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Abstract. The present article deals with turbulent inflow generation
for use in large eddy or direct numerical simulations of boundary layer
flows. The turbulent inflow is generated by synthetic volume forcing.
The spatial and temporal properties of the synthetic eddies are obtained
from resolvent mode analysis of turbulent mean data of a flat-plate flow
at a Reynolds number range Reθ = 300 − 1100 and inserted into the
same mean flow in subsequent direct numerical simulations. Both inte-
gral as well as local turbulent mean-statistics of the resulting unsteady
flow field show very good agreement compared to results of high fidelity
simulations of the same flow regime. The recovery length is comparable
to classical methods while suppressing unphysical noise at the inflow.
Additionally, the results hint at a Reynolds number independency of the
proposed approach.
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1 Introduction

The accurate numerical representation of turbulent wall-bounded flow still is an
area of high scientific and engineering interest because of its relevance in most
technical applications. In the case of high fidelity numerical simulations the mat-
ter arises of how a statistically fully developed turbulent flow is obtained as fast
and with as little computational effort as possible. Additionally it is beneficial if
the method is computationally robust, local, i.e. does not need parallelization,
and allows to be generalized.

Three main approaches have been established in the last quarter century,
namely the simulation of all transition stages from laminar to turbulent flow,
temporal or spatial reuse of precomputed solutions at an upstream station of the
flow (recycling and rescaling methods, RRM) and the introduction of artificial
turbulent flow structures along the boundaries (synthetic turbulence generators,
STG). Simulations of the full transition process start off from a laminar base
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and trigger the transition by exciting harmonic or pulsed perturbations which
undergo amplification and nonlinear interaction processes leading to turbulent
flow. Usually this approach uses the longest domain in order to obtain fully
established turbulent statistics at a desired Reynolds number position and has
been applied e.g. by Schlatter et al. [9] for instance. Methods known as strong
recycling reuse unsteady results of turbulent flow. These data can be obtained
simultaneously as e.g. in Spalart [12] or from preceding auxiliary computations.
In order to overcome so-called box-periodicity and to reduce the computational
effort, Wu et al. [18] developed a weak recycling method which rescales the
re-introduced velocity field according to boundary layer parameters. Thus it
is possible to use downstream results as inflow condition in non-homogeneous
directions. RRM allow for a start of simulations at locations close to the domain
of interest and is thus well suited for LES or DNS of engineering flows at mod-
erately large Reynolds numbers (see Lund et al. [5] or Pirozzoli [7] for example).
Wu [17] reported the amplification of small acoustic disturbances especially in
the freestream for RRM though.

The third approach (STG) comprises all methods which generate synthetic
turbulence. Béchara et al. [1] composed the turbulent velocities from random
Fourier modes which they fitted to a given turbulent energy spectrum. Temporal
correlation was ensured via filtering. Klein et al. [4] transferred the idea of dig-
ital filtering to generate a spatially correlated turbulent flow field from random
numbers whereas Jarrin et al. [2] modeled characteristic flow features such as
streaks and vortices rather than the underlying spectra. Schemes which ensure
spatial properties are often summarized as Synthetic Eddy Methods (SEM).
Recent work of Rout [8] used modal perturbations computed from resolvent
analysis (RA) which he superposed to match near-wall streaks and hairpin vor-
tices. Spille-Kohoff and Kaltenbach [13] use additional volume forcing terms of
the Navier-Stokes-equations to excite fluctuations in the flow in a further branch
of synthetic methods. Keating et al. [3] compared STG to RRM and concluded
that RRM leads to faster transition. Depending on the actual implementation
both STG and RRM are computationally demanding especially when filter or
scaling operations need data to be exchanged between subprocesses. Furthermore
the use of random data in many synthetic generators may lead to noise pollution
which impedes its use in computational aero-acoustic simulations (CAA). The
aforementioned methods are by no means exhaustive and variations, adaptations
and optimizations to particular flow configurations exist.

