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Linear stability of a laminar boundary-layer flow in a streamwise corner can
only be treated with an ansatz that considers two-dimensional eigenfunctions with
inhomogeneous boundary conditions in cross-flow directions. It is common practice
to use Sommerfeld’s radiation condition with a certain wavenumber β at the lateral
domains of the integration domain which are at the same time the far-field domains for
each wall. So far, this radiation condition has been exclusively used in a ‘symmetrical’
way, i.e. with the same β on either far-field boundary plane. This has led to wave
patterns that either enter or leave the corner region from the lateral sides for β < 0 or
β > 0 respectively. Here, an ‘asymmetric’ use of Sommerfeld’s radiation condition is
suggested, i.e. β < 0 on one far side of the corner and β > 0 on the other. With this
modification, waves enter the corner area from one side and leave it through the other,
i.e. they travel obliquely through the corner. In contrast to before, their amplification
rate is always symmetric with respect to β = 0 and there is no amplification-rate
increase or decrease due to information that either continuously enters the corner from
both sides or continuously leaves it through the far sides. The present analysis also
shows that the inviscid corner modes are unaffected by the parameters of the far-field
radiation boundary conditions. Nevertheless, superposition of two oppositely running
single waves obtained by the modified application of the radiation condition leads to
a similar wave pattern to that in the case with β < 0 on both sides; however, with a
slightly smaller amplification rate and a strictly streamwise propagation direction.
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1. Introduction

The flow along a right-angled corner formed by the intersection of two flat plates
(figure 1) has been studied in the past as a generic model for various technical
applications. Rubin (1966) was the first to present the full set of equations for the
laminar incompressible corner-flow problem based on self-similar transformation and
matched asymptotic expansions. The asymptotic behaviour of the flow was further
studied by Pal & Rubin (1971). In vicinity of the cornerline, the boundary layer
of the corner flow is three-dimensional and, due to the displacement effect of the
opposing walls, a secondary cross-flow velocity exists at the far field away from the
cornerline. Therefore, the far-field boundary layer is similar to the two-dimensional
flat-plate scenario with additional secondary cross-flow (Rubin 1966; Pal & Rubin
1971; Ghia & Davis 1974). After the first numerical solution of the corner-flow
equations by Rubin & Grossman (1971), far-field boundaries at true infinity were
introduced (Ghia 1975) and the problem was extended to arbitrary angles (Barclay
& Ridha 1980). Ridha (1992) included the streamwise pressure gradient and was the
first to show the dual solution (upper and lower branch) behaviour of the flow for
different wall-shear values. The effect of compressibility was first accounted for in
the corner-layer equations by Weinberg & Rubin (1972) for a model fluid with a
Prandtl number of Pr = 1. Mikhail & Ghia (1978) computed self-similar solutions
without the restriction to unity Prandtl number. Schmidt & Rist (2011) obtained the
base state as a solution to the parabolized Navier–Stokes (PNS) equations instead of
solving the corner-layer equations.

For the inviscid problem, a two-dimensional temporal linear stability theory (LST)
analysis of the corner flow was first performed by Balachandar & Malik (1995).
Lin, Wang & Malik (1996) solved the viscous eigenvalue problem (EVP) based on
the streamwise velocity and the pressure for a non-self-similar base flow. Parker
& Balachandar (1999) studied the temporal linear stability for an incompressible
corner flow of finite spanwise extent in the case of oblique modes and a pressure
gradient. The obtained eigenvalue spectrum consisted of discrete Tollmien–Schlichting
(TS)-wave-like viscous modes with variable spanwise wavenumbers β and an inviscid
even-symmetric corner mode. The stability behaviour of the viscous modes was found
to be similar to the flat-plate scenario. The amplification rates of oblique modes with
respect to β were studied. Depending on their propagation direction, these modes
were either named incoming (β < 0) or outgoing (β > 0). It was shown that the
growth-rate maximum occurs for incoming modes, whereas its minimum appears for
outgoing modes at a different |β| value. This asymmetric behaviour is explained as an
effect of the sidewall, which suppresses the disturbance growth of waves moving away
from the cornerline and enhances the growth of modes moving towards the cornerline.
A sensitivity analysis due to variations of the corner base flow was performed by
Alizard, Robinet & Rist (2010).

