Direct numerical simulation of boundary layer
transition in streamwise corner-flow

Oliver Schmidt, Bprn Selent & Ulrich Rist

Institute of Aerodynamics and Gas Dynamics, University ottgart, Germany

Abstract The process of laminar-turbulent transition in streamweiaer-flow is
considered my means of direct numerical simulation (DNSk shown that tran-
sition triggered by harmonic forcing originates from theareorner region in the
shape of a turbulent wedge. The resulting mean flow defoomatkes the shape of
an outward bulge, and can be linked to experimental obsengatA spectral anal-
ysis of the transient flow data is undertaken to elaborateoonlinear interactions,
modal structures and spectral energy distribution. Addélly, the massive paral-
lel performance of the DNS code on the Cray XE6 supercomsigiscussed and
compared with the performance on previous vector architest

0.1 Introduction

The basic corner-flow setup consists of two semi-infinitgopedicular flat plates
with the freestream parallel to the intersection axis agchlesl in figure 0.1. It serves
as a generic model for a variety of technical flows. Becauds pfactical relevance
the corner-flow problem has been studied both, numericallyexperimentally for
more than 60 years starting with the early theoretical dersitions by Carrier [3].
The reader is referred to the work of Zamir [17] for a compredine review of ex-
perimental work that was mainly conducted during that gerigntil now, numerical
studies were almost exclusively restricted to eigenvalased linear stability stud-
ies of the two-dimensional self-similar corner-flow sabuts first obtained by Rubin
and Grossman [14] and [8] for incompressible and generajpcessible flows, re-
spectively. Overviews of the numerous numerical studiesbeafound, e.g. in the
work of Galionis and Hall [5]. There exists a remarkable dipancy between ex-
periment and theory that has not been resolved. In linebilisgastudies, a critical



Fig. 0.1 Sketch of the flow in
a streamwise cornetx,y, z)
denote the Cartesian coordi-
nates with thex-coordinate

in the streamwise direction,
(n,¢) the self-similar span-
wise coordinates an(k, q)

an auxiliary coordinate frame
with the ordinate along the
corner bisector. [16]

Reynolds number comparable to the one found for the closédyed flat-plate sce-
nario is found while rapid transition to turbulence at slistances after the leading
edge is consistently observed in experiment. In the worlaatihwe present the first
direct numerical simulation of the transition process irabzorner-flow. The study

is organized as follows: an introduction to the corner-floatglem is given irg0.1,
the numerical setup an the laminar self-similar base statdiacussed i§0.2, and
the results are summarizedjd.3. The parallel performance of the direct numerical
simulation code is addressed§d.4. Final conclusions are given §0.5.

0.2 Numerical setup and base state

Governing equations The flow of a compressible fluid is governed by the full
Navier-Stokes equations
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where p is the density,u = (u,v,w)" the vector of Cartesian velocity compo-
nents, p the pressureg the total energyl the temperature antthe time. The
dynamic viscosityu and the thermal conductivity are fluid properties and =

u (Du + DuT) — %u(D -u)l the viscous stress tensor. All flow quantities are non-
dimensionalized by their respective dimensional freesstr values denoted lfy);,
and the coordinates by the boundary layer displacemerkrtégsd; . The dimen-
sionless Reynolds number Repgus, o/ Le, Prandtl number P& c;;y;g/k;g, and
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Mach number Ma= u}, /&, hence fully describe the flow. The set of governing
equations 0.1 is closed by the ideal gas faw pT /(yMa2) and Sutherland’s law
P (T) = s T¥2(1+Ts) /(T + Ts) that empirically relates viscosity and tempera-
ture. The empirical constants are givengs (T,5; = 280K) = 1.735x 10-°kg/ms
andTs = 1104 K/T.. A technically relevant flow case with Ma 0.8 and dry air at
standard conditions is chosen for the study at hand. Thegponding Prandtl num-
ber, heat capacity ratio, and dimensional freestream piepare listed in table 0.1.

Pri] v palhPd T o [ik] R [ek]
0.714 1.4 1013.25 293.15 1005 287
Table 0.1 Dimensionless quantities and freestream properties.