The reader is referred to the comprehensive review of Wu [17]. The com-
mon denominator of RRM and STG is the need for a realistic spectral content
of the turbulent flow field to rapidly reach a fully developed turbulent state.
Methods that start off from turbulent state generally match the inflow to known
first and second order statistics. The data is drawn from semi-empirical energy
and velocity distributions or actual flow data from preceding numerical simula-
tions and experiments. This inherently limits the general applicability of those
methods somewhat, especially if flows with pressure gradients are investigated for
which these data are generally unknown. In case of laminar-turbulent transition,
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the perturbations are obtained fromeigenvalue analysis of the initially steady base-
flow. This makes the approach widely applicable at the expense of a necessarily
larger computational domain. Rout’s work picks up the idea to solemnly use first
order statistics, i.e. mean flow data, to compute the input fluctuations from.

Objectives. We present a combination of volume forcing with Rout’s ansatz to
gain input perturbations for turbulent boundary layer (TBL) flow simulations.
The volume forces are obtained from superposition of two-dimensional forcing
modes computed over a range of frequencies and spanwise wavenumbers. These
modes are solutions to an optimization problem of the resolvent operator intro-
duced by Trefethen et al. [14]. The generated forces exploit optimal transient
growth to stir the mean-flow into a fully developed turbulent state. The resolvent
mode forcing method (RFM) presented in this work thus offers an alternative
approach for generating realistic turbulent inflow fields for DNS and LES com-
putations. Its largest benefit is the sole dependence on mean-flow parameters to
compute the unsteady input terms. This not only obliterates the need of higher-
order reference data but allows for simulations beginning at larger Reynolds
numbers where the matching of the statistics becomes more difficult due to the
multi-layer character of the TBL. Furthermore RFM is an algorithmically simple
method due to its formulation as local source term. The need for computation-
ally expansive trigonometric functions can be reduced to a small subset of grid
nodes. Finally the erroneous noise introduced by the excitation is minimized
thus making the method suitable for aero-acoustic simulations as well.

2 Numerical Method

Direct Numerical Simulations. The direct numerical simulations have been done
using the inhouse code ns3d [15]. It solves the fully unsteady three-dimensional
compressible Navier-Stokes equations in conservative formulation on structured
meshes. The governing equations are

∂ρ

∂t
= −∇ · ρu, (1a)

∂ρu
∂t

= −∇ · (ρu ⊗ u) − ∇p + ∇ · τ + ρf , (1b)

∂e

∂t
= −∇ · [(e + p)u] +

1
(κ − 1)Re Pr Ma2∞

∇ · (μ∇T ) + ∇ · (τu), (1c)

where ρ is the density, u = (u, v, w)T the vector of Cartesian velocity compo-
nents in x, y and z direction resp., p pressure, f volume forces, e total energy,
T temperature and t time. The dynamic viscosity μ is a fluid property and
τ = μ

Re

[(∇u + ∇uT
) − 2

3 (∇ · u)I
]

the viscous stress tensor (I being the iden-
tity matrix). All quantities are non-dimensionalized either by their respective
free-stream values (.)∗

∞ or the boundary-layer thickness at the inflow δ0. The
dimensionless time is t = t∗ δ0

u∗∞
. Hence the flow is fully described by provid-

ing Reynolds number Re = ρ∗
∞u∗

∞δ0/μ∗
∞, Prandtl number Pr = c∗

pμ
∗
∞/k∗

∞,
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and Mach number Ma = u∗
∞/a∗

∞. The set of governing Eq. (1) is closed by the
equation of state for an ideal gas p = ρT/(κMa2∞) and Sutherland’s law μ(T ) =
T 3/2(1 + Ts)/(T + Ts) with the Sutherland temperature Ts = 110.4K/T ∗

∞. Spa-
tial derivatives are approximated with alternating finite differences of eighth
order and time is integrated by a classical fourth-order four-stage Runge-Kutta
scheme. Unless mentioned otherwise, characteristic conditions for subsonic flow
are applied at the inflow and freestream domain boundaries, the lower boundary
consists of an adiabatic no-slip wall and at the outflow the time derivative of the
solution vector is extruded from the interior ∂q

∂t |n = ∂q
∂t |n−1. Towards the outflow

and freestream boundaries the grid is stretched and the solution is filtered to
minimize perturbations reflecting from the boundaries.