For compressible flows at Mach numbers up to 1.5, Schmidt & Rist (2011) observed
the same effects concerning oblique modes as for incompressible flows. By animating
the modal structures in time, it was shown that the propagation direction of these
modes was not oblique as expected but in the streamwise direction, and an alternative
boundary condition for modes propagating through the corner was suggested (Schmidt
2014). In this paper, modes with an oblique propagation direction through the corner
instead of the previously named incoming/outgoing modes are considered for the first
time in detail.
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Oblique modes through a streamwise corner
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FIGURE 1. Sketch of the flow along a streamwise corner (Schmidt & Rist 2011): U∞ is
the non-dimensional free-stream velocity, δ99 denotes the local boundary-layer thickness
where u = 0.99, y and z are the cross-stream directions and the Reynolds number Re
indicates the streamwise direction.

2. Base flow

In this study, the steady laminar corner base flow for the stability analysis is
obtained as the self-similar solution to the PNS equations. The PNS equations
are derived from the compressible Navier–Stokes equations (NSEs) assuming the
streamwise gradients to be small in comparison to the cross-flow gradients, and
therefore all unsteady as well as all viscous terms containing gradients in the
streamwise direction are dropped (Tannehill, Anderson & Pletcher 1997). The
asymptotic behaviour of the secondary cross-flow induced by the displacement effect
is guaranteed by the combination of a homogeneous Neumann boundary condition and
enforcing the asymptotic solution via a sponge zone. For a more detailed description
of the base-flow calculation, see Schmidt & Rist (2011).

In the following, the superscript ‘∗’ labels dimensional quantities. The base
flow is characterized by the Prandtl number Pr = c∗pµ

∗
∞/k

∗
∞ and the Mach number

Ma = u∗∞/a
∗
∞, with the heat capacity at constant pressure c∗p, the dynamic viscosity

µ∗∞, the thermal conductivity k∗∞, the free-stream velocity u∗∞ and the speed of sound
a∗∞. The PNS equations are made dimensionless by relating all length scales to the
compressible displacement thickness δ∗1 =

∫∞
0 [1 − ρ∗u∗/(ρ∗∞u∗∞)] dy∗, the pressure

to ρ∗∞u∗2∞ and all other quantities to their dimensional free-stream value (‘∞’). The
Reynolds number is defined as Re = ρ∗∞u∗∞δ

∗
1/µ

∗
∞. The temperature dependence of

the viscosity is included by the Sutherland law, with µ∗ref = 1.735× 10−5 kg m−1 s−1,
T∗ref = 280 K and the Sutherland constant S1 = 110.4 K. The ideal gas constant is
given by R = c∗p(γ − 1)/γ . The base-flow solution is obtained for the free-stream
values

Ma= 0.95, Pr= 0.71, γ = 1.4,

p∗∞ = 101 325 Pa, T∗∞ = 293.15 K, c∗p = 1005
J

kg K

 (2.1)

on a computational domain of ymax= zmax= 60 with a discretization of [45× 45] wall-
clustered Chebychev–Gauss–Lobatto points.

Figure 2 shows the corresponding velocity profiles. At the far field z = zmax the
streamwise velocity u and the cross-flow velocity w are Blasius-like and a wall-near
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FIGURE 2. Self-similar base-flow solution for streamwise velocity u (– · – · –, blue) and
cross-flow velocities v (——, red), w (– – – –, yellow) (a) at the corner far field z= zmax
and (b) along the corner bisector y= z.

jet evolves for the induced cross-flow velocity v (figure 2a). Along the corner bisector,
the u-profile displays an inflection point; the v,w-profiles collapse and show a distinct
maximum (figure 2b).

