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The purpose of this paper is to characterize and model waves that are observed within
the potential core of subsonic jets and relate them to previously observed tones in the
near-nozzle region. The waves are detected in data from a large-eddy simulation of
a Mach 0.9 isothermal jet and modelled using parallel and weakly non-parallel linear
modal analysis of the Euler equations linearized about the turbulent mean flow, as well
as simplified models based on a cylindrical vortex sheet and the acoustic modes of a
cylindrical soft duct. In addition to the Kelvin–Helmholtz instability waves, three types
of waves with negative phase velocities are identified in the potential core: upstream-
and downstream-propagating duct-like acoustic modes that experience the shear layer
as a pressure-release surface and are therefore radially confined to the potential core,
and upstream-propagating acoustic modes that represent a weak coupling between the
jet core and the free stream. The slow streamwise contraction of the potential core
imposes a frequency-dependent end condition on the waves that is modelled as the
turning points of a weakly non-parallel approximation of the waves. These turning
points provide a mechanism by which the upstream- and downstream-travelling waves
can interact and exchange energy through reflection and transmission processes. Paired
with a second end condition provided by the nozzle, this leads to the possibility of
resonance in limited frequency bands that are bound by two saddle points in the
complex wavenumber plane. The predicted frequencies closely match the observed
tones detected outside of the jet. The vortex-sheet model is then used to systematically
explore the Mach number and temperature ratio dependence of the phenomenon. For
isothermal jets, the model suggests that resonance is likely to occur in a narrow range
of Mach number, 0.82<M < 1.
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1114 A. Towne and others

1. Introduction
Turbulent jets at high subsonic Mach number are relevant to commercial aircraft

noise and have been the subject of recent experiments (Viswanathan 2004; Hileman
et al. 2005; Suzuki & Colonius 2006; Cavalieri et al. 2013; Fontaine et al. 2015)
and large-eddy simulations (Bodony & Lele 2008; Bogey & Bailly 2010; Bogey,
Mardsen & Bailly 2012; Brès et al. 2014, 2015; Lorteau, Cléro & Vuillot 2015). In
the simulations of Brès et al. (2014, 2015), for example, waves are clearly visible in
the potential core of the jet. Figure 1 shows an instantaneous snapshot of the jet that
illustrates this phenomenon. The colour and greyscale contours show the vorticity
and pressure fluctuations, respectively, on a planar slice of the jet passing through
the polar axis. In addition to the signatures of vortical structures in the shear layer,
the pressure field in the potential core clearly contains waves that have a coherent
phase and slowly varying wavelength over the first several diameters of the jet. The
purpose of this paper is to examine and model these waves. We will show that they
are an intrinsic feature of the jet dynamics that can be described by linear instability
modes of the jet. In particular, we will show that they are resonating acoustic waves
that are trapped within the potential core.

The linear modes of jets have been studied for over fifty years using models
with various approximations. Batchelor & Gill (1962) and Lessen, Fox & Zien
(1965) investigated the temporal stability of incompressible and compressible jets,
respectively, using an inviscid, parallel-flow idealization of the jet in the form of an
infinite, cylindrical vortex sheet. In his seminal study, Michalke (1970) considered
the spatial stability of the compressible cylindrical vortex sheet and identified two
distinct families of modes: the well-known Kelvin–Helmholtz mode and a second
family that he called mode II. Michalke (1971) went on to show that these same
two mode families persist when the finite thickness of the shear layer is taken into
account. We will show that the potential-core waves can be modelled using modes
from the mode II family.

Tam & Hu (1989) further investigated models equivalent to Michalke’s and
distinguished two subfamilies of mode II based on phase velocity, which they called
supersonic and subsonic instability waves. The group velocity of these waves depends
on the jet Mach number. Jets with sufficiently high supersonic Mach numbers
support both subfamilies, which include both upstream- and downstream-propagating
waves. Jets with low subsonic Mach numbers support only upstream-propagating
subsonic instability waves. For an intermediate range of Mach numbers that was not
considered by Tam & Hu (1989), we will show that there exist narrow frequency
bands for which both upstream- and downstream-propagating waves are supported,
while only upstream-propagating waves exist at all other frequencies. This provides
one of the necessary ingredients for the trapped waves to resonate. We also show that
at certain frequencies the relevant jet instability modes experience the annular shear
layer as a duct with a pressure-release surface and are therefore radially confined to
the potential core. This motivates our use of the term ‘trapped’ to describe the waves.

Parallel-flow jet models have also been analysed using the spatiotemporal stability
theory developed by Briggs (1964) and Bers (1983) to study the absolute instability
that is observed in heated, low-speed jets (Monkewitz & Sohn 1988; Jendoubi &
Strykowski 1994; Lesshafft & Huerre 2007). We will apply the spatiotemporal theory
to an isothermal jet to show that the core waves are neutrally stable over a range of
streamwise positions.

To partially account for the influence of the slow streamwise variation of the jet,
weakly non-parallel models have been developed based on energy methods (Chan
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Acoustic resonance in the potential core of subsonic jets 1115

Nozzle

FIGURE 1. (Colour online) Instantaneous snapshot of the jet. Greyscale: pressure
fluctuations. Colour: vorticity. The pressure field shows the presence of waves in the
potential core of the jet.

1974; Liu 1974), asymptomatic analysis (Crighton & Gaster 1976; Tam & Morris
1980; Tam & Burton 1984) and parabolized stability equations (Balakumar 1998; Yen
& Messersmith 1998; Gudmundsson & Colonius 2011; Sinha et al. 2014). These
analyses have all focused on the streamwise evolution of the Kelvin–Helmholtz
mode, which forms a coherent wavepacket structure in the jet mixing layer. We
will construct a weakly non-parallel model of the potential-core waves based on
a Wentzel–Kramers–Brillouin (WKB) approximation of the relevant modes. To our
knowledge, this represents the first weakly non-parallel model of waves from the
mode II family. We will show that ‘turning points’ of the WKB solutions play an
essential role in the resonance of the trapped core waves.

Global linear stability modes that fully account for the spatial variation of the
jet have also been computed for low Reynolds number jets (Nichols & Lele 2011;
Garnaud et al. 2013). In a parallel investigation (Schmidt et al. 2017), we compute
the global modes of the same Mach 0.9 turbulent jet considered in this paper, which
provide additional insight into the trapped waves.

We use an extensive large-eddy simulation (LES) database for a Mach 0.9,
isothermal jet to directly observe the trapped acoustic waves and confirm the
predictions of the linear theory. In addition, we associate the waves with a series
of tones that has previously been observed in experiments using microphones in the
near-nozzle region (Suzuki & Colonius 2006; Sinha 2011). An example is reproduced
in figure 2. These tones have been observed for only certain combinations of Mach
number and temperature ratio and were previously attributed to extrinsic factors such
as the presence of debris or an internal resonance in the upstream plumbing. We
will show that they are instead generated by the intrinsic resonance of the trapped
acoustic waves in the potential core.

The remainder of the paper is organized as follows. We begin in § 2 by introducing
and probing the large-eddy simulation data for the Mach 0.9 isothermal jet that are
used throughout the paper to chronicle the fundamental properties of the trapped
waves. In § 3, we use three parallel-flow models, along with spatiotemporal stability
theory, to investigate the local properties of the trapped waves close to the jet inlet.
The weakly non-parallel model is developed in § 4. Mach number and temperature
ratio effects are considered in § 5 with the goal of explaining the associated tones
that are observed only for certain jet operating conditions. In § 6, we summarize the
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1116 A. Towne and others
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FIGURE 2. Sound pressure level measured by Suzuki & Colonius (2006) at (x/D, r/D)=
(0.35,0.875) in a jet with M=Uj/a∞=0.9 and Tj/T∞=0.84: (a) m=0; (b) m=1. Within
the same set of experiments, the substantial peaks seen here were observed at only certain
jet operating conditions.

paper and speculate as to the relevance of the trapped waves to the overall dynamics
and acoustics of the jet.

2. Observations from data
In this section, we characterize the waves observed within the potential core and

detected outside of the jet in the near-nozzle region. After describing the physical set-
up and numerical database that is used throughout the paper, we identify the pertinent
waves within the data and examine their traits.

2.1. LES database
We use data from a high-fidelity large-eddy simulation (LES) of a subsonic turbulent
jet issued from a round convergent–straight nozzle. The jet is isothermal (Tj/T∞=1.0),
and the jet Mach number is Mj = Uj/cj = 0.9, where U is the mean (time-averaged)
streamwise velocity, c is the speed of sound, T is the mean temperature and the
subscripts j and ∞ refer to the jet exit and free-stream conditions, respectively. The
Reynolds number is Rej = ρjUjD/µj ≈ 1× 106, where D is the nozzle exit diameter.

The simulation was performed using the compressible flow solver ‘Charles’
developed at Cascade Technologies (Brès et al. 2017), which solves the spatially
filtered compressible Navier–Stokes equations on unstructured grids using a finite-
volume method. The nozzle geometry is explicitly included in the computational
domain and synthetic turbulence boundary conditions are used to trip the boundary
layer inside the nozzle. The simulation used approximately sixteen million grid
points and was run for a duration of 2000 acoustic time units (tc∞/D). Convergence
was demonstrated using a second simulation in which the mesh was refined by a
factor of two in each direction. We use data from the baseline simulation (sampled
every 0.2 acoustic time units) because of its longer time duration, except for the
frequency–wavenumber decomposition described in § 2.5 for which the additional
spatial resolution is helpful for resolving high wavenumbers. The accuracy of the
LES data was verified via extensive comparisons with measurements taken from a
companion experiment conducted at the Bruit & Vent jet noise facility of the PPRIME
Institute, Poitiers. Additional details on the simulation and its validation are available
in a series of papers by Brès et al. (2014, 2015, 2016).
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Acoustic resonance in the potential core of subsonic jets 1117
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FIGURE 3. Power spectral density of the of pressure at (x/D, r/D)= (0.02,0.8): (a) m=0;
(b) m= 1. Data: (——) Brès et al. (2014) LES data; (– · – · –) experimental measurements.

2.2. Spectral estimation
Since the jet is stationary in time and periodic in the azimuthal direction, it can be
decomposed into Fourier modes of the form

q(x, r, θ, t)=
∑
ω

∑
m

q̂m,ωeimθeiωt, (2.1)

where q is a vector of flow variables. The ergodic hypothesis permits different
temporal segments of the flow data to be regarded as statistically distinct realizations
of the jet. For the baseline data, we use segments containing 256 instantaneous
snapshots of the jet with 75 % overlap, which provides 154 independent realizations
of the jet and a frequency resolution of 1St = 1ωD/(2πUjet) = 0.0217. For the
refined data, which have been sampled at a higher rate, we use 1024 snapshots
per segment with 75 % overlap to obtain 37 realizations with the same frequency
resolution. Estimates of the power spectral density may be computed from these data
ensembles as

Pm,ω(x, r)=
1
N

N∑
j=1

|q̂( j)
m,ω|

2, (2.2)

where q̂( j)
m,ω is the Fourier mode of the jth realization of the jet and N is the total

number of realizations.