Resolvent Analysis. The spatial and temporal structure of the forcing functions
in (1)

f(x, y, z, t) = f̂(x, y)ei(γz−ωt) (2)

are taken to be harmonic in spanwise direction and time with wavenumbers γ
and frequencies ω. They are obtained from resolvent analysis of the mean state
of the flow in a streamwise wall-normal plane. The algorithm is outlined in detail
in Schmidt et al. [10]. The basic idea is to find a forcing to the linear equations

(−iωI − L) q̂ = Bf̂ (3)

such that the response q̂ = [ρ̂, û, T̂ ]T(x, y)ei(γz−ωt) is maximized. L is the opera-
tor resulting from a linearization of (1) and the sponge matrix B is used to restrict
the forcing to a disturbance strip of width Δx = 1 (cf. Fig. 1). A measure for the
optimality of the forcing is the norm of the resolvent operator R = (−iωI−L)−1B

‖R‖ ≡ sup
f̂

‖q̂‖
‖f̂‖ (4)

which quantifies the rate of amplification or gain in the process. Equations (3)
and (4) constitute an optimization problem for f̂ which can be solved by a
singular value decomposition (SVD) of the weighted resolvent operator

R̃ = W1/2
q RW

−(1/2)
f = Q̃Σ̃F̃H . (5)

The input weights Wq and output weights Wf ensure orthonormality of
the singular vectors of the response q̃ and forcing f̃ respectively. Σ =
diag(σ1, σ2, . . . , σN ) contains the amplitude gains. The SVD is done by first
discretizing Eq. (3) by fourth-order summation by parts finite differences from
Mattsson et al. [6] and solving the eigenvalue problem

W−1
f R̃HWqR̃f̂ = σ2f̂ (6)

for the largest eigenvalues with a standard Arnoldi method.
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3 Results

Simulations have been performed for the setup reported in Wenzel et al. [16]
which employed a digital-filtering SEM [4] to generate the inflow perturbations.
The initial condition consists of the statistically converged two dimensional tur-
bulent mean flow Q = [ρ̄, ū, T̄ ]T from [16], where (̄·) indicates the Reynolds
average. A two dimensional cut serves as baseflow to the resolvent mode com-
putations where grid points are clustered inside the boundary layer and at the
position of the forcing zone. Further simulations have been performed to assess
the RFM’s potential to start at positions farther downstream. Therefore, a new
set of resolvent modes has been computed within a domain shifted downstream
by ΔReθ = 370. The setup of the DNS has been kept except for a cut of the
domain length at xReθ=670. An overview of the simulation parameters is listed
in Table 1. A schematic overview of the computational domain for both the DNS
and RA is shown in Fig. 1.

Table 1. Physical and computational parameters of the numerical simulations

Re = 3000, Ma = 0.85, Pr = 0.71

Reθ,0 lx × ly × lz nx × ny × nz

RA, 300 300 100δ0 × 4.4δ0 × 0 555 × 95 × 1

SEM/RFM, 300 300 400δ0 × 96δ0 × 4πδ0 1560 × 240 × 256

RA, 670 670 100δ0 × 4.4δ0 × 0 555 × 95 × 1

RFM, 670 670 345δ0 × 96δ0 × 4πδ0 1200 × 240 × 256

Fig. 1. Computational domain: towards the outflow and freestream boundaries the
grid is stretched. The blue box outlines the domain used in the modal analysis. The
forcing ist introduced in the small box close to the inflow boundary.

Resolvent Mode Computation. The resolvent modes, i.e. the gains and eigen-
functions of the forcing have been computed for equidistantly spaced ranges of
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dimensionless frequency St ∈ [0.01, 1] with step size ΔSt = 0.033 and wavenum-
ber γ ∈ [0, 15] with Δγ = 0.5. For each St and γ the five leading modes have
been computed. The spectrum of the modes is shown in Fig. 2. The largest gain
for each St-γ combination can be seen in the low frequency, low wavenumber
portion of the spectrum. The modal structures are of the size of δ and may be
interpreted as large-scale eddies that stir the mean flow to generate turbulent
fluctuations. From this set of solutions 113 modes with σ ≥ 15 are used as input
for the DNS. The threshold value has been increased to σ ≥ 20 to reach a simi-
lar quantity of modes for the shifted DNS. The amplitudes of the eigenfunctions
f̂ = [û, v̂, ŵ]T are eventually scaled by the maximum of the amplitudes sup ‖f̂i‖.