3. Linear stability

The NSEs are linearized by decomposing the flow into a steady state q0 and time-
varying disturbances q′, and neglecting terms with products of perturbation quantities.
For the perturbations q′, the local two-dimensional normal mode ansatz

q′(x, y, z, t)= q̂(y, z)ei(αx−ωt), α ∈R, ω ∈C (3.1)

is chosen. Insertion of (3.1) into the linearized NSEs and recasting of the equations
leads to the generalized EVP

(A−ωB)q̂= 0. (3.2)

The boundary conditions for the EVP (3.2) are û = v̂ = ŵ = T̂ = 0 at the corner
walls y= 0 and z= 0. Parker & Balachandar (1999) introduced the far-field boundary
conditions

∂ q̂
∂y
= iβq̂ at y= ymax and

∂ q̂
∂z
= iβq̂ at z= zmax (3.3a,b)

for oblique incoming/outgoing modes based on Sommerfeld’s radiation condition.
Application of this boundary condition in all previous work has led to some
peculiarities. Depending on the sign of the chosen β, waves either enter (β < 0)
or leave (β > 0) the integration domain at both lateral boundaries. Due to the
inherent symmetry in both cases, a wave pattern occurs which travels downstream
along the x axis in the near-corner region. The resulting wave pattern itself is either
symmetric or antisymmetric with respect to the corner bisector depending on the
relative phase of the waves at the lateral boundaries (in phase or out of phase
respectively). Amplification of this wave pattern exhibits a characteristic dependence
on the wavenumber β: a peak occurs for negative β, i.e. for waves that run towards
the corner from both sides, and a shallow minimum for the opposite β > 0, i.e. when
the waves leave the corner region in positive lateral directions. Accordingly, there is
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FIGURE 3. Part of the eigenvalue spectrum for β = 0, α = 0.245 and Re = 660. Filled
symbols indicate even-symmetric modes and open symbols indicate odd-symmetric modes.

no symmetry of amplification with respect to the spanwise wavenumber, which would
be expected for a single wave or a wave pattern due to superposition of a left- and
a right-running wave. An obvious deficiency of the boundary condition (3.3) is that
it does not permit a single wave that enters the domain on one side and leaves it on
the other side. However, as suggested by Schmidt (2014), this is easily obtained by
setting

∂ q̂
∂y
= iβq̂ at y= ymax and

∂ q̂
∂z
=−iβq̂ at z= zmax. (3.4a,b)

The computational grid domain for the eigenvalue calculation is set to ymax= zmax= 45
and discretized by [90× 90] grid points as a result of a convergence study with β= 0,
ymax= zmax ∈ [35, 55] and N ∈ [45, 115]. To guarantee a higher grid-point clustering in
the vicinity of the walls, an equidistant grid ŷ is scaled by the tanh transformation
y = (− tanh(−(b − a)ŷ/ymax − a) − tanh a)ymax/(tanh b − tanh a), with a = −1.8 and
b = 0.5. The self-similar base-flow results are interpolated onto the grid for the
respective Re of interest. The exemplary eigenvalue spectrum shown in figure 3
for β = 0, Re = 660 and α = 0.245 is a solution to the EVP (3.2) calculated with
a shift-and-invert Arnoldi method. The modes named C-O/-E are the two inviscid
odd (O)-/even (E)-symmetric corner modes. The viscous TS-like modes are labelled
I-/II-/. . . according to their respective number of spanwise |Re(û)| maxima. The
corresponding spanwise wavelengths of the calculated viscous TS-like modes change
with varying spanwise extent of the corner. By increasing ymax = zmax, a quadratic
convergence of the respective growth rates towards an asymptotic value can be
detected (Parker & Balachandar 1999).

4. Results

To investigate the differences between the modes obtained by the suggested
boundary condition for oblique modes (3.4) and the so far considered oblique
incoming/outgoing modes resulting from the boundary condition (3.3) (Parker &
Balachandar 1999; Galionis & Hall 2005; Schmidt & Rist 2011), the latter are
calculated as well.