2.3. Near-nozzle tones
The Mach number and temperature ratio of the present jet are similar to those
for which previous authors (Suzuki & Colonius 2006; Sinha 2011) have reported
the appearance of discrete spectral tones in pressure measurements taken in the
near-nozzle region. These tones exist in the present LES data and also in the
companion set of experimental measurements. Figure 3 shows the power spectral
density of the m = 0 and 1 components of the pressure signal from both data sets
at (x/D, r/D) = (0.02, 0.8). The frequency is reported in terms of the Strouhal
number St= fD/Uj. Although some discrepancies exist between the experimental and
simulation spectra, both clearly exhibit tones at the same frequencies, which are not
harmonic.
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FIGURE 4. (Colour online) Fourier components of the LES pressure field. The first and
second column are m= 0 and m= 1, respectively, and the rows, from top to bottom, show
St= 0.39, 0.61, 0.91, 1.21 and 1.52. The contour levels are linearly distributed. The dashed
line shows the location where ūx= 0.99Uj, which serves as a proxy for the outer boundary
of the potential core.

2.4. Waves in the potential core
The spatial structure of the pressure field for one realization of the jet at several
frequencies is shown in figure 4. Specifically, the real part of the pressure is
plotted using linearly distributed contour levels for azimuthal modes 0 and 1 and
St = 0.39, 0.61, 0.91, 1.21 and 1.52. The first, third and fifth frequencies lie within
the tonal peaks for m = 0, while the second and fourth frequencies correspond
to tones for m = 1 (see figure 3). In addition to wavepackets associated with the
Kelvin–Helmholtz instability in the shear layer (Gudmundsson & Colonius 2011), the
Fourier modes for St, m mode pairs for which tones are observed clearly show the
presence of waves within the potential core, while the remaining modes show only
weak signs of such waves. This provides a first link between the waves within the
potential core and the tones detected outside of the jet.

Several important properties of these waves can be distinguished from the data.
The streamwise wavelength decreases with increasing frequency. The radial shape of
the waves follows a regular pattern: at both azimuthal wavenumbers, there is one
peak (or anti-node) for the first tonal frequency, two anti-nodes for the second tonal
frequency and so on. In all cases, the waves appear to decay rapidly in the radial
direction outside of the potential core. The waves are energetic only within the first
few diameters of the jet, even though the potential core persists to at least six jet
diameters in the streamwise direction.

2.5. Frequency–wavenumber decomposition
To reveal the spatiotemporal dynamics of these waves, we obtain their empirical
dispersion relations by further decomposing the temporally transformed pressure
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FIGURE 5. (Colour online) Frequency–wavenumber decomposition of the pressure in the
potential core: (a) m = 0, r/D = 0; (b) m = 1, r/D = 0.1. The greyscale contours are
distributed logarithmically over five orders of magnitude and show the magnitude of the
energy, providing an empirical dispersion relation for the waves in the potential core. The
lines represent waves with constant group and phase velocities equal to the labelled values.

fluctuations into a set of streamwise Fourier modes at fixed radial positions within the
potential core. Only the first five jet diameters are included in the Fourier transform
to ensure that the results are dominated by the dynamics within the potential core,
and we have verified that the results are insensitive to the precise spatial extent
and windowing of the transform. This procedure leads to the frequency–wavenumber
diagram shown in figure 5. Results are shown for the radial positions r/D = 0 and
0.1 for m= 0 and 1, respectively. Here, iso-contours of the power spectral density of
the pressure signal are plotted as a function of the Strouhal number and streamwise
wavenumber, which is scaled by the jet diameter. In order to resolve fluctuations
occurring at different amplitudes, the scale of the contours is logarithmic and spans
five orders of magnitude.

The various bands of energy (the dark regions on the plot) represent a kind
of ‘empirical dispersion relation’ for the waves within the potential core. The
phase velocity of each wave, scaled by the ambient speed of sound, is vp/c∞ =
ω/k= 2πMSt/k. Therefore, waves in the right and left half-planes have positive and
negative phase velocities, respectively. The scaled group velocity is vg/c∞= ∂ω/∂k=
2πM∂St/∂k and is therefore proportional to the slope of the empirical dispersion
relation. Thus, positive and negative slopes represent waves whose energy propagates
downstream and upstream, respectively. Locations where the contour line slopes are
zero are points of zero group velocity, which play an important role in the theoretical
description of the waves developed in §§ 3 and 4.

The properties of the right-most energy band are consistent with Kelvin–Helmholtz
instability waves. Its phase and group velocity are positive and nearly equal with a
value of approximately 0.7Uj. These waves are vortical and are primarily associated
with the dynamics of the shear layer but also have non-zero support in the pressure
field within the potential core. In addition to this well-known Kelvin–Helmholtz
instability wave, three bands of energy with negative phase velocities can be clearly
distinguished for each azimuthal mode (part of a fourth band is visible at the top
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1120 A. Towne and others

of the figure for m = 0). The group velocity of each band is negative for most
frequencies and asymptotically approaches the values −cj and Uj − cj at low and
high frequencies, respectively. However, for each band there is also a narrow range
of frequencies for which their exist waves with both positive and negative group
velocities. The waves in these regions are especially energetic, and their frequencies
and wavenumbers match those of the waves observed within the potential core and
the tones detected just outside the jet.

3. Local models
In this section, we develop a local description of the waves within the potential

core of the Mach 0.9 jet using the parallel-flow spatiotemporal linear stability theory
developed by Briggs (1964) and Bers (1983). Although the jet is not a strictly parallel
flow, the local theory is applicable due to the slow streamwise variation of the mean
flow, compared to the wavelengths of interest, up to the end of the potential core. The
local stability theory will be applied to three different models for the jet: the Euler
equations linearized about the mean jet, a cylindrical vortex sheet and a cylindrical
duct – each of which offers different insights into the potential-core waves.

3.1. Briggs–Bers stability theory
Let the linear one-dimensional partial differential equation

D
(
−i
∂

∂x
, i
∂

∂t

)
q(x, t)= s(x, t) (3.1)

represent a parallel-flow model of the jet. The operator does not depend on x
or t. The solution of (3.1) for any source s(x, t), which for the jet could represent
incoming fluctuations at the nozzle or volumetric turbulent forcing, can be obtained
by convolving the source with a Green’s function G(x, t) satisfying

D
(
−i
∂

∂x
, i
∂

∂t

)
G(x, t)= δ(x)δ(t). (3.2)

Therefore, the dynamics of (3.1) under arbitrary forcing can be determined by
analysing the properties of G(x, t).

The Green’s function can be obtained using Fourier and Laplace transforms.
Specifically, applying a Fourier transform in x and a Laplace transform in t to
(3.2) gives

D(k, ω)Ĝ(k, ω)= 1, (3.3)

where k and ω are the Fourier and Laplace duals of x and t, respectively, and Ĝ(k, ω)
is the Fourier–Laplace transform of G(x, t). We have ignored initial transients since
the jet is statistically stationary. For future use, we define the expression ω=ω(k) to
represent a (k, ω) pair that satisfies the dispersion relation D(k, ω)= 0. Equivalently,
the inverse of the expression can be written k= k(ω).

The Green’s function G(x, t) is obtained by solving (3.3) for Ĝ(k, ω) and taking the
inverse transforms:

G(x, t)=
1

4π2

∫
L

∫
F

1
D(k, ω)

ei(kx−ωt) dk dω. (3.4)
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Acoustic resonance in the potential core of subsonic jets 1121

By the residue theorem, the Green’s function, and thus the general solution of (3.1),
is determined by the zeros of the dispersion relation, i.e. the eigenvalues of D. In
turn, the physical interpretation and significance of these eigenmodes is dictated by
their contribution to the Fourier–Laplace integral. Briggs (1964) and later Bers (1983)
performed a detailed analysis of (3.4) that brought to light a number of important
concepts that we briefly summarize here.

One important distinction is whether the wave described by an eigenvalue k(ω) will
contribute to the solution to the right (x> 0) or left (x< 0) of the location at which
it is excited, i.e. whether it transfers energy downstream or upstream. This question
can be addressed by requiring the solution to be causal, which ultimately reduces to
a simple criterion based on the asymptotic behaviour of k(ω) at large ωi: a mode
transfers energy downstream if

lim
ωi→+∞

ki =+∞ (3.5)

and upstream if
lim

ωi→+∞
ki =−∞. (3.6)

The subscripts r and i refer to the real and imaginary parts of a variable. These two
categories of modes are denoted as k+ and k−, respectively.

Two more properties can be distinguished by studying the long-time asymptotic
solution of (3.4) along fixed spatiotemporal rays. The first outcome of this analysis
is that only eigenmodes that satisfy the condition

∂ω

∂k
(k∗)= V (3.7)

contribute to the solution along the ray x/t = V as t→∞. This is a generalization
of the standard concept of group velocity and gives a measure of the speed at which
the wave propagates. Note that (3.7) implies that ∂ω/∂k only takes on this meaning
when it is real valued.

Second, the temporal growth rate experienced by a moving observer along the ray
x/t= V is

σ =ω∗i − Vk∗i , (3.8)

where the complex wavenumber k∗ satisfies (3.7) and ω∗=ω(k∗). Of particular interest
is the so-called absolute growth rate observed at the source location x= 0, which is
determined by the growth rate along the ray x/t = V = 0, i.e. by waves that do not
propagate away from their source. According to (3.8), the absolute growth rate is σ 0

=

ω0
i , where

∂ω

∂k
(k0)= 0, (3.9a)

ω0
=ω(k0). (3.9b)

If the absolute growth rate is negative, then all amplified disturbances move away
from their source such that the remaining solution decays at the source location as
t becomes large. The flow is then said to be absolutely stable. On the other hand,
if the absolute growth rate is positive, disturbances grow at their source location and
eventually engulf the entire domain – the flow is absolutely unstable. If the absolute
growth rate is zero, disturbances neither grow nor decay at their source but instead
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1122 A. Towne and others

persist indefinitely – they are neutrally stable. An eigenvalue pair (k0, ω0) that satisfies
(3.9) corresponds to a saddle point in the complex k plane formed by the coalescence
of two solutions of k = k(ω) at k0. As emphasized by Bers (1983), a saddle point
corresponds to an absolute eigenvalue pair only if formed by one k+ mode and one
k− mode.

Finally, the spatiotemporal theory reduces to the classical concepts of temporal and
spatial stability when the source is harmonic in space and time, respectively. The
spatial theory, in which k(ω) is determined for real values of ω, will be particularly
relevant to the present investigation. The sign of ki governs the growth or decay of
the spatial modes – k+ modes grow in space if ki < 0 and decay if ki > 0, while
the situation is reversed for k− modes. Decaying modes represent evanescent waves.
Modes with ki= 0 are called propagative waves – they neither grow nor decay as they
propagate at their group velocity.