Discretization Direct numerical simulation of transitional flows demands dc-
curate resolution of smallest flow structures, both sggtahd temporal. In this
work we use the designated DNS cdd&3D [2, 1] with 6th-order accurate biased
compact differences
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used for the convective terms. The subscriptsdnd '—’ denote up- and downwind
biasing and the grid point index in some directia respectively. First derivatives
of viscous terms are computed using a standard symmetripactfinite difference
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Similarily, second derivatives are obtained directly as
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A standard explicit 4th-order Runge-Kutta method is usedke temporal integra-
tion.

Base state and computational domainA fully three-dimensional simulation of
the transitional flow field is not feasible because of the demasymptotic behavior
of the secondary cross flow, and pressure field. We hence rely perturbation
formulation that allows us to calculate the perturbationvflitield solely upon a



4

fixed steady base state. In the following, perturbation tties are denoted by.)’
and the base state ljy)o. The implementation of the perturbation formulation is
described in detail in [1]. The steady self-similar bastestacalculated as a solution
to the parabolized Navier-Stokes equation as in [16]. Ttee Blw is depicted in
figure 0.2. The complex nature of the secondary cross-flowrbes apparent in
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Fig. 0.2 Self-similar base flow;d) isolines of the streamwise velocityy, z); (b) streamwise ve-
locity profiles: (——) far-field,u(y,z— =); (— — —) along the corner bisectax(y = z); (c) second
partial derivatives of streamwise velocity profiles—{) far-field, uyy (y,z— ); (— — —) along the
corner bisectoniss(y = 2); (d) isolines of the cross-flow velocity(y,z): (— — —) negative; {—)
positive; €) cross-flow velocity far-field profiles:-{—) wall normal directiony(y,z— o); (—- —)
tangential directionw(y,z— o); (— — —) along the corner bisector(y = z) = w(y = z).

figure 0.2d. Also note that the streamwise velocity compbhenomes inflectional
in the near-corner-region as indicated by the change ofditime second derivative
along the corner bisector coordina 0.2c. Inflectional profiles are known to be
inviscidly unstable.

Xo Rey X1 Re Xpo  Xp1 Y,z N Ny,Nz At
195.68 766.56 554.71 1290.31 197.12 208.61 54 1250 400 0.005
267.49 396.74 22.82 225 100

Table 0.2 Computational domain for the direct numerical simulation; sups¢@) and (1) denote
start and endNyy,, the number of grid points in the respective directiggy andxp 1 delimit the
streamwise perturbation strip. The heating strip extent correlsptm 30 grid cells, starting at the
15th grid point. Blue numbers in the bottom line refer to the DBubdomain depicted in figure
0.3h.
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The extent and spatial resolution of the computational dorwa the DNS and
a smaller subdomain used for post-processing are summariztable 0.2. The
streamwise domain extent corresponds to a Reynolds numgiene of 15< 10* <
Re < 42.5 x 10* based on the distance from the leading edge. Simulatioosvat
i.e. subcritical, Reynolds numbers are desirable but muorencomputationally
demanding due to the fast boundary layer growth in that regitd the associated
necessity for a larger computational domain.

Boundary conditions Adiabatic no-slip wall boundary conditions are enforced on
both walls. The wall pressure is extrapolated from the iatdield and the density is
calculated from the ideal gas law. Homogeneous Neumanritgmmalare applied on
the inlet and on the far-field boundaries. On the outlet, @suoic outflow condition
[1] is applied. A sponge region is used at the inlet and oudlgions of the compu-
tational domain to cancel the fluctuations before reachiedbundaries in order to
prevent reflection back into the solution domain. The spaoge is restricted to the
the outmost 2.5% of the inlet and outlet regions and folloiitaorder polynomial
distribution (&) = £ 0max(1 — 6&°% + 154 — 1083) for & € [0,1], where€ is the
locally scaled distance from the inlet and outlet boundeegpectively, an@imax
is the sponge amplitude or gain. A wall heating strip is usefbtce a harmonic
perturbation along the walls. For this purpose, the adiabell boundary condi-
tion is locally replaced within some streamwise exted < X < Xp1. A dipole
distribution of the form

T = a8—1(25)3[3(25)2 —7(28) +4] cogwt) on& € [0,0.5],

16

T = —a%(Z— 28)3[3(2—2&)%—7(2—2&) + 4] cogwt) oné € [0.5,1], (0.7)
is used to generate a harmonic perturbation wave of anguguéncyw and an
amplitude determined by the amplitude coefficient a. Hemraghe auxiliary co-
ordinateé € [0,1] is then scaled to the desired heating strip extgat< x < Xp 1.
A mono-frequential perturbation wittv = 0.09 and a= 0.75 was found to trigger
rapid transition due to non-linear interactions and waslusebtain the following
results.

