modes at all frequencies (not shown) do not have a one-to-one correspondence with
the suboptimal SPOD modes.

The theoretical connection between SPOD and resolvent modes enables us to glean
useful information from these observations. The close match between the leading
SPOD and resolvent modes for St & 0.3 implies that the wavepackets described
by these modes are robust and insensitive to correlations within the nonlinear
forcing field. Conversely, the mismatch of lower-frequency and suboptimal modes
indicates that it is necessary to account for correlated forcing in order to model
the low-frequency jet dynamics as well as the wavepacket variability described by
the suboptimal SPOD modes at all frequencies. Leveraging these ideas to better
understand the jet dynamics and construct accurate reduced-order models is the
subject of ongoing research (Schmidt et al. 2017b; Towne et al. 2017).

7. Conclusions

This paper explores a space–time formulation of POD for stationary flows called
SPOD and its relationship with three other modal decomposition techniques. The main
results of our analysis can be summarized by the following four statements about
SPOD.

First, SPOD modes represent physically meaningful coherent structures in the sense
that each mode evolves coherently in space and time – the part of the flow described
by a particular SPOD mode is perfectly correlated with the part of the flow described
by that same mode at all times and entirely uncorrelated with the part of the flow
described by all other modes at all times. In contrast, modes obtained from a more
common form of POD, which we call space-only POD, do not necessarily evolve
coherently in time – the part of the flow described by a particular space-only POD
mode is not necessarily correlated with the part of the flow described by the same
mode at a later time, nor is it necessarily uncorrelated with the part of the flow
described by a different mode at a later time. This essential difference can be traced
back to the definition of the stochastic ensembles that form the starting point of
each method; SPOD uses time-dependent flow realizations and thus retains dynamical
information, whereas space-only POD discards all such information by treating each
time instance of the flow as an independent realization of a random process.

Second, SPOD modes are optimally averaged DMD modes obtained from an
ensemble DMD problem for stationary flows. The ensemble DMD problem is defined
using the ‘exact DMD’ framework of Tu et al. (2014), and our result holds under the
assumption of linearly consistent and zero-mean data ensembles. The first of these
requirements corresponds to the condition under which DMD modes are expected
to approximate Koopman modes, while the second assumption is justified by the
zero growth rate of Koopman modes for stationary flows. We show that any linear
combination of the DFT modes of the data ensembles are eigenvectors of this
ensemble DMD problem. Spectral POD modes can be written as linear combinations
of these DFT modes at each frequency, and are thus DMD modes. Specifically, SPOD
modes are optimally averaged DMD modes that provide the best description of the
statistical variability of the flow.

Third, SPOD modes are identical to resolvent modes in the special case in which
the resolvent-mode expansion coefficients are uncorrelated. This result is based on
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a statistical perspective on the resolvent-mode reconstruction of turbulent flows and
on the observation that the resolvent-mode expansion coefficients are inherently
statistical quantities for stationary turbulent flows. Uncorrelated expansion coefficients
are usually associated with white-noise forcing of the linear dynamics. While the
nonlinear perturbation terms of the Navier–Stokes equations are unlikely to be truly
white for real flows, this has proven to be a reasonable first approximation for
modelling a variety of flows. Accordingly, resolvent modes obtained from these
models can be understood as non-empirical approximations of SPOD modes under
the assumption of white-noise nonlinear forcing.

Fourth, SPOD modes provide fundamental insight into how the resolvent-mode
expansion coefficients should be chosen so that the expansion properly captures the
flow statistics. Specifically, we show the importance of properly accounting for the
statistical nature of the correlated expansion coefficients and provide a method of
computing these statistics using SPOD modes that leads to convergent approximations
of the flow. All previous methods for obtaining the expansion coefficients assumed
them to be deterministic quantities that can be entirely described by their amplitude
and phase. We show that this results in a rank-one approximation of the second-order
flow statistics, no matter how many resolvent modes are retained in the expansion.
Since the optimal rank-one approximation of the cross-spectral density tensor is given
by the leading SPOD mode at each frequency, the quality of the approximation that
can be achieved using resolvent modes with deterministic expansion coefficients is
governed by the low-rank nature of the second-order flow statistics rather then the
resolvent operator.

These results are demonstrated using two example problems. The first is the
linearized Ginzburg–Landau equation, which provides a simple model of a convectively
unstable flow susceptible to non-modal growth. When forced with white noise, the
SPOD modes computed from data and resolvent modes are nearly the same, as
expected. Space-only POD modes computed from the same data do not capture
these underlying dynamics and do not represent structures that evolve coherently in
time. The Ginzburg–Landau equation is then forced with spatially coherent input,
and the results are used to demonstrate the inability of resolvent-mode expansions
with deterministic expansion coefficients to reconstruct the power spectral density of
the solution. In contrast, these statistics converge when proper statistical expansion
coefficients are employed.