Fig. 2. Gains distribution of dominant (σ1) and four sub-dominant resolvent modes
(σ2−5) versus Strouhal number and spanwise wave number. Framed Modes have σ ≥ 15
and are used for the DNS.

Direct Numerical Simulation. The main simulation has been run for 240 000 time
steps with dt = 0.0335. This corresponds to four flow-through times and ensures
that any transients left the computational domain. The flow field at every 10th of
120 000 time steps altogether has been sampled and the temporal and spanwise
mean- and root-mean-square values have been computed. This data then has
been used to compute local and integral measures of the flow.

The method’s proficiency is first evaluated by comparing the wall-friction
coefficient cf and integral parameters of the resulting TBL to the data from
Wenzel et al. [16]. In Fig. 3a the cf of the RFM simulation follows the SEM curve
but overshoots within an initial length of 50δ0. Afterwards the lines collapse and
follow the theoretical gradient. The shape factor H = δ∗/θ shown in Fig. 3b
also follows the trend of the SEM but does show a steeper gradient and recovers
the validated value of H ≈ 1.8 after 50δ0. From Fig. 3b it can be seen that the
boundary-layer thickness computed from the RFM is larger by a maximum value
of 3% for about half the domain length but follows the SEM trend. Similarly
the displacement thickness δ∗ and the momentum thickness θ align with their



116 B. Selent et al.

Re *

Re

Rex0,Re =670

x/ 0

B
o

u
n

d
ar

y 
la

ye
r 

th
ic

kn
es

s

H

0 25 50 75 100 125 150 175 200
100

101

102

103

104

105

1.7

1.8

1.9

2

2.1

2.2

2.3
(b)

x0,Re =670

x/ 0

c f

0 25 50 75 100 125 150 175 200
0.002

0.003

0.004

0.005

0.006

0.007

SEM
RFM, Re =670
RFM, Re =300

c
f = 0.455/ln2(0.06Rex /L)

(a)

Fig. 3. Comparison of turbulent boundary layer parameters. a Friction coefficient. b
Shape factor and boundary-layer thickness.

SEM counterparts. The displacement thickness even depicts the same bump at
the very origin which correlates to the maximum in H at x = 3.7.

The temporal and spanwise mean values of the downstream velocity com-
ponent U+

VD have been computed for Reθ = 670, 1000 and 1410 and scaled by
van-Driest ’s transformation. This allows for the additional comparison with an
incompressible reference from Schlatter et al. [9]. Results are plotted with inner
scaling in Fig. 4a. For Reθ = 670 the velocity defect u∞ − ū of the RFM solution
is too large in the wake and potential region but with increasing Reθ this excess
defect decreases and fits with both the SEM and the incompressible reference.
The viscous sublayer (y+ � 10), the buffer (10 < y+ � 50) and the overlap
region (50 < y+ � 300) show good agreement for all considered Reθ. The tur-
bulent intensities are plotted in Fig. 4b. The Morkovin-scaled rms-values of the
velocity components are normalized with the wall friction velocity uτ and show
good agreement with the references. The u+

M and w+
M values are underestimated

in the overlap and wake region (0.3 � y/δ � 0.8) for Reθ = 670 and Reθ = 1000.
For Reθ = 1410 the solutions match the references throughout the boundary
layer. The wall-normal fluctuations v+

M are already in better agreement at the
upstream station hinting that the wall-normal velocity is the least sensitive to
the inputs.

The RFM introduces forcing terms to the momentum equations only, thus
the thermodynamic quantities T, ρ and p are only affected indirectly through the
coupling of the energy equation and mass conservation. To assess the adequacy
of this approach the fluctuations of the temperature T ′+ =

√
T̄ ′2/(κMa2u2

τ ) and

pressure p+ =
√

p̄′2/(ρW u2
τ ) have also been computed and are shown in Figs. 5a

and b respectively. The temperature’s curvature is less pronounced in the regions
above the viscous sublayer at the early stages. With increasing Reynolds number
the gradients converge to the SEM solution. The pressure fluctuations’ slope, too,
is almost constant in the wake region at Reθ = 670. Unlike the SEM solution
the RFM does not exhibit the large overshoot within the viscous regions though.
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(a) (b)

Fig. 4. Comparison of local velocities of turbulent boundary layer. (a) van-Driest trans-
formed mean-velocity profile. (b) Morkovin scaled turbulent intensities.