807 R3-5
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.642
Downloaded from http:/www.cambridge.org/core. Caltech Library, on 25 Oct 2016 at 17:49:36, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.642
http:/www.cambridge.org/core


J. Staudenmeyer, O. T. Schmidt and U. Rist

0–0.2–0.4 0.2 0.4 0–0.2–0.4 0.2 0.4

0

–2

–4

–6

–8

0

–2

–4

–6

–8

I-E
I-O

C-O
C-E

II-E
II-O
III-E
III-O
IV-E
IV-O

(a) (b)

FIGURE 4. Dependence of the modal growth rate ωi on the spanwise wavenumber β for
α = 0.245, Re= 660 with (a) boundary condition (3.4) for modes travelling through the
corner and (b) boundary condition (3.3) for incoming/outgoing modes.
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FIGURE 5. Comparison of maximum growth rates ωi and their respective β-values for
modes I-E/-O to IV-E/-O. Filled symbols denote even-symmetric modes and open symbols
odd-symmetric modes, as in figure 3, for modes travelling through the corner (——) and
incoming/outgoing modes (– · – · –).

4.1. Stability behaviour
Figure 4 depicts the dependence of the temporal amplification rate ωi on β for
the viscous modes I-E/-O to IV-E/-O and the two inviscid corner modes C-E/-O at
Re = 660 and α = 0.245. As expected, the amplification for the suggested boundary
condition is perfectly symmetric with respect to β = 0 (figure 4a). Two maxima at
non-zero β-values exist for the viscous even-symmetric modes, whereas, considering
viscous odd-symmetric modes, the maximum growth rate occurs for the boundary
condition β = 0. In contrast to this, the asymmetric behaviour occurring in the case
of incoming/outgoing modes (3.3) displays a distinct maximum for incoming modes
and a faint minimum for outgoing modes (figure 4b).

Figure 5 depicts the distribution of the growth-rate maximum of the modes I-E/-O
to IV-E/-O (peaks in figure 4) with respect to their corresponding β-values for
both boundary conditions. For modes travelling through the corner as well as for
incoming/outgoing modes, the even-symmetric mode of every mode pair reaches
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higher amplification rates (figures 4, 5; solid symbols) than the respective odd-
symmetric mode (open symbols). The maximum amplification rates ωi,max of the even-
symmetric modes appear for both boundary conditions at the same β-value (figure 5).
This congruence of β(ωi,max) is apparently caused by the fact that the maximum
growth rates of these modes are reached whenever the spanwise wavenumber is
compatible with the β-value set for the boundary condition, and therefore the mode
is able to propagate smoothly out of or into the computational domain.

Additionally, figure 5 reveals that the actual ωi,max value is slightly higher for the
incoming modes (– · – · –; solid symbols) than for those travelling through the corner
(——; solid symbols). A clear difference between the growth-rate behaviour occurs
for the odd-symmetric modes (figure 5, open symbols); as mentioned above, those
resulting from the EVP solution with the suggested boundary condition show their
maximum growth rate for β = 0, whereas the respective modes for the old boundary
condition reach a higher distinct maximum ωi for β < 0 (incoming). The modes for
β = 0 lead to a special wave pattern of standing waves as they do not enter or leave
the computational domain through the lateral ends and therefore propagate strictly in
the streamwise direction with fixed nodal points. Therefore, the odd-symmetric modes
resulting from the new boundary condition are maximally amplified for β = 0, as
travelling through the corner with β 6= 0 is not possible due to zero disturbance at
the corner bisector (figure 6b,d,e).

For the new boundary condition, increasing ymax and zmax has an influence on the
respective spanwise wavelengths of the viscous modes I-E/O, II-E/O, III-E/O, . . . .
The maximal amplification rate ωi,max for these modes is, as expected, reached at a
different matching β-value, but the resulting datapoints ωi,max are in line with the
course shown in figure 5. The decrease/increase in maximum/minimum growth rate as
mentioned by Parker & Balachandar (1999) for the old boundary condition in the case
of increasing spanwise extent could not be observed for the new boundary condition.