3.2. Linearized Euler equations
We next describe three models for the jet that will be used, in conjunction with the
preceding theory, to investigate the potential-core waves and their associated tones.
The first model is the Euler equations, linearized about the time-averaged (mean)
turbulent jet. The idea here is that large-scale waves, such as those observed in the
jet core, experience the mean jet as an ‘equivalent laminar flow’ (Crighton & Gaster
1976). This is undoubtedly a caricature of reality (the mean flow never actually exists
instantaneously), but has yielded models that achieve compelling agreement with
instability waves observed in turbulent jets (Jordan & Colonius 2013). Ultimately, the
validity of the model will be established ex post facto by its ability to accurately
describe the waves observed in the data. We expect viscous effects to play a limited
role in the dynamics of the core waves and accordingly neglect them apart from their
influence in establishing the mean flow.

If the flow field is represented by a vector of flow variables q, then inserting the
Reynolds decomposition

q(x, r, θ, t)= q̄(x, r)+ q′(x, r, θ, t) (3.10)

into the Euler equations (in cylindrical coordinates) and neglecting terms that are
nonlinear in the fluctuation q′ yields the linearized Euler equations:

∂q′

∂t
+ Ax

∂q′

∂x
+ Ar

∂q′

∂r
+ Aθ

∂q′

∂θ
+ A0q′ = 0. (3.11)

The matrix coefficients are functions of the mean flow q̄. The exact form of the Euler
equations and resulting matrix coefficients used in this paper are given in appendix A.
All variables have been appropriately non-dimensionalized by the ambient sound speed
c∞ and density ρ∞ and the nozzle diameter D.

To apply the local stability theory, we freeze the mean flow at a particular x location
and, for consistency with the local approximation, neglect streamwise derivatives of
the mean flow and the mean radial velocity. In this section we exclusively consider the
profile at the inlet (x= 0); other streamwise positions will be considered in § 4 within
the context of a weakly non-parallel extension of the local theory. Taking Fourier–
Laplace transforms of the frozen equations, or equivalently applying the normal-mode
ansatz

q′(x, r, θ, t)= q̂(r)e(ikx+imθ−iωt), (3.12)
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Acoustic resonance in the potential core of subsonic jets 1123

yields [
−iωI + ikAx + Ar

∂

∂r
+ imAθ + A0

]
q̂(r)= 0. (3.13)

Note that m is an integer since the azimuthal coordinate is periodic.
Since we wish to identify saddle points in the complex k-plane, we will specify

(real or complex) values for ω and solve the resulting eigenvalue problem for k =
k(ω). The eigenvalue problem is solved numerically by discretizing (3.13) in the radial
direction, leading to a matrix eigenvalue problem for k. We use fourth-order central
finite differences with summation-by-parts boundary closures (Strand 1994). Radiation
boundary conditions are enforced using a ‘super-grid’ damping layer (Colonius & Ran
2002) truncated by Thompson (1987) characteristic conditions, and pole conditions are
implemented using the scheme of Mohseni & Colonius (2000). The eigenvalues and
eigenvectors of interest are well resolved and converged using 200 grid points that are
non-uniformly distributed to efficiently resolve the shear layer.

3.3. Cylindrical vortex sheet
The second model considered is a compressible, cylindrical vortex sheet, which
constitutes an inviscid idealization of the jet – the infinitely thin vortex sheet separates
the interior flow from the surrounding quiescent fluid, resulting in a jet with a top-hat
profile.

The dispersion relation for this flow was first derived by Lessen et al. (1965) and
has been studied by a number of authors (Michalke 1970; Tam 1971; Tam & Hu
1989). It can be written schematically as

Dj(k, ω;M, T)= 0, (3.14)

with

Dj =
1(

1−
kM
ω

)2 +
1
T

Im

(γi

2

) [γo

2
Km−1

(γo

2

)
+mKm

(γo

2

)]
Km

(γo

2

) [γi

2
Im−1

(γi

2

)
−mIm

(γi

2

)] (3.15)

and

γi =

√
k2 −

1
T
(ω−Mk)2, (3.16a)

γo =

√
k2 −ω2. (3.16b)

The branch cut of the square root is chosen such that −π/26 arg(γi,o) <π/2. Im and
Km are modified Bessel functions of the first and second kind, respectively. Again,
all quantities have been normalized by the jet diameter and outer thermodynamic
quantities such that M = Uj/c∞ is the acoustic Mach number and T = Tj/T∞ is the
temperature ratio. The jet Mach number is a function of the acoustic Mach number
and the temperature ratio: Mj = Uj/cj =M/

√
T . A short derivation of the dispersion

relation is given in appendix B.
Cylindrical vortex-sheet modes are then given by (k, ω) pairs that satisfy (3.14).

Again, we choose to specify ω and find k, which is accomplished using a trust-region-
based nonlinear root-finding algorithm (Coleman & Li 1996). Saddle points can be

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
01

 A
ug

 2
01

7 
at

 2
1:

25
:4

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.346


1124 A. Towne and others

n= 1 n= 2 n= 3 n= 4 n= 5

m= 0 2.4048 5.5201 8.6537 11.792 14.931
m= 1 3.8317 7.0156 10.174 13.324 16.471
m= 2 5.1356 8.4172 11.620 14.796 17.960

TABLE 1. The nth zero of the Bessel function Jm, listed to five significant figures.

located directly by finding (k, ω) pairs that simultaneously satisfy the dispersion
relation and the zero-group-velocity condition

∂ω

∂k
=
∂Dj/∂k
∂Dj/∂ω

= 0. (3.17)

The same root-finding method is used to find these points.

3.4. Cylindrical soft duct
The modes of an inviscid cylindrical soft duct (a duct with pressure-release boundary
conditions at the wall) will be shown to explain certain aspects of the behaviour
of the relevant Euler and vortex-sheet modes and provide insight into the physical
mechanisms they describe. The dispersion relation for the soft duct is

Jm(β)= 0, (3.18)

where Jm is the Bessel function of the first kind, β = iγi/2 and γi is given by (3.16a).
A derivation of the dispersion relation is given in appendix C. Equation (3.18) is
satisfied for a countably infinite set of β values – the zeros of Jm. We denote the
nth zero of Jm as βm,n. The first five zeros for m= 1, 2 and 3 are listed in table 1 for
reference. These zeros in turn define a complete set of duct modes.

Starting from the definition βm,n = iγi/2, the dispersion relation can be analytically
written in the form k= k(ω). There are two roots:

k±m,n =
−ωM ±

√
T
√
ω2 − 4(T −M2)β2

m,n

T −M2
. (3.19)

Using (3.5) and (3.6), the positive and negative roots can be identified as k+ and k−
waves, respectively, as denoted by their superscripts. The two roots form a saddle
point in the complex k plane at

k0
m,n =

−2M
√

T −M2
βm,n, (3.20)

with corresponding absolute frequency

ω0
m,n = 2

√
T −M2βm,n. (3.21)

The absolute frequency at each saddle point has zero imaginary part when M2 < T
(which corresponds to M2

j < 1), so the duct modes are neutrally stable in a subsonic
flow, as one could anticipate from acoustic theory.
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Acoustic resonance in the potential core of subsonic jets 1125

The duct modes approximately satisfy the vortex-sheet dispersion relation in certain
situations. Substituting a (k±m,n, ω) combination that satisfies (3.19) into (3.15) gives

Dj(k±m,n, ω;M, T)=
1(

1−
Mk±m,n
ω

)2 . (3.22)

Therefore, the dispersion relationship Dj = 0 is approximately satisfied by the duct
mode when ∣∣∣∣1− k±m,nM

ω

∣∣∣∣2� 1. (3.23)

The parameter 1− kM/ω can be expressed as 1−M/Mφ , where Mφ =ω/k is a Mach
number related to the complex-valued phase velocity. Condition (3.23) is satisfied if
|Mφ|�M, i.e. there is a scale separation between the phase velocity and jet velocity.
The physical consequence of this condition can be ascertained by considering the
vortex-sheet displacement, which arises in the derivation of the vortex-sheet dispersion
relation (see appendix B) and can be written as

η=
T

ω2

(
1−

M
Mφ

)2

dpi

dr

(
1
2

)
. (3.24)

Thus, condition (3.23) implies that the vortex-sheet displacement is small for
modes that approximately satisfy the soft duct dispersion relation. Furthermore,
if |Mφ| �M we also have |Mφ| � 1 for jets with subsonic acoustic Mach numbers.
In this case, the phase velocity of the duct mode is much smaller than the speed
of sound, and we have |k|2 � ω2. In this case, the outer stream only supports
evanescent waves with fast radial decay, since γo in (3.16b) has a large real part and
Km(γor)→

√
π/(2γor) exp(−γor) for large |γor|.

In summary, a soft duct mode satisfying (3.23) is also an approximate solution of
the vortex-sheet problem with small vortex-sheet displacement and rapid radial decay
in the outer stream – it represents an acoustic wave trapped within the jet core. We
will show in the next section that these trapped duct modes are closely related to the
waves observed in the potential core of the Mach 0.9 jet.

3.5. Local eigenmodes
The spatiotemporal stability theory outlined in § 3.1 is now applied to each of the
three models, with the goal of characterizing the local properties of the waves within
the potential core. We begin by examining the eigenmodes of each of the three models
at a fixed real frequency. Note that the real part of ω and the Strouhal number are
related as St = ωr/2πM. Figure 6 shows the spatial eigenvalues for each model for
m = 0 and St = 0.3, which serve to introduce the main families of the modes that
exist over a wide range of frequencies and azimuthal wavenumbers. Modes from the
linearized Euler model that have been identified as spurious, i.e. unphysical artefacts
of the numerical discretization, have been omitted from the plot. A number of distinct
families of modes can be identified, some of which exist for only a subset of the three
models.
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FIGURE 6. (Colour online) Eigenvalues for St= 0.3 and m= 0. Linearized Euler modes:
(@) Kelvin–Helmholtz; (A) k+ free-stream acoustic; (q) k− free-stream acoustic; (s) k−
discrete free stream; (E) k+ duct-like; (u) k− duct-like. Vortex-sheet modes: (D) Kelvin–
Helmholtz; (r) k− discrete free stream; (6) k+ duct-like; (f) k− duct-like. Duct modes:
(+) k+; (×) k−. The dashed lines show the continuous branch of eigenvalues for acoustic
waves in an unbounded quiescent fluid.