Perturbations in the SEM are introduced as primitive variables at the inflow and
thus generate a noise source at the wall. The SEM’s pressure overshoot prevails
until Reθ = 1410 as does the constant slope of the RFM pressure fluctuations.
From Reθ = 1410 the RFM solution follows the reference’s curvature with the
maximum amplitude being ≈0.5% smaller.

Figures 3, 4 and 5 also include results for the second DNS. Here the
friction coefficient establishes after a slightly shorter length Δδ|cf ,Reθ=670/
Δδ|cf ,Reθ=300 = 70% compared to the initial setup. The shape factor takes longer
on the other hand with Δδ|H,Reθ=670/Δδ|H,Reθ=300 = 130%. The mean velocity
profiles at Reθ = 670 show an offset in the wake due to the falsely estimated friction
coefficient. Besides this offset the mean flow is upheld as expected. At Reθ = 1000
the mean velocity is en par with the previous simulations. The u+

M-values, too, have
almost fully recovered and match the curvature and amplitudes of Schlatter et al.’s
[9] solution. The transversal velocities v+

M and w+
M are too large in amplitude in the

overlap andwake region, though.The reason for that is not yet clear.AtReθ = 1410
the results collapse with the results of all compressible computations except for
the wake where a small excess prevails. The temperature and pressure fluctuations
at Reθ = 670 are too low in amplitude and are constant for parts of the overlap
and wake region. Temperature and turbulent intensities are not in equilibrium at
the forcing station yet because no measures have been taken to ensure a consistent
state, i.e. a constant turbulentPrandtl numberPrt = u′v′

v′h′
∂T̄/∂y
∂ū/∂y ≈ 1. Judging from

Fig. 5 the temperature and pressure fluctuations have nonetheless already reached
a realistic distribution at Reθ = 1000. Both temperature and pressure still show an
amplitude overshoot but follow the gradient of the references. At Reθ = 1410 the
curves show good agreement except for a an overestimated amplitude in the wake
of the temperature profile. Both temperature and pressure fluctuations vanish in
the freestream.



118 B. Selent et al.

(a) (b)

Fig. 5. Comparison of local thermodynamic parameters of turbulent boundary layer.
(a) Static temperature fluctuations. (b) Pressure fluctuations.

4 Conclusions

We have presented an alternative method to generate fully turbulent flow in
DNS or LES simulations of compressible boundary-layer flows with the help
of suitable perturbation functions obtained from resolvent analysis. The mode,
i.e. the perturbation computation relies on the mean values of the considered
flow configuration only. Direct numerical simulations that have been done so far
show promising results and demonstrate the general suitability of the approach.
The novel method is comparatively easy to implement in existing DNS solvers.
Simulations with the RFM yield both realistic turbulent velocity fields and ther-
modynamic parameters. The shape factor and the skin friction can be recovered
at induction lengths comparable to established methods such as SEM but is
still larger than more recently optimized schemes (e.g. Shur et al. [11]). The
formulation as a source to the momentum equations avoids erroneous pressure
disturbances at the inflow which makes the RFM a candidate to CAA simula-
tions, too. A first test has confirmed that the RFM is not sensitive to the chosen
inflow Reynolds number. It is not yet fully understood how the solution depends
on the set of resolvent modes used as perturbation functions. This certainly
remains to be further looked into.
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W.E., Kröner, D., Resch, M. (eds.) High Performance Computing in Science and
Engineering 2018. Springer, Cham (2018)

16. Wenzel, C., Selent, B., Kloker, M., Rist, U.: DNS of compressible turbulent bound-
ary layers and assessment of data/scaling-law quality. JFM 842, 428–468 (2018)

17. Wu, X.: Inflow turbulence generation methods. Ann. Rev. Fluid Mech. 49, 23–49
(2017)

18. Wu, X., Squires, K.D., Lund, T.S.: Large eddy simulation of a spatially-developing
boundary layer. In: Proceedings of the 1995 ACM/IEEE Conference on Supercom-
puting, Supercomputing 1995. ACM, New York (1995)


	Turbulent Inflow Generation by Resolvent Mode Forcing
	1 Introduction
	2 Numerical Method
	3 Results
	4 Conclusions
	References