The second example problem is a Mach 0.4 turbulent jet. The SPOD modes,
computed from an LES database, isolate different space–time scales of the jet
and provide insight into the low-rank dynamics of large-scale coherent wavepacket
structures and how they might be modelled. In contrast, space-only POD modes
obscure these low-rank wavepacket dynamics by jumbling together many different
space–time scales in each mode. The DMD modes (without mean subtraction) and
long-time DFT modes (i.e. DMD modes with mean subtraction) are similar, while the
short-time DFT modes that are used to compute SPOD modes reveal the variability
present in the jet. Each of these types of DMD modes represents one possible way
in which the coherent wavepacket structures identified by SPOD can coexist in one
of the many possible realizations of the turbulent jet, which highlights the advantage
of SPOD for turbulent flows.

Overall, our results show that SPOD combines the advantages of space-only POD
and DMD for stationary flows. Each SPOD mode represents a structure that is
dynamic in the same sense as DMD modes, but that also accounts for and optimally
describes the statistical variability of the turbulent flow. Consequently, SPOD modes
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could provide improved robustness over space-only POD and DMD modes for
modelling, estimation and control of turbulent flows.

Spectral POD also automatically solves two challenges in DMD that have spurred
a number of variations of the method (Rowley & Dawson 2017). First, DMD modes
have no inherent ranking, making it challenging to select a reduced set of modes
for model reduction. Spectral POD, in contrast, gives a ranked set of modes in each
frequency bin defined by the DFT rather than a collection of modes at many slightly
different frequencies over the same frequency range. Figure 12(b) provides a clear
illustration of this; SPOD replaces the assortment of DMD/DFT modes with a ranked
set of modes at the frequency indicated by the blue square. Second, DMD can be
sensitive to noisy data. Spectral POD automatically reduces the effect of noise as
a consequence of the spectral estimation process, and convergence can always be
improved by including more flow realizations.

The main disadvantage of SPOD is that it typically requires more data than
either space-only POD or DMD. The spatial statistics required for space-only POD
usually converge more rapidly than the space–time statistics required for SPOD.
Standard applications of DMD use a single realization of a flow; SPOD requires at
least a handful of realizations that are typically obtained from a longer time series.
Additionally, if the mean is not subtracted, the frequencies identified by DMD are not
constrained to be evenly spaced as they are for SPOD. This can be advantageous for
laminar or transitional flows with sharp spectral peaks, since resolving peaks using
evenly spaced points requires longer data series. Arbabi & Mezić (2017) recently
proposed an alternative method for computing Koopman modes for flows with sharp
spectral peaks via an iterative application of the DFT; a similar approach could be
used to improve the performance of SPOD for these flows.
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Appendix A. Derivation of the SPOD eigenvalue problem
The SPOD eigenvalue problem defined by (2.18) was first derived by Lumley (1967,

1970). Here, we offer an alternative derivation that we find to be more straightforward.
Using (2.17), the correlation function C(x, x′, t− t′) can be written as

C(x, x′, t− t′)=
∫
∞

−∞

S(x, x′, f )ei2πfte−i2πft′ df . (A 1)

Inserting this form into (2.13) leads to the following simplifications:∫
∞

−∞

∫
Ω

∫
∞

−∞

S(x, x′, f )ei2πfte−i2πft′Wφ(x′, t′) df dx′ dt′ = λφ(x, t), (A 2)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

8 
at

 1
6:

58
:5

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

28
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.283


860 A. Towne, O. T. Schmidt and T. Colonius∫
Ω

∫
∞

−∞

S(x, x′, f )W
[∫

∞

−∞

φ(x′, t′)e−i2πft′ dt′
]

ei2πft df dx′ = λφ(x, t), (A 3)∫
Ω

∫
∞

−∞

S(x, x′, f )W φ̂(x′, f )ei2πft df dx′ = λφ(x, t), (A 4)

where φ̂(x, f ) is the temporal Fourier transform of φ(x, t).
For the solution ansatz φ(x, t)=ψ(x, f ′)ei2πf ′t, we have φ̂(x, f )=ψ(x, f ′)δ( f − f ′).