The Euler equations and the vortex sheet support a single convectively unstable
discrete mode that corresponds to the well-known Kelvin–Helmholtz instability. It
is a k+ mode and has positive phase velocity. The spatial growth rate of the mode
is nearly identical for both models, but the vortex-sheet mode has slightly higher
phase velocity than its Euler equation counterpart. Since both models are inviscid,
the unstable Kelvin–Helmholtz mode also has an evanescent complex-conjugate pair.
The Euler equations also support additional convective k+ modes that describe the
neutral transport of vorticity and entropy at the local mean velocity at each radial
station. These modes are omitted from the figure to reduce clutter.

The Euler equations support two families of modes that represent the discrete
approximation of continuous branches of k+ and k− free-stream acoustic modes.
These modes have supersonic phase velocity and approximately satisfy the dispersion
relation for an acoustic wave in an unbounded quiescent fluid:

k=±
√
ω2 − z2, (3.25)

with z ∈ [0,∞]. These branches can be further divided into modes that lie on the
real k axis, and are therefore propagative, and modes with ki 6= 0. The latter modes
have positive imaginary part on the k+ branch and negative imaginary part on the
k− branch, and are therefore evanescent. The k+ and k− propagative modes together
represent acoustic radiation in all directions.

At this frequency, the Euler equations and vortex-sheet model also support a single
discrete propagative k− mode with negative, subsonic phase velocity that lies near the
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Acoustic resonance in the potential core of subsonic jets 1127

locus of the k− free-stream acoustic branch. For the Euler equations, this mode broke
off from the free-stream branch when one of the free-stream modes crossed (below)
the sonic point kr =−ω at a critical frequency. Similarly, for the vortex-sheet model,
it emanated from a branch point along the branch cut k = −ω. In both cases, then,
the locus of this mode represents an acoustic wave that has support both inside and
outside of the jet and propagates directly upstream. Accordingly, even though it has
subsonic phase velocity and is therefore not a true free-stream acoustic mode, we will
call this mode the discrete free-stream acoustic mode to distinguish it from additional
discrete acoustic modes that are described next and have significantly less support in
the free stream. While both models support only one of these modes at St= 0.3, more
will appear, one at a time, in the same way already described, as the frequency is
increased.

Finally, all three models support a number of discrete modes with large negative
phase velocities. These modes appear in complex-conjugate pairs, and the modes with
ki > 0 and ki < 0 can be shown, using (3.5) and (3.6), to be k+ and k− modes,
respectively. They are all therefore evanescent at this frequency, but we will see that
each mode pair becomes propagative at certain frequencies. The mode pairs can be
classified using two integers, (m,n), where m∈{0,1, . . .} is the azimuthal wavenumber
and n∈ {1, 2, . . .} is ordered according to |ki|, as shown in figure 6. The vortex sheet
and duct eigenvalues are nearly identical at this frequency. This is the case because the
duct modes satisfy condition (3.23) – their phase velocity ω/k is small compared to
the jet velocity, indicating that the duct modes approximately satisfy the vortex-sheet
dispersion relation. Equivalently, the vortex-sheet modes nearly satisfy the soft duct
dispersion relation – they are duct-like modes. The equivalent Euler eigenvalues are
well approximated by the duct and duct-like vortex-sheet eigenvalues for low values
of n, but diverge for higher values of n, a fact that can that can be attributed to the
finite thickness of the shear layer. The higher modes, however, are highly damped
at this frequency. As mentioned already, each mode pair will become propagative at
some frequency, at which point the discrepancy becomes small for every n. Therefore,
the Euler modes can also be viewed as duct-like. The close correspondence of the
vortex-sheet and Euler modes to the duct modes indicates that they represent acoustic
waves that experience the jet as a soft duct. Recalling that the waves observed in
the potential core had negative phase velocities, these are the modes, along with the
discrete free-stream mode, that we will study in detail throughout the remainder of
this paper.

The pressure component of the eigenfunction of the first three duct-like modes
for all three models is shown in figure 7(a–c). These eigenfunctions exhibit two
noteworthy features. First, it is apparent that n plays the role of a radial wavenumber,
equal to the number of radial anti-nodes in the pressure distribution. Second, the
pressure falls off rapidly outside of the jet core for the vortex-sheet and Euler modes
(it is zero for the duct modes). In other words, the modes are radially confined, or
trapped, in the potential core. This was predicted analytically for the vortex-sheet
modes in § 3.4, and is here shown to be true also for the Euler modes. In contrast,
the discrete free-stream modes decay much more slowly in the radial direction, as
shown in figure 7(d). The eigenfunctions for other azimuthal modes are qualitatively
similar, except that the pressure necessarily goes to zero at the polar axis.

We will see that the duct-like and discrete free-stream modes in the vortex-sheet
and Euler models, as well as the duct modes, interact with one another in a number
of important ways. To be concise, we will use the term core modes to refer to these
different modes together as a group.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
01

 A
ug

 2
01

7 
at

 2
1:

25
:4

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.346


1128 A. Towne and others

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

(a) (b) (c) (d)

FIGURE 7. (Colour online) Pressure eigenfunctions at m= 0, St= 0.3 for (a–c) n= 1, 2, 3
duct (or duct-like) modes and (d) discrete free-stream mode: (u, blue) linearized Euler;
(——, orange) vortex sheet; (– – –, green) soft duct. Note that the duct model does not
support the free-stream mode.

We next study the behaviour of the core modes as a function of frequency. In
particular, we apply the local spatiotemporal theory outlined in § 3.1. To do so, we
map lines of varying ωr and constant ωi into the complex k-plane. This is depicted in
figure 8, which shows the image of the mapping for the (0,1) core-mode group. Focus
first on the solid line, which corresponds to ωi = 0. The arrows show the direction
of increasing ωr. For all three models, the duct or duct-like eigenvalues start with
non-zero imaginary part for low ωr, as shown previously in figure 6, and move toward
the real axis as ωr is increased. At a critical frequency, the k+ and k− eigenvalues
coalesce. Beyond this frequency, they move along the kr axis. The eigenvalue moving
toward kr = 0 is a k+ mode, while the eigenvalue moving away from kr = 0 is a k−
mode. As ωr is further increased, the k+ modes in the Euler and vortex-sheet models
coalesce with the discrete k− free-stream mode, which moves along the real axis
away from the origin. Both modes move off the kr axis beyond this second critical
frequency. In contrast, the second critical point does not exist in the duct model; the
k+ duct mode continuous to move along the real axis toward the origin. The lines
with ωi 6= 0 make it clear that the two mode intersection points are in fact saddles
points, which will hereafter be denoted as S1 and S2, respectively.

The break in the behaviour of the vortex-sheet duct-like modes from that of the
duct modes is explained by (3.23). As the modes move toward the origin, their
phase velocities increase, so the duct modes less accurately satisfy the vortex-sheet
dispersion relation. Eventually, the duct analogy fails, and the two sets of modes
diverge. Specifically, since the second saddle is formed between the duct-like mode
and a discrete free-stream mode, it represents communication between the acoustic
waves in the jet core and the free stream.

Qualitatively equivalent behaviour is observed for other (m, n) combinations, most
importantly the appearance of two neutrally stable saddle points for the Euler and
vortex-sheet models and one neutrally stable saddle for the duct model. The (k0, ω0)
values of each saddle are different for each (m, n) mode group and are reported in
table 2 for m= 0 and 1 and n 6 3. The values increase monotonically with n for a
fixed m and with m for a fixed n, a property consistent with the Bessel function zeros,
βm,n.

In all cases, the saddle points are formed by a k+ mode and a k− mode and
therefore define an absolute frequency–wavenumber pair as described in § 3.1.
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FIGURE 8. Saddle-point mappings: (a) lines of constant ωi, mapped into the k-plane by
the (0,1) mode group for (b) the linearized Euler equations, (c) the vortex sheet and (d)
the soft duct. The Euler and vortex-sheet mappings contain two saddle points, while the
duct mapping has only the first of the two saddle points. The arrows show the direction of
increasing ωr. The line types correspond to: (——) ωi= 0; (– – –) ωi < 0; (– · – · –) ωi > 0.
The lines in the ω-plane have a spacing of 1ωi = 0.015.

(m, n) St0 for S1 St0 for S2 k0D for S1 k0D for S2

LEE VS D LEE VS D LEE VS D LEE VS D

(0, 1) 0.38 0.37 0.37 0.43 0.43 — −10 −9.6 −9.9 −3.6 −3.5 —
(0, 2) 0.87 0.85 0.85 1.06 1.05 — −23 −23 −23 −7.6 −7.2 —
(0, 3) 1.38 1.33 1.33 1.70 1.70 — −36 −35 −36 −12 −11 —
(1, 1) 0.60 0.59 0.59 0.72 0.72 — −16 −16 −16 −5.2 −5.0 —
(1, 2) 1.11 1.08 1.08 1.37 1.37 — −29 −29 −29 −9.3 −8.8 —
(1, 3) 1.63 1.57 1.57 2.02 2.03 — −42 −42 −42 −13 −13 —

TABLE 2. Absolute wavenumber and frequency values (k0, St0) for the S1 and S2 saddle
points for the linearized Euler equations (LEE), vortex sheet (VS) and the soft duct (D)
for core-mode group (m, n). Note that the duct model does not contain S2.

Since they occur for ωi = 0, they correspond to neutrally stable solutions. That
is, within a purely linear, inviscid, parallel flow they would neither grow nor decay
in time, but rather persist indefinitely.
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FIGURE 9. (Colour online) Comparison between modelled and empirical dispersion
relations for the m = 0 potential-core waves: (——, blue) linearized Euler model; (– – –,
orange) vortex-sheet model; (– · – · –, green) duct model. The contours show the empirical
dispersion relation, as described in § 2.5.

The two saddle points also define so-called ‘cut-on’ and ‘cut-off’ frequencies. At the
frequency corresponding to the first saddle point, the two initially evanescent modes
become propagative, i.e. they are cut-on. At the frequency corresponding to the second
saddle point, two of the modes once more become evanescent – they are cut-off.

3.6. Comparison of local models with data
A useful way to visualize the propagative waves and to compare them to the waves
observed in the LES data is to examine their dispersion relation in frequency–
wavenumber space. For each model, the first three radial mode groups for m= 0 are
plotted in figure 9 on top of the previously discussed frequency–wavenumber spectra
of the centreline LES pressure fluctuations. The dispersion relations for the three
radial modes are qualitatively similar (as are those for other azimuthal modes). For
each dispersion relation, below the frequency of the first saddle point, there exists
a single k− wave for the Euler and vortex-sheet models with a (negative) group
velocity approximately equal to the speed of sound. This is the discrete free-stream
mode. There are no propagative duct modes at these frequencies. Note that these
curves have been extended to frequencies below their branch point along the path
of their locus k = −ω. As the frequency increases, two waves are cut-on in each
model – one k+ mode and one k− mode – at a point of zero group velocity. These
waves are the propagative duct (or duct-like) modes, and the zero-group-velocity
point exactly corresponds to the S1 saddle point. At the second point of zero group
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FIGURE 10. (Colour online) Power spectral density of the pressure in the near-nozzle
region ((x/D, r/D) = (0.02, 0.8)): (a) m = 0; (b) m = 1. Data: (——) Brès et al.
(2014) LES data; (– · – · –) experimental measurements. Model predictions: ( , orange)
frequencies between the two saddle points in the vortex-sheet model; (– – –) duct saddle
point.

velocity, which corresponds to the S2 saddle point, the k+ duct (or duct-like) wave
and the k− discrete free-stream mode are cut-off, leaving a single k− propagative
wave – the k− duct (or duct-like) mode. The dispersion relations from the Euler
and vortex-sheet models approximate the corresponding empirical dispersion relation
extracted from the LES data with striking accuracy, and the duct dispersion relation
is a good approximation for wavenumbers to the left of the S2 saddle point. This
match gives a first indication that the core modes represent the essential physics of
the waves observed within the potential core.