As the spanwise extent of the inviscid modes is restricted to the vicinity of the
corner, they are weakly (C-O) or not (C-E) affected by the spanwise wavenumber
in the case of both boundary conditions (figure 4). The weak distortion of the
growth rate occurring for mode C-O is because its spanwise extent is larger than the
spanwise extent of mode C-E (figure 6a,b). By enlarging the computational domain,
the influence of the far-field boundary condition on mode C-O, and therefore its
β-dependence, vanishes.

The asymmetric isocontours of the eigenfields Re(û) for the modes IV-E and
IV-O depicted in figure 6(c,d) lead to the conclusion that the labels even- and
odd-symmetric are not suitable for oblique modes obtained by the suggested
boundary condition (3.4). Nevertheless, the mentioned labelling will be maintained
for convenience, and, in the following, modes named . . . -E are modes that show an
extremum at the corner bisector (figure 6c), and those named . . . -O are the respective
modes without an extremum at the corner bisector (figure 6d). However, these two
asymmetric modes reach their respective maximum Re(û) at opposing plates. For the
even-symmetric mode, the distribution of the extrema along y (figure 6c) is similar to
the distribution of the even-symmetric incoming mode (figure 6e). The eigenfields for
the modes IV-E/-O obtained by the boundary condition for incoming/outgoing modes
are clearly even-/odd-symmetric to the corner bisector (figure 6e, f ), and their shape
for non-zero β-values is similar to the eigenfield of the results for β = 0.

4.2. Mode propagation direction
To illustrate the propagation direction of the aforementioned modes, the temporal
evolution of the locations of maximum and minimum as well as zero Re(û)-values is
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FIGURE 6. Isocontours of the eigenfield Re(û) and respective isolines |û| (——) for
α= 0.245 and Re= 660, shown in yellow for Re(û) < 0 and blue for Re(û) > 0. Inviscid
corner modes for β = 0: (a) C-E, (b) C-O. Viscous modes for β =−0.3 corresponding to
maximum growth rate: travelling through the corner (c) IV-E, (d) IV-O; incoming (e) IV-E,
( f ) IV-O.

depicted in figure 7 for the time interval tωr/2π ∈ [0, 3]. The propagation directions
at the upper and lower walls are schematically indicated by red arrows. As already
mentioned by Schmidt (2014), the mode IV-E obtained with the suggested boundary
condition (3.4) for β =−0.3 propagates obliquely through the corner (figure 7a). At
the lower wall, where the mode is travelling away from the corner, straight wavefronts
with a constant phase angle ϕ = tan−1(β/α) are observed for z > 5. In contrast, a
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FIGURE 7. Lines of temporal evolution of Re(û) extrema (– · – · –) and Re(û)= 0 (——)
for tωr/2π ∈ [0, 3], α = 0.245, Re = 660 and β = −0.3 at y ∈ [1, 45], z = 1 and y = 1,
z ∈ [1, 45] in the case of mode IV-E (a) travelling through the corner (3.4), (b) obtained
as incoming by (3.3) and (c) as linear superposition of (a) with its counterpart obtained
by β = 0.3. The propagation direction in each case is schematically indicated by arrows.

slightly variable phase angle is identified at the opposing wall for y > 5, where the
mode is propagating towards the corner. These undulated wavefronts are due to a
partial reflection of the mode at the corner with zero phase shift. The reflection
superposes with the mode at the upper wall and results in the observed wavefront
pattern.