Substituting these into (A 4) gives∫
Ω

∫
∞

−∞

S(x, x′, f )Wψ(x, f ′)δ( f − f ′)ei2πft df dx′ = λψ(x, f ′)ei2πf ′t (A 5)

or ∫
Ω

S(x, x′, f ′)Wψ(x, f ′)ei2πf ′t dx′ = λψ(x, f ′)ei2πf ′t. (A 6)

Multiplying both sides of (A 6) by e−i2πf ′t gives the final SPOD eigenvalue problem (2.18).

Appendix B. Proof of ensemble DMD result

In this appendix, we prove that the modes of the ensemble DMD problem described
in § 4.2 are the DFT modes of each realization for zero-mean linearly consistent data.
We begin by writing (4.1) as

AX=Y. (B 1)

Tu et al. (2014) showed that (B 1) follows from (4.1) if and only if X and Y are
linearly consistent. We therefore assume that the ensemble data matrices are linearly
consistent and note that this is precisely the condition under which DMD modes are
expected to approximate Koopman modes (Tu et al. 2014).

Since we wish to show that the eigenvalues of A are the DFT modes of each flow
realization, it is helpful to write X and Y in terms of these DFT modes. To do so,
we use the matrix

FM ,
1
√

M



1 1 1 1 · · · 1
1 z z2 z3

· · · zM−1

1 z2 z4 z6
· · · z2(M−1)

1 z3 z6 z9
· · · z3(M−1)

...
...

...
...

. . .
...

1 zM−1 z2(M−1) z3(M−1)
· · · z(M−1)(M−1)

, (B 2)

which when applied to a vector gives its DFT, i.e. v̂ = FMv for v ∈ RM. The scalar
z= e−i2π/M is the primitive Mth root of unity and the 1/

√
M scaling makes the DFT

unitary and identical to (3.4) for rectangular window weights wj = 1. Other windows,
which are known to be beneficial in practice (Bendat & Piersol 2000), can be
incorporated into the present analysis by using the windowed data to define each Q(n).
We wish to take the DFT of each row of the matrices Q(n). To do so, we must apply
FM to the conjugate transpose of each Q(n) and apply a second conjugate transpose
to the product to restore the original size of the matrix, Q̂

(n)
= (FM(Q(n))∗)∗=Q(n)F∗M.
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The first column of Q̂
(n)

gives the k = 1 term from (3.4), and so on. Since FM is
unitary, it follows that Q(n)

= Q̂
(n)

FM. Inserting this into (4.4) gives

X = [Q̂
(1)

FMTX, . . . , Q̂
(Ne)FMTX] = [Q̂

(1)
T̂X, . . . , Q̂

(Ne)T̂X], (B 3a)

Y = [Q̂
(1)

FMTY, . . . , Q̂
(Ne)FMTY] = [Q̂

(1)
T̂Y, . . . , Q̂

(Ne)T̂Y], (B 3b)

where T̂X,Y = FMTX,Y.
Since we have subtracted the mean from each flow realization, the zero-frequency

(k = 1) DFT mode is identically zero, so the first column of Q̂
(n)

is zero for all n.
Accordingly, we can remove the first column from each Q̂

(n)
and the first row from

each instance of T̂X and T̂Y without changing X and Y. This is the key step that
enables the remaining manipulations required to prove our result. We will denote the
modified forms of Q̂

(n)
, T̂X and T̂Y as Q̃

(n)
, T̃X and T̃Y respectively. It should be

noted that while T̂X and T̂Y were rectangular matrices, T̃X and T̃Y are square (M −
1)× (M − 1) matrices. Specifically,

T̃X =
1
√

M


1 z z2 z3

· · · zM−2

1 z2 z4 z6
· · · z2(M−2)

1 z3 z6 z9
· · · z3(M−2)

...
...

...
...

. . .
...

1 zM−1 z2(M−1) z3(M−1)
· · · z(M−1)(M−2)

, (B 4a)

T̃Y =
1
√

M


z z2 z3 z4

· · · zM−1

z2 z4 z6 z8
· · · z2(M−1)

z3 z6 z9 z12
· · · z3(M−1)

...
...

...
...

. . .
...

zM−1 z2(M−1) z3(M−1) z4(M−1)
· · · z(M−1)(M−1)

. (B 4b)

These matrices can be factored as

T̃X = FM−1 diag([1, z, z2, . . . , zM−2
]), (B 5a)

T̃Y = diag([z, z2, . . . , zM−1
])FM−1diag([1, z, . . . , zM−2

]), (B 5b)

which will prove useful in what follows.
Using these modified matrices, the input and output data matrices can be written as

X = [Q̃
(1)

T̃X, . . . , Q̃
(Ne)T̃X], (B 6a)

Y = [Q̃
(1)

T̃Y, . . . , Q̃
(Ne)T̃Y]. (B 6b)

Inserting (B 6) into (B 1) gives the expression

A[Q̃
(1)
, . . . , Q̃

(Ne)
]

T̃X
. . .