Within the dispersion relation for each mode group, the waves in the LES data are
especially energetic at frequencies between the two saddle points. A defining feature
of the dispersion relations at these frequencies is the presence of both k− and k+
propagative waves. Each dispersion relation contains only a single k− propagative
mode at all other frequencies. That is, for each radial mode group, there is a restricted
frequency range, bounded by the two saddle points, for which there exist both k+
and k− propagative core modes. We will see in the next section that this provides a
necessary ingredient for resonance in the potential core at these frequencies. For now,
we simply observe that these frequency ranges accurately predict the tonal peaks
observed outside of the jet. For example, the shaded regions in figure 10 indicate
the range of frequencies between the two vortex-sheet saddle points for the first
three radial mode groups at m= 0 and 1. These frequency bands, which are almost
identical for the Euler model (see table 2) provide an accurate prediction of the tonal
frequencies detected in the experimental and numerical near-nozzle pressure field. The
duct saddle point gives a good approximation of the lower limit of each frequency
band.

We conclude this section by comparing the radial structure of the core modes to
the LES data. In anticipation of the key role of the aforementioned resonance, we
make these comparisons for each (m, n) mode group at a frequency between the two
saddle points. Each column in figure 11 makes this comparison for one mode group.
The rows, from top to bottom, show model predictions for the k− and k+ duct (or duct-
like modes) and the discrete free-stream mode. For each case, the squared magnitude
of the pressure component of the eigenfunction from each model is compared to the
power spectral density of the LES pressure fluctuation at the jet inlet (the data are
the same in each row). The data and eigenfunctions have been normalized to have a
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FIGURE 11. (Colour online) Radial form of the power spectral density of the pressure: (E)
LES data at x/D= 0; (· · · · · ·, blue) linearized Euler model; (——, orange) vortex-sheet
model; (– – –, green) duct model. (a–l) m= 0, St= 0.4; m= 0, St= 0.96; m= 1, St= 0.66;
m=1, St=1.30. (a–l) the k− and k+ duct (or duct-like) modes and the discrete free-stream
mode. The LES data are the same in each row.

maximum value of one, except in the bottom row where the eigenfunctions have been
scaled to visually match the data outside of the potential core.

Within the potential core (r/D< 1/2), the k+ and k− duct (or duct-like) modes for
the three models are indistinguishable from one another, and also closely match the
LES data. Outside of the potential core, the data fall off at a rate that is much slower
than the duct modes, but that is accurately captured by the discrete free-stream mode.
The shape of the free-stream mode is similar to that of the duct modes within the core.
Therefore, a linear combination of the duct-like modes and the free-stream mode can
account for the radial shape of the power spectral density of the LES data at x = 0
both inside and outside of the potential core. To properly match the data, the free-
stream wave is set to be about an order-of-magnitude less energetic than the duct-like
modes.

4. Weakly non-parallel model

The underlying assumption of the models developed in the previous section was that
the jet can be approximated as an infinite parallel flow. In this section, we pursue
a model for the potential-core waves that accounts for two additional effects: the
streamwise spreading of the jet and the presence of the nozzle. Specifically, we use
a weakly non-parallel extension of the previous parallel-flow spatiotemporal theory
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Acoustic resonance in the potential core of subsonic jets 1133

based on a WKB ansatz of the form

q(x, t)∼ A(X) exp
[

i
ε

∫ X

0
k(ω; X) dX − iωt

]
. (4.1)

Here, ε is a small parameter that typifies the slow streamwise variation of the flow,
X = εx is the slow streamwise variable and A(X) is an unknown amplitude function.
After some analysis, the complex wavenumber k(ω, X) is found to be the solution of
a local dispersion relation

D(k, ω; X)= 0 (4.2)

obtained by freezing the coefficients of the slowly varying equations at a given
x and neglecting streamwise derivatives of the mean flow as well as the mean
transverse velocity (Bender & Orszag 1999). Therefore, to first order, the flow
dynamics is governed by its local stability properties, which can be analysed using
the parallel-flow Briggs–Bers analysis (Huerre & Monkewitz 1990; Huerre 2002). We
will apply this weakly non-parallel theory to the Euler equations linearized about
the spatially evolving mean jet, and in particular to the core modes identified in
the previous section. Note that the wavelengths of interest are small compared to
the length of the potential core (the longest waves are less than one third of the
potential-core length), so the weakly non-parallel model is expected to provide a
good approximation of the global behaviour of the potential-core waves.

4.1. Local eigenmodes as a function of streamwise position
The local spatiotemporal properties of the core modes at the jet inlet (x = 0) were
studied in § 3.5 by mapping lines of constant ωi and varying ωr into the complex
k-plane via the dispersion relation D(k, ω; X = 0)= 0. This analysis is now repeated
for other streamwise positions. The image of the mapping for the (0, 1) mode group
is shown in figure 12 for four streamwise locations. As x increases, the two saddle
points that were identified at x= 0 slowly deform and move towards each other along
the kr-axis. The absolute frequency remains real valued for both saddle points. They
continue this trajectory until they coalesce at x/D = 3.62, forming a second-order
saddle point. Beyond this critical x location, both saddle points move off the kr-axis
and the associated absolute frequency becomes complex valued. The upper saddle
point occurs for wi < 0 and is therefore absolutely stable. The lower saddle point
occurs for wi> 0, but both participating modes can be shown to be k− modes, making
the saddle point irrelevant, as discussed in § 3.1. Therefore, the (0, 1) core modes are
absolutely neutral for x 6 3.62 and absolutely stable for x> 3.62.

The deformation of the image of the k= k(ω;X) mapping with streamwise location
has a profound impact on the properties of the propagative core waves that are
locally supported by the jet. Figure 13 shows the dispersion relations of the (0, 1)
propagative waves at several streamwise locations. As discussed previously, the
dispersion relation at x= 0 has two points of zero group velocity, which correspond
to the two saddle points and bound a limited range of frequencies for which there
exists both k− and k+ propagative waves. As x increases, the kr separation between
the saddle points decreases (cf. figure 12), as does the frequency difference. This
results in a progressively narrower frequency range for which the jet supports both k−
and k+ propagative trapped waves. At the streamwise location where the two saddles
merge, there is a single point of zero group velocity. The saddle points subsequently
move off of the real axis, leaving no points of zero group velocity in the dispersion
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FIGURE 12. Saddle points of the LES mean flow at m= 0 and (a) x= 0, (b) x= 3, (c)
x= 3.62 and (d) x= 4. The line types correspond to: (——) ωi= 0; (– – –) ωi< 0; (– · – · –)
ωi > 0. The two saddle points that occur on the real axis for low x merge at x= 3.62 and
subsequently move off of the real axis.

relation for the propagative waves. Since the dispersion curve begins with negative
group velocity at low frequencies, and a switch from negative to positive group
velocity requires a point of zero group velocity, only k− propagative waves remain
beyond the streamwise location at which the two saddles coalesce; all k+ waves are
evanescent. We’ll see shortly that this has important implications for the dynamics of
the core waves. The outlined region in figure 13 delineates frequency–wavenumber
combinations for which there exist both k− and k+ propagative core waves at some
x. This approximately bounds the high-energy region in the frequency–wavenumber
decomposition of the LES pressure data.

Similar behaviour is observed for other (m, n) mode groups, but the absolute
frequencies and wavenumbers associated with the saddle points are different, as are
the critical x values at which they coalesce and become absolutely stable. Figure 14
gives the frequency and wavenumber values of the two saddle points as a function
of x for several (m, n) mode groups up until the critical merger point. For both St0

and k0, there are two lines for each (m, n) that correspond to the two saddle points.
These lines necessarily intersect at the streamwise location at which the two saddle
points coalesce. Recall that, at each x, the two saddle points bound the frequencies
and wavenumbers for which both k− and k+ propagative waves exist. Therefore,
for each (m, n), both k− and k+ propagative waves exist only for frequencies and
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FIGURE 13. (Colour online) Dispersion relations for the (0, 1) mode group: (——) local
Euler model at x = 0, 2, 3, 3.62, 4; greyscale contours show the empirical dispersion
relation from the LES data. The region outlined by (– – –) shows frequency–wavenumber
combinations for which there exist both k− and k+ propagative core waves at some x.

wavenumbers on the interior of the region bounded by the St0(x) and k0(x) curves,
respectively, and the line x= 0. Outside of this region, the k+ duct-like mode and the
k− mode that had formed the saddle are cut off.

4.2. Turning points
In the WKB ansatz (4.1), the streamwise-varying local modes, k(ω; X), are stitched
together by the amplitude function A(X) to form an approximate global solution at a
given frequency ω. The amplitude function, which is determined by a solvability
condition at O(ε), becomes singular at so-called turning points of the WKB
approximation (Bender & Orszag 1999). These singularities occur at locations of zero
group velocity, which again correspond to saddle points in the complex k-plane. These
turning points represent special locations in the complex (k, ω, X) space at which k+
and k− solutions of the local dispersion relation can exchange energy. Specifically,
the k+ and k− modes that coalesce to form the saddle point can be connected at
the singularity using a modified ‘inner’ solution that is valid in the vicinity of the
turning point (Bender & Orszag 1999). Therefore, the streamwise-varying saddle
points computed in the previous section not only govern the stability properties of
the flow, but also represent a mechanism by which k+ and k− core waves can interact.