For comparison, the respective temporal evolution for the incoming mode IV-E
obtained by (3.3) is shown in figure 7(b). The previously mentioned symmetrical
behaviour of the incoming mode is clearly visible. The propagation direction of the
incoming mode changes from oblique at the lateral ends to strictly streamwise in
the vicinity of the corner, which can explain the fact that the mode vanishes in the
near-corner region. The slightly oblique wavefronts in the far field are similar to
those at the upper wall in figure 7(a), but at a spanwise distance of 7–30 from the
cornerline the wavefronts change into a step-like structure. The imposed symmetrical
boundary condition (β < 0 at both lateral ends) prevents the respective incoming
mode from travelling through the corner and leaving through the opposite lateral end.
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Therefore, closer to the cornerline, the mode travels in a chequerboard-like pattern in
the streamwise direction (figure 7b). This leads to the suggestion that the incoming
and outgoing modes can be reproduced by superposition of two modes travelling
through the corner with mirrored wavevectors (β1 =−β2) and a phase shift of π or
no phase shift (Schmidt 2014). The outgoing modes are assumed to not be physical,
as they require infinite disturbance production in the near-corner region, as otherwise
they would die out.

The superposition of two LST modes with α1=α2 and ω1=ω2 yields a mode with
the same growth rate ωi=ωi,1=ωi,2 as the superposed modes. Hence, the only modes
that could be a result of superposition are the even-symmetric incoming modes. It
appears that the superposition with a phase shift of π yields an eigenfield similar
to the odd-symmetric incoming mode. However, the behaviour of the maximum
growth rates of the odd-symmetric modes travelling through the corner and the
respective incoming modes deviates significantly (§ 4.1). Therefore, the aforementioned
superposition with a phase shift of π is not further considered.

Figure 7(c) displays the temporal evolution of the mode obtained by superposition
of mode IV-E shown in figure 7(a) with its mirrored counterpart and no phase
shift. Close to the cornerline, the resemblance between the superposed mode and the
incoming mode concerning the temporal evolution is obvious (figure 7b,c), whereby
the chequerboard-like structure is more distinct over the whole spanwise extent in
the case of the superposed mode than for the incoming mode. It seems as if, in
the far field, the incoming mode fulfils the oblique wave direction imprinted by the
boundary condition, whereas the superposed mode pattern propagates strictly into the
streamwise direction.

Superposition of one outgoing and one incoming even-symmetric mode with the
same β-value results in a similar chequerboard-like pattern to the aforementioned
superposition of two single modes travelling through the corner. However, there
exists no unique growth rate for the superposed disturbance, and the superposition
will change with t as the amplification rates for the incoming mode and the outgoing
mode differ.

5. Conclusion

The differences concerning stability behaviour and propagation direction between
the eigenmodes obtained by the so far used boundary condition (3.3) for oblique
modes and those yielded by the boundary condition (3.4) suggested by Schmidt (2014)
as well as a linear superposition of the latter – without phase shift and mirrored at
the corner bisector – are investigated. The computed modes fulfil the expectation
of wavefronts travelling obliquely through the corner and an amplification-rate
β-dependence that is symmetrical to β = 0. In contrast to incoming/outgoing modes,
the maximum growth rate for viscous modes travelling through the corner is only
β-dependent for those modes labelled even-symmetric, as the maximum growth
rate for modes marked odd-symmetric appears at β = 0 due to zero disturbance
amplification at the corner bisector for the odd-symmetric modes, whereas the
amplification rates for inviscid corner modes are independent of the spanwise
wavenumber β.

Although the superposition of two oblique modes travelling through the corner
leads to an eigenfield that resembles the respective even-symmetric incoming mode
obtained by the old boundary condition, the result is not exactly the same. The growth
rate of the superposed mode is equal to that of the underlying single mode, whereas
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the incoming mode has a slightly higher amplification rate due to an eigenvalue
shift caused by the boundary condition. The odd-symmetric incoming/outgoing modes
cannot be reproduced by superposing a single mode travelling through the corner with
its counterpart, as the respective eigenvalues differ from those of the odd-symmetric
modes obtained by the suggested boundary condition.

It is shown that the boundary condition suggested by Schmidt (2014) results in a
flow pattern that is expected: instead of even-/odd-symmetric modes that travel either
strictly towards or away from the corner, single modes propagating through the corner
can be observed.
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