T̃X

= [Q̃(1)
, . . . , Q̃

(Ne)
]

T̃Y
. . .

T̃Y

 . (B 7)

Since FM−1 is unitary and powers of z are non-zero, (B 5a) shows that T̃X is the
product of two invertible matrices and is therefore itself invertible. As a result,
equation (B 7) can be written in the form given by (4.5) with 3DMD , T̃YT̃

−1
X . Finally,

using (B 5), 3DMD reduces to the form given by (4.6).
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Appendix C. Discretized SPOD/resolvent-mode relations
In practice, SPOD and resolvent modes are always approximated on discrete grids.

To help make the results of § 5 as accessible and useful as possible, in this appendix,
we write the discrete forms of some of the key equations relating these different
types of modes. The discretized forms of all continuous variables and operators will
be represented by the corresponding upright symbols, e.g. Syy becomes Syy. Time
or frequency dependences can be inferred from the continuous variables and these
arguments are suppressed for brevity.

We begin by writing the discretized form of the linearized flow equations and output
as

dχ ′

dt
−Aχ ′ =Bη (C 1)

and
y=Cχ ′ (C 2)

respectively (to be clear, A is the discretization of A, not the DMD matrix). Note that
the input and output do not need to be discretized on the same grid as the linearized
flow operator and state vector, since the input and output matrices B and C can be
used to interpolate from one grid to another. We will assume that the discretized
output y is defined on the same grid as the flow data used to estimate SPOD modes.

The inner products on the input and output spaces are approximated as 〈ŷ1, ŷ2〉y =

ŷ∗2Wyŷ1 and 〈η̂1, η̂2〉η = η̂
∗

2Wηη̂1 respectively. It is important to note that the positive-
definite Hermitian matrices Wy and Wη must account for both the weight matrices
and the numerical quadrature of the integrals in (5.10) and (5.11).

The discretized resolvent operator is

R=C(i2πf I−A)−1B. (C 3)

If Wy = Wη = I, then the resolvent modes are given by the singular value
decomposition

R=U6V∗. (C 4)

The singular values appear within the diagonal positive-semidefinite matrix 6, and the
input and output modes are contained in the columns of the orthonormal matrices V
and U respectively. When either of the weight matrices Wy or Wη is not the identity,
the resolvent modes can be recovered from the singular value decomposition of a
weighted matrix,

R̃=W1/2
y RW−1/2

η = Ũ6Ṽ
∗

. (C 5)

The singular values again appear on the diagonal of 6, and the input and output
modes are contained in the columns of the matrices V =W−1/2

η Ṽ and U =W−1/2
y Ũ

respectively. The resolvent operator is recovered as

R=U6V∗Wη. (C 6)

The resolvent-mode expansion of the Fourier-transformed output is then ŷ = U6β,
where β=V∗Wηη̂. The discretized cross-spectral density tensor is thus

Syy = E{ŷŷ∗} =U6Sββ6U∗, (C 7)

where Sββ = E{ββ∗} =V∗WηSηηWηV and Sηη = E{η̂η̂∗}.
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Using (C 7) along with the data-based SPOD estimates discussed in § 3, the output
cross-spectral density can be written in terms of SPOD or resolvent modes as

Syy =939
∗
=U6Sββ6U∗. (C 8)

This is the discrete equivalent of (5.18), which is the central expression in § 5. If the
resolvent-mode expansion coefficients are uncorrelated, then Sββ= I and (C 8) reduces
to

Syy =939
∗
=U62U∗, (C 9)

and so 62
=3 and U=9. More generally, the expansion coefficients can be written

in terms of SPOD modes as

Sββ =6−1G3G∗6−1, (C 10)

where G=U∗Wy9 is the discrete equivalent of γij defined in (5.29). These equations
are analogous to (5.28) and (5.29). Equivalently, Sββ can be conveniently written in
terms of the data matrix Q̂ used to define the discrete SPOD eigenvalue problem. If
we define E=6−1U∗WyQ̂, then Sββ =EE∗.

If the statistical vector β is replaced by a deterministic vector b, then the
approximation of the output cross-spectral density matrix is Syy = (U6b)(U6b)∗,
which is clearly a rank-one matrix. The optimal deterministic expansion coefficients,
i.e. the ones that reconstruct the leading SPOD mode, are given by the vector
bopt
=6−1G1λ

−1/2
1 , where G1 is the first column of G and λ1 is the first entry of the

diagonal matrix 3.
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