Before applying these ideas to the jet core modes, it is helpful to first consider
them in a simplified context. The WKB solution for acoustic waves within a hard-
walled duct with a slowly varying cross-section, and in particular the behaviour of its
turning points, has recently been studied by Rienstra (2000, 2003). The duct modes
have turning points at the frequencies

ω0
m,n =

√
1−M2β ′m,n/R(X), (4.3)
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FIGURE 14. The (a) frequency and (b) wavenumber position of the two saddle points as
a function of x up until the merger point for several (m, n) mode groups.

where β ′m,n are the zeros of J′m (the derivatives of the Bessel functions) and R(X) is the
spatially varying duct radius. These saddle points constitute a cut-on/cut-off transition
between propagative and evanescent waves, just as they did for the soft duct modes
previously discussed in § 3.4. For the infinite duct with constant cross-section, a mode
at a given frequency was always either cut-on or cut-off. In contrast, a propagative
mode of the spatially varying duct at frequency ω can be cut-off, i.e. become
evanescent, due to the changing cross-section at the streamwise location xt for which
ω = ω0

m,n(xt). At this turning point, an incident k+ propagative wave is split into
a reflected k− wave that is propagative (cut-on) and a transmitted k+ wave that
is evanescent (cut-off). The magnitudes and phases of these waves, relative to the
incident wave, are described by reflection and transmission coefficients that are
determined by matching the outer solutions on either side of the turning point with
the appropriate inner solution. The reflection and transmission coefficients are i and
1, respectively.

The situation is quite similar for the jet core modes. A turning point is encountered
at x = xt by a wave in the (m, n) mode group if its Strouhal number satisfies the
condition St = St0(xt) for one of the two (m, n) saddle points. This condition can
be conveniently visualized by drawing a horizontal line at the desired frequency
in figure 14(a). A turning point exists at that frequency for mode group (m, n) if
the horizontal line intersects one of the St0 curves for that mode group, and the
streamwise location of the turning point is given by the x value of the intersection
point. If the line does not intersect one of the St0 curves, then no turning point exists
at that frequency. It is interesting to note that the turning points occur well before
the end of the potential core at x/D≈ 6. By analogy with the spatially varying duct,
the turning points are presumably caused by the slow narrowing of the potential core.

An incident core wave that encounters a turning point is partially reflected and
partially transmitted. Since the saddle points represent a cut-on/cut-off transition, an
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Acoustic resonance in the potential core of subsonic jets 1137

FIGURE 15. (Colour online) Schematic representation of the behaviour of a k+
propagative duct-like mode that encounters a turning point at x = xt. It is reflected as
a k− propagative wave and transmitted as an evanescent k+ wave.

incident wave that is propagative is split into a reflected wave that is propagative and
a transmitted wave that is evanescent. For example, the case in which a propagative k+
core wave encounters a turning point is shown schematically in figure 15. Conversely,
an incident wave that is evanescent is split into a reflected wave that is evanescent
and a transmitted wave that is propagative. This latter scenario is physically relevant
only if the decay rate of the incident evanescent wave is small. An evanescent wave
decays exponentially as it travels toward the turning point, leaving little energy to be
transmitted to the propagative wave if the decay rate is significant.

The identities of the incident, reflected, and transmitted waves that interact at a
given turning point are determined by the modes that coalesce to form the saddle
point. Therefore, the participating modes are different for turning points on the upper
and lower St0 curves, which correspond to the S1 and S2 saddle points, respectively.
The S1 saddle points are formed between k+ and k− duct-like modes, and therefore
provide a mechanism by which k+ duct-like modes can be converted into k− duct-like
modes, and vice versa. The S2 saddle points are formed between a k+ duct-like mode
and a k− discrete free-stream mode, providing a mechanism for interaction between
duct-like modes, which are radially confined to the potential core, and free-stream
modes.

The switch between internal and external flow at the nozzle (x= 0) can also lead to
an exchange of energy between k− and k+ waves. Although this transition does not
constitute a physical boundary condition, the effect of the nozzle is often modelled
by truncating the domain and applying an approximate impedance boundary condition,
leading to a matrix of reflection coefficients that describes the redistribution of energy
from each k− wave that hits the boundary into every possible k+ wave. If the reflection
coefficient between a given pair of k− and k+ waves is non-zero, then part of the
incident k− wave is converted into that k+ wave. Within the context of the WKB
theory, the boundary at x= 0 constitutes a second type of turning point (Monkewitz,
Huerre & Chomaz 1993) capable of linking k+ and k− waves.

4.3. Resonance
We have seen that the turning points depicted in figure 14 and the nozzle inlet
plane are capable of transferring energy between k+ and k− waves. This leads to the
possibility of energy accumulation, i.e. resonance, at certain frequencies and locations
in the jet. The basic idea is that a wave can be reflected back and forth between two
end conditions provided by the turning points and/or nozzle. Several distinct resonance
scenarios are possible, each involving different waves and end conditions. Each type
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FIGURE 16. (Colour online) Schematic depiction of the possible types of resonance
involving (a) propagative waves only and (b) both propagative and evanescent waves.

of resonance is possible only at certain frequencies and in certain streamwise sections
of the jet that are dictated by the shape of the St0 curves, which are qualitatively
equivalent for each (m, n) mode group. Five possible resonance mechanisms are
depicted schematically in figure 16.

In the first three types of resonances, which are represented in figure 16(a), the
upstream/downstream loop is formed entirely by propagative waves. The first type of
resonance (denoted R1) can occur at frequencies between the value of the S1 curve
at x= 0 and the minimum value of the S2 curve. At these frequencies, a propagative
k+ duct-like wave will encounter an S1 turning point and therefore be reflected as
a propagative k− duct-like mode. The reflected duct-like mode propagates until is
encounters the nozzle plane at x= 0, at which point it is reflected in accordance with
the matrix of reflection coefficients dictated by the the impedance boundary condition.
Assuming that the reflection coefficient between the k− and k+ duct-like modes is
non-zero, a propagative k+ duct-like mode will be reflected back toward the turning
point, completing the loop required for resonance.

A second type of resonance (R2) is possible at frequencies between the maximum
and minimum values of the S2 curve. Here, a propagative k+ duct-like mode
encounters an S2 turning point, and is therefore reflected as a propagative k−
discrete free-stream mode, which propagates to the nozzle where it is again reflected
according to the matrix of reflection coefficients. The loop is completed if the
reflection coefficient between the discrete free-stream mode and the k+ duct-like
mode is non-zero.

A third type of resonance (R3), which can occur at frequencies between the
minimum value of the S1 curve and its value at x = 0, is similar to R1, but the
propagative k− duct-like mode encounters a second S1 turning point before it reaches
the nozzle. At the turning point, a propagative k+ duct-like mode is reflected and
propagates back to the original downstream turning point, completing the loop.

Two additional possible resonance mechanisms, which are represented in figure 16(b),
involve evanescent waves. The first is similar to R3. The propagative k− duct-like
mode is reflected at the S1 turning point, as in R3, but is also transmitted as an
evanescent k− duct-like mode. The transmitted wave can be reflected at the nozzle
plane as an evanescent k+ duct-like mode that travels downstream until it again
encounters the S1 turning point. It is then reflected as an evanescent k− duct-like
wave and transmitted as a propagative k+ duct-like wave. The transmitted wave
propagates to the second S1 turning point, where it is reflected as a propagative k−
duct-like wave, completing the loop.
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FIGURE 17. (Colour online) Decay rate kiD of the k+ duct-like mode for: (a) m = 0,
n= 1; (b) m= 0, n= 2; (c) m= 0, n= 3; (d) m= 1, n= 1; (e) m= 1, n= 2; ( f ) m= 1,
n= 3. The contour levels are distributed on a linear scale and range from ln(1)= 0 (black)
to ln(0.01)≈−4.6 (white).

The final type of resonance (R5) occurs at frequencies between the minimum
value of the S2 curve and its value at the merger point of the two saddle points. To
understand this scenario, begin with a propagative k+ duct-like mode at a streamwise
position between the S1 and S2 curves. This wave encounters an S1 turning point
and is reflected as a propagative k− duct-like mode. The reflected wave propagates to
the S2 curve but is unaffected because the saddle points on this curve do not involve
k− duct-like modes (they are formed between a k+ duct-like mode and a k− discrete
free-stream mode). The reflected wave therefore propagates all the way to the nozzle
plane, where part of the wave is likely reflected as a propagative k+ duct-like mode.
Before this wave can propagate back to its starting point, it is intercepted by an S2
turning point, where it is reflected as a propagative k− discrete free-stream mode (as
in R2), but also transmitted as an evanescent k+ duct-like mode. This represents a
break in the loop between the k− and k+ propagative waves, but if the transmitted
wave does not decay significantly before it reaches the second S2 turning point,
where it again becomes propagative, the feedback loop is completed.

Whether the R4 and R5 resonance mechanisms are feasible depends on the decay
rate of the evanescent waves. Both involve evanescent k+ duct-like modes, so we
address this question by examining the decay rates of these waves. Figure 17 shows
contours of ki as a function of frequency and streamwise location for the first three
radial mode groups at m= 0 and 1. The contour levels are distributed on a linear scale
and range from ln(1)= 0 (black) to ln(0.01)≈−4.6 (white). Waves with ki= ln(0.01)
decay by a factor of 100 over a distance of one jet diameter. The S1 and S2 curves
are also shown for reference. There are a few noteworthy trends. First, the decay rate
is zero in the region bound by the S1, S2 and x = 0 curves, as we already knew.
Second, for each mode group, the decay rate is smaller for waves transmitted through
S2 turning points than for waves transmitted through S1 turning points. Third, the
decay rate for the S2 transmitted waves grow with n and are quite small for n = 1.
This suggests that the R5 resonance mechanism is likely to be active for n= 1, which
will be confirmed shortly. This process of transmitting energy through a region that
does not support propagative waves (i.e. the region between the two S2 turning points)
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is analogous to the quantum mechanical concept of tunnelling (Bender & Orszag 1999;
Hall 2013).

The wave reflection processes so far described leads to a true resonance only if the
k+ and k− waves mutually reinforce one another by interfering constructively rather
than destructively. The solutions where constructive reinforcement occurs constitute a
set of discrete resonance frequencies. Given the large number of possible resonances
and the complicated algebra associated with matching the ‘outer’ WKB solutions on
either side of the turning point with the proper ‘inner’ solution, we do not pursue
numerical solutions of the problem here. Instead, we address the selection of discrete
resonance frequencies in a parallel investigation using global modes of the linearized
equations (Schmidt et al. 2017), which confirm that the core modes do resonate at
certain discrete frequencies.

4.4. Comparison of weakly non-parallel theory with data
Next, we return to the LES data to assess whether the weakly non-parallel theory
describes the global behaviour of the waves within the potential core. Whereas our
theoretical model is meant to describe the core waves only, the data are made up of
convective disturbances in addition to the acoustic core waves (see, for example,
figure 5). To foster a fair comparison, we use the wavenumber decomposition
discussed in § 2.5 as a filter to isolate the core waves. The key insight is that the core
waves have negative phase velocities while the dominant convective instabilities have
positive phase velocities. Therefore, zeroing the positive wavenumber components
and taking an inverse streamwise Fourier transform filters out all waves with positive
phase velocity, effectively distilling the negative-phase-velocity core waves. This
procedure is applied at every radial position to give spatially resolved fields that are
dominated by the core waves. Note that the filtering procedure was unnecessary for
the local comparisons at the jet inlet in § 3 because the convective disturbances are
small there compared to the core waves.

The power spectral density of the m=0 and 1 components of the the phase-velocity-
filtered pressure field is plotted in figure 18 for several frequencies. The contour
levels are distributed on a logarithmic scale spanning four orders of magnitude, with
the maximum level set to the maximum value (over all frequencies) of the power
spectral density for the given azimuthal wavenumber. The left (figure 18a–c) and
right (figure 18d–f ) columns contain six frequencies at m= 0 and m= 1, respectively
(the frequencies are different for the two azimuthal wavenumbers). The dashed line
in each subplot shows the ūx = 0.99Uj contour, which serves as a proxy for the
outer boundary of the potential core. When present, the solid vertical lines give the
streamwise locations of a WKB turning point at the corresponding frequency.

Figure 18(a,b) corresponds to frequencies (St = 0.25 and 0.50 for m = 0 and 1,
respectively) that are below the cut-on frequency of the n = 1 duct-like modes. The
energy levels at these frequencies are about three orders of magnitude below the
maximum, and exhibit no particular concentration in the potential-core region. This
is consistent with the model: since no propagative (or lightly damped) k+ modes
exist at these frequencies, there is no possibility of an accumulation of energy due to
resonating core modes.

Figure 18(c–h) correspond to frequencies associated with the R1 resonance
mechanism for the n = 1 mode group (St = 0.38, 0.39, and 0.40 for m = 0 and
St= 0.62, 0.64 and 0.66 for m= 1). Accordingly, we expect a region of high energy
within the potential core, stretching from the nozzle to the S1 turning point and
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FIGURE 18. (Colour online) Power spectral density of the phase-velocity-filtered
pressure. In the left column (a,c,e,g,i,k) m = 0 and (from top to bottom) St =
0.25, 0.38, 0.39, 0.40, 0.42, and 0.60. In the right column (b,d, f,h,j,l) m= 1 and (from top
to bottom) St= 0.50, 0.62, 0.64, 0.66, 0.69, and 0.90. The contour levels are distributed on
a logarithmic scale spanning four orders of magnitude. Dashed lines: ux = 0.99Uj. Solid
lines show the WKB turning points intrinsic to different resonance mechanisms: (——,
blue) R1; (——, green) R2; (——, pink) R5.

somewhat beyond due to the finite damping rate of the transmitted evanescent waves.
This is precisely what is observed in the data. One especially noteworthy feature of the
data is the appearance of distinguishable streamwise nodes and anti-nodes within the
resonance region. For example, the three frequencies at m= 1 contain three, five and
seven anti-nodes, respectively. This pattern is a result of beating between the k+ and
k− waves, which have similar but unequal (slowly varying) wavelengths. As shown
in Schmidt et al. (2017), this beating is accurately reproduced by discrete global
modes of the jet. This constitutes strong evidence that the observed concentration
of energy in the potential core is the result of resonance, rather than some other
mechanism. Note that the frequency resolution of the transformed data is too low to
unambiguously distinguish the narrow frequency range of the R3 and R4 resonance
mechanisms.

Figure 18(i,j) corresponds to frequencies (St = 0.42 and 0.69 for m = 0 and 1,
respectively) associated with both the R2 and R5 resonance mechanisms. The two
vertical lines in these subplots give the streamwise location of the turning points
intrinsic to the two different mechanisms. The turning point closer to the nozzle
is the downstream end condition for R2, while the second turning point is the
downstream end condition for R5. It appears that the latter mechanism dominates.
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FIGURE 19. (Colour online) Power spectral density of the phase-velocity-filtered pressure:
(a) m = 0, r/D = 0; (b) m = 1, r/D = 0.1. The contours levels are distributed on a
logarithmic scale spanning four orders of magnitude. The lines show the locations of the
WKB turning points.

Recall that the R5 resonance involves tunnelling of evanescent waves that is viable
for the (0, 1) mode group because of the low decay rate of the k+ duct-like modes
at these frequencies. It is not immediately clear why there is little evidence for an
R2 resonance. One explanation is that the reflection coefficients for the R2 resonance
may be small compared to those for R5. The global modes computed by Schmidt
et al. (2017) support this hypothesis; at the relevant frequencies, the S1 turning points
associated with the R5 mechanism have a significant impact on the form of the global
modes, while the S2 turning points associated with R2 have a lesser impact.

Figure 18(k,l) corresponds to frequencies (St = 0.60 and 0.90 for m = 0 and 1,
respectively) well above the cut-off frequency of the n = 1 k+ duct-like mode (and
below the cut-on frequency for n = 2). Accordingly, no resonance is expected. The
data show this model prediction to be correct. The high energy concentration in the
potential core observed at the previous resonant frequencies has vanished, and the
remaining waves are less energetic by almost three orders of magnitude.

Other frequencies can be examined by plotting the power spectral density of
the phase-velocity-filtered pressure data at a fixed radial position as a function of
frequency and streamwise position. Figure 19 shows these data at r/D= 0 and 0.1 for
m= 0 and 1, respectively. The contours levels are again distributed on a logarithmic
scale spanning four orders of magnitude. This visualization of the data makes it clear
that the core waves are energetic primarily within regions of x− St space that support
a resonance of propagative waves, i.e. on the interior of the region bound by the S1,
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Acoustic resonance in the potential core of subsonic jets 1143

S2 and x= 0 curves. For both azimuthal wavenumbers, there is also significant energy
somewhat farther downstream and at slightly higher frequencies for the first radial
mode group. This is explained by the lower damping rate for n= 1 waves transmitted
through S2 turning points, as shown in figure 17, and suggests the existence of a
sixth resonance entirely composed of lightly damped waves.

5. Model predictions for other operating conditions
The near-nozzle tones that are generated by the acoustic resonance in the potential

core have been experimentally observed for only certain combinations of Mach
number and temperature ratio. In this section, we will use the vortex-sheet model to
explain this observation and to provide a rough guideline for when the resonance and
resulting tones will and will not be present. At first glance, the vortex-sheet model
may appear ill suited for this task since it is a strictly parallel representation of the
jet and therefore cannot predict the turning points necessary for resonance and the
formation of tones. However, in the isothermal Mach 0.9 jet, the two vortex-sheet
saddle points approximately bound the frequencies for which there exist both k+ and
k− propagative waves, which is a necessary ingredient for resonance, and provide
a good approximation of the tonal frequencies (see figure 10). As we consider jets
with other Mach numbers and temperature ratios, we will use the existence of a
limited range of frequencies for which both k+ and k− propagative waves exist for
the same core-mode group as a criterion to decide whether or not tones are likely to
be observed.

5.1. Mach number dependence
We first investigate the Mach number dependence of the core modes at a fixed
temperature ratio. Specifically, the (k, ω) coordinates of the vortex-sheet and duct
saddle points are calculated as a function of the Mach number at T = 1. The results
for (m= 0, n= 0) are shown in figure 20.

At M = 0.9, the vortex-sheet modes form two saddle points as shown in figure 8.
Moving toward smaller Mach numbers, a bifurcation is encountered at M = 0.82 at
which the two saddle points merge and move off the real k and ω axes. To exemplify
the situation beyond the bifurcation point, the saddle points for M = 0.6 are shown
in figure 21(a). The saddle point with ωi > 0 occurs between two k− modes and is
therefore irrelevant. The saddle with ωi < 0 occurs between a k+ mode and k− mode,
and is therefore valid. Accordingly, the core modes are absolutely stable for M< 0.82.
This bifurcation is not predicted by the duct model; the duct modes remain neutrally
stable for all subsonic Mach numbers.

Moving now from M= 0.9 toward higher Mach numbers, we encounter a different
kind of bifurcation at M = 1. The S2 vortex-sheet saddle point continues on the real
axes unaffected by the switch from subsonic to supersonic flow, but the S1 saddle
point asymptotically approaches zero frequency and a negative infinite wavenumber,
never crossing M= 1. This behaviour is accurately predicted by the duct saddle point
as given by (3.20) and (3.21). Therefore, for M> 1, there is one saddle point on the
real axes. The saddle point for M = 1.5 is shown in figure 21(b).

The number of neutral saddle points on the real k-axis – zero for M < 0.82, two
for 0.82<M < 1, and one for M > 1 – has a profound impact on the types of core
waves supported by the jet. The dispersion relation of the (0, 1) propagative waves for
M= 0.9, which lies in the intermediate region, was shown in figure 9. Since there is
a distinct frequency range, bounded by the two saddle points, for which both k+ and
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FIGURE 20. Saddle-point locations as a function of Mach number for the vortex sheet
(——) and the duct (– – –). Bifurcations exist at M = 0.82 and M = 1.
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FIGURE 21. Saddle points for the (0, 1) mode group of the vortex sheet for T = 1
and (a) M = 0.6 (b) M = 1.5. Lines of varying ωr and: (——) ωi = 0; (– – –) ωi < 0;
(– · – · –) ωi > 0.

k− waves exist, the previously described resonance is possible at certain frequencies
but not others, leading to spectral tones. Figure 22 shows the dispersion relation of
the (0, 1) propagative waves for M = 0.6 and M = 1.5, which serve as examples for
the low and high Mach number ranges. For M= 0.6, there exist only k− propagative
waves at all frequencies since there are no saddle points on the real axes, and therefore
no upstream/downstream transition. Since only k− waves are supported by the flow, no
resonance is possible, precluding the possibility of tones. For M= 1.5, there exist both

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
01

 A
ug

 2
01

7 
at

 2
1:

25
:4

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.346


Acoustic resonance in the potential core of subsonic jets 1145

0

1

2

3

4

5

 0

0.2

 0.4

0.6

 0.8

–10 0–20–30 0–10–15–20 –5

St

kD kD

(a) (b)

FIGURE 22. Dispersion relations of the propagative waves for the first three m= 0 radial
mode groups of the vortex sheet at T= 1 and (a) M= 0.6 and (b) M= 1.5. The analogous
dispersion relations for M = 0.9 appear in figure 9.

k+ and k− waves at the same frequencies due to the presence of a single saddle point
on the real axis. Accordingly, there is the possibility of resonance, but this resonance
mechanism exists at all frequencies, resulting in broadband energy distribution rather
than discrete tones.

Our results at M = 0.6 and M = 1.5 are consistent with the findings of Tam &
Hu (1989). They referred to the core modes described in this paper as ‘subsonic
instability modes’, and noted that only k− waves exist for M= 0.6 while both k− and
k+ propagative waves exist for M= 1.5 and other supersonic Mach numbers. However,
they did not investigate the transition between these two cases that gives rise to the
interesting resonances discussed in this paper.

To summarize, the vortex-sheet model suggests that only jets within a limited Mach
number range, 0.82<M< 1 for T = 1, have two saddle points on the real axes, which
is a key ingredient for generating tones. However, it is appropriate at this stage to
reflect on the fact that we are analysing a turbulent flow based on a linearization about
the mean. Perturbations to the mean flow field could broaden the range of resonating
Mach numbers, and lightly damped modes that are excited by turbulence could also
participate in the resonance (as we already observed in § 4.3). Therefore, we speculate
that the tones should gradually appear as the Mach number approaches 0.82 and reach
their strongest resonance before dissolving away again into a broadband spectrum for
M > 1.

5.2. Temperature ratio dependence
Finally, the temperature ratio dependence of the core modes is incorporated into
the analysis with the goal of determining certain Mach number, temperature ratio
combinations that support two neutral saddle points. Specifically, the two Mach
number bifurcation points described in the previous subsection for T = 1 that bound
the two-saddle-point region are computed as a function of temperature ratio.

The results are summarized for m= 0 and 1 in figure 23. The solid curve represents
the supersonic bifurcation, which occurs when Mj = 1 irrespective of the temperature
ratio for all mode groups. This behaviour is exactly predicted by the duct model based
on (3.20); the duct saddle point asymptotically vanishes when Mj → 1 (i.e. M2

→

T) for all βm,n. On the other hand, the subsonic bifurcation point is not predicted by
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FIGURE 23. (Colour online) Saddle-point bifurcations as a function of Mach number and
temperature ratio for (a) m= 0 and (b) m= 1. Black curve: supersonic bifurcation. Other
curves: subsonic bifurcation. Shaded region: operating conditions where the model predicts
the existence of tones. Closed symbols: jets in which tones have been observed. Open
symbols: jets in which tones have not been observed. Squares: computational jets. Circles:
experimental jets.

the duct model and its location is a weak function of n. The three dashed curves,
from top to bottom, show the bifurcation point for n= 0, 1 and 2, respectively. The
spacing between the curves decreases with increasing n, suggesting the existence of
an asymptotic curve that bounds the region for all n.

The shaded region demarcates the Mach number, temperature ratio combinations
between the two bifurcations (up to n= 3). For these values, two saddle points exist
and tones are therefore expected to be present in the near-nozzle region outside of
the jet. The lower boundary should not be viewed as a precise limit, however, since
tones likely exist at somewhat lower Mach numbers, as discussed in the previous
section. These predictions can be compared to the aforementioned experimental and
numerical observations of near-nozzle tones. The filled and open symbols represent
jet set points where tones have and have not been observed, respectively. The circles
correspond to results from Suzuki & Colonius (2006) while the squares correspond to
two LES databases, including the Mach 0.9 isothermal jet used throughout the paper.
The agreement between the model predictions and the experimental and numerical
observations is excellent, especially if we permit ourselves to blur the lower boundary
of resonance in accordance with comments at the end of § 5.1.

6. Summary and discussion

We have used LES data from a Mach 0.9 isothermal, turbulent jet along with
parallel and weakly non-parallel linear modal analysis to investigate trapped waves
that are observed within the potential core of the jet and detected as tones outside
of the jet in the near-nozzle region. Three types of waves are identified. The first
two approximately satisfy the dispersion relation for a soft duct and can therefore
be understood as k+ and k− duct-like acoustic modes. These waves experience the
shear-layer as a pressure-release surface and are therefore radially confined to the
potential core. The third type of wave is a k− mode and represents a weak coupling
between the jet core and the free stream. Each of these modes are either cut-on or
cut-off depending on frequency and (for the weakly non-parallel model) streamwise
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Acoustic resonance in the potential core of subsonic jets 1147

location, and the cut-on/cut-off transition points correspond to saddle points in the
complex wavenumber plane. Within the weakly non-parallel model, these saddle
points also constitute turning points of the asymptotic WKB approximation that
provide a mechanism by which k+ waves can be converted into k− waves, and vice
versa. Paired with a second end condition provided by the nozzle, this leads to the
possibility of resonance within the limited frequency bands that contain turning points.
The resonance mechanisms are further investigated and refined by the parallel global
analysis of Schmidt et al. (2017).

Drawing on these results, a vortex-sheet model is used to explore the effect of Mach
number and temperature ratio on the trapped waves. It is found that, for isothermal
jets, the necessary conditions for resonance between propagative waves exist only for
0.82<M<1, but that the possibility of lightly damped resonance persists at somewhat
lower Mach numbers. The upper limit is the same for all temperature ratios, indicating
that the jet must be subsonic, while the lower limit is a function of temperature ratio.

Our three simple models capture with surprising accuracy numerous aspects of
the trapped waves that are extracted from the LES data. The model dispersion
relations closely follow the empirical dispersion relations obtained through frequency–
wavenumber decomposition of the data. The frequency bands between the two saddle
points predict the tonal frequencies. The radial structure of the pressure field near the
nozzle is accurately described by the eigenfunctions of the core modes. The turning
point analysis and the resulting resonance mechanisms provide predictions for the
frequency and spatial energy distribution of the trapped waves that closely match
the data. These results confirm that the models capture the essential physics of the
potential core waves. Similar comparisons with simulation or experimental data will
be required to further analyse the predictions obtained from the vortex-sheet model
at other Mach numbers and temperature ratios.

Whether or not these trapped waves are important to the overall jet dynamics
or acoustics remains to be established. An ongoing experimental campaign (Jaunet
et al. 2016) suggests that the trapped waves can be observed in the far-field acoustic
spectrum at angles nearly tangent to the jet, and that these tones appear to be
related to the R2 resonance mechanism. The latter result is consistent with the slower
radial decay of the discrete free-stream modes that participate in this resonance
mechanism. The same experimental investigation also suggests that the trapped waves
are responsible for strong tones that are observed in the acoustic field when a solid
edge is introduced near the jet. Previous attempts to explain these edge tones assumed
a Rossiter-like scenario (Lawrence & Self 2015; Zaman et al. 2015) and have not
yielded an accurate model. The analysis presented in this paper could provide the
necessary building blocks to explain and model these edge tones.
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Appendix A. Linearized Euler equations

We write the compressible Euler equations in cylindrical coordinates in terms of
specific volume ν, streamwise velocity ux, radial velocity ur, azimuthal velocity uθ
and pressure p:

Dν
Dt
− ν(∇ · u)= 0, (A 1a)

Dux

Dt
+ ν

∂p
∂x
= 0, (A 1b)

Dur

Dt
−

u2
θ

r
+ ν

∂p
∂r
= 0, (A 1c)

Duθ
Dt
+

uruθ
r
+
ν

r
∂p
∂θ
= 0, (A 1d)

Dp
Dt
+ γ p(∇ · u)= 0, (A 1e)

with
D
Dt
=
∂

∂t
+ ux

∂

∂x
+ ur

∂

∂r
+

uθ
r
∂

∂θ
(A 2)

and

∇ · u=
∂ux

∂x
+
∂ur

∂r
+

ur

r
+

1
r
∂uθ
∂θ
. (A 3)

All variables have been appropriately non-dimensionalized by the ambient sound speed
c∞ and density ρ∞ and the nozzle diameter D. The fluid is approximated as a perfect
gas with specific heat ratio γ . For the state vector q={ν, ux, uy, uθ , p}T, the linearized
Euler operators defined in (3.11) are:

Ax =


ūx −ν̄ 0 0 0
0 ūx 0 0 ν̄

0 0 ūx 0 0
0 0 0 ūx 0
0 γ p̄ 0 0 ūx

 , Ar =


ūr 0 −ν̄ 0 0
0 ūr 0 0 0
0 0 ūr 0 ν̄

0 0 0 ūr 0
0 0 γ p̄ 0 ūr

 , (A 4a,b)

Aθ =
1
r


ūθ 0 0 −ν̄ 0
0 ūθ 0 0 0
0 0 ūθ 0 0
0 0 0 ūθ ν̄
0 0 0 γ p̄ ūθ

 , A0 =



−Φ̄
∂ν̄

∂x
∂ν̄

∂r
−
ν̄

r
0 0

∂ p̄
∂x

∂ ūx

∂x
∂ ūx

∂r
0 0

∂ p̄
∂r

∂ ūr

∂x
∂ ūr

∂r
0 0

0
∂ ūθ
∂x

∂ ūθ
∂r
+

ūθ
r

1
r

ūr 0

0
∂ p̄
∂x

∂ p̄
∂r
+
γ p̄
r

0 γ Φ̄


,

(A 4c,d)
where Φ̄ =∇ · ū.
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Appendix B. Derivation of the vortex-sheet dispersion relation
The cylindrical vortex sheet is governed by the compressible Euler equations

linearized about inner and outer regions of uniform flow. These equations can be
reduced to a Helmholtz equation for the pressure in each region:[(

∂

∂t
+M

∂

∂x

)2

− T∇2

]
pi = 0, (B 1a)[

∂

∂t

2

−∇
2

]
po = 0. (B 1b)

Fourier–Laplace transforms, or the normal-mode ansatz (3.12), lead to the modified
Bessel equations [

∂2

∂r2
+

1
r
∂

∂r
− γ 2

i,o −
m2

r2

]
p̂i,o(r)= 0, (B 2)

with γi and γo given by (3.16). As stated previously, all quantities have been
normalized by the jet diameter and outer thermodynamic quantities such that
M =Uj/c∞ is the acoustic Mach number and T = Tj/T∞ is the temperature ratio.

Enforcing boundedness at the centreline and at infinity leads to the solutions

pi(r)=CiIm(γir) (B 3)

at the inner part of the sheet, and

po(r)=CoKm(γor) (B 4)

in the outer flow. These two functions should be matched at the vortex-sheet location
r= 1/2, which leads to

pi(
1
2)= po(

1
2), (B 5a)

dpi

dr

(
1
2

)
=
(ω− kM)2

Tω2

dpo

dr

(
1
2

)
, (B 5b)

where the last equation is obtained by eliminating the vortex-sheet displacement η
from

(ω− kM)2η= T
dpi

dr

(
1
2

)
, (B 6a)

ω2η=
dpo

dr

(
1
2

)
. (B 6b)

The dispersion relation given by (3.14) and (3.15) is obtained by eliminating the
constants Ci and Co from (B 5a) and (B 5b).

Appendix C. Derivation of the soft duct dispersion relation
An inviscid flow inside a duct is governed by the Euler equations linearized about a

uniform velocity, which can be reduced to the same Helmholtz equation that governs
the inner stream of the vortex-sheet model. All quantities have been normalized by
the duct diameter and ambient thermodynamic quantities so that non-dimensional
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quantities are consistent with those in the linearized Euler and vortex-sheet models.
Enforcing boundedness at the centreline leads to the solution

pd(r)=CdIm (γir) (C 1)

and enforcing a homogeneous Dirichlet boundary condition at the duct wall,

p̂d(
1
2)= 0, (C 2)

implies that
Im

(γi

2

)
= 0. (C 3)

Using the relationship between Im and Jm, equation (C 3) leads to the soft duct
dispersion relation (3.18).
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