0.3 Results

All results presented are obtained after all initial trenss have died out, i.e. taken
from a period on the limit cycle. The following three parguta are dedicated to the
instantaneous coherent flow structures of the transitifioxal structures, the mean
flow deformation, and the spectral content of the transient fleld.

Coherent structures of transitional flow Instantaneous isosurfaces of thg
criterion are depicted in figure 0.3. It can be seen that tertme develops in form of
a turbulent wedge originating from the near-corner regiooloser look at the flow
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structures in the initial phase of the transition as dediatefigure 0.3b reveals the
emergence of hairpin vortices, typically observed durtlmgtransition process, see
e.g. [12]. Note that while the perturbation flow field appeansmmetric with respect
to the corner bisector in the initial stage of the transifiwacess as seen in figure
0.3b, the symmetry is broken further downstream as can becéeldrom a closer
look at individual flow structures in figure 0.3a. The brealspinmetry is likely to
stem from small numerical errors and/or the alternatingau downwind biased
compact finite difference scheme used. However, the bresgommetry is an inher-
ent feature of turbulence, and a perturbation-free enwiemt is not experimentally
realizable, either.

Fig. 0.3 Snapshot visualization of the transition process; isosurfacebeol#criterion [6] at
A2 = —0.01 colored by the local streamwise velocity of the base state andngaurs of the wall
pressure perturbation @ = 0.002 (— ) andp’ = —0.002 (— — —): (a) entire computational
domain and (b) enlarged view of the DMD subdomain as listed indhehd bottom row of table
0.2, respectively.

Mean flow deformation The time-averaged steamwise velocdity= N*lziN:lui
and mean flow deformation — ug field at the beginning, in the middle, and at
the end of the post-processing subdomain are depicted irefy4d. By comparing
with the laminar base state depicted in figure 0.2a it is oleskthat the flow field
at x = 267.49 in figure 0.4a still closely resembles the self-similaluson. The
velocity isolines in the domain center in figure 0.4b exhébitistortion in form of a
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Fig. 0.4 Contours of the time-averaged streamwise velocity{) and mean flow deformation
(filled: (yellow/bright) positive, (blue/dark) negative) transversal planes at (&)= 267.49, (b)
x= 33212, and (c)x = 396.74, corresponding to the beginning, the middle, and the enteof t
DMD subdomain, respectively.

convex bulge as seen in experimental studies [17]. A stroegmflow deformation

is observed in figure 0.4c for= 396.74 where an additional outward bulge can be
seen at},{ =~ 10 on each of the walls. The latter correspond to the hairpitices
flanking the bisectorial centered vortex structure seergimd 0.3.
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Fig. 0.5 Dynamic mode decomposition from 140 snapshots over one fundanpenitad; (a) em-
pirical Ritz values ¢); (b) magnitudes of the Koopman modes on a linear (black barsjdogh-
rithmic scale {—). The dashed line{ — —) shows a slope dfi(cw) /3.

Spectral analysis The global stability properties of the transient flow field aest
analysed by means of a spectral deconposition techniqejécomposition into
global modes of a single frequency. Here, we use the Kooprparator-based dy-
namic mode decomposition (DMD) introduced by Schmid [15] analysed in de-
tail by Rowley et. al. [13]. The reader is referred to thedatiterature for details
on the method. The empirical Ritz values are depicted in éduba in the com-
plex plane. It can be seen that all Ritz values are locatecherthe unit circle,
indicating zero temporal growth as expected for a convegtivoblem on its limit
cycle. Also, the values are evenly distributed, meaningttiaflow field is clearly
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decomposed into mono-frequencial modes of integer makipl the forcing fre-
quency. The modal amplitudes are shown in figure 0.5b as aifumnaf the modal
frequency on a linear and a logarithmic scale. The first Kompmode is found
to be the most energetic. This result is not surprising aditeemode embodies
the steady component witla = 0 which is similar but not necessarily equal to the
mean flow deformation, cf. Chen et. al. [4]. The second mostgatic mode is the
direct response of the base state to the forcing frequerwy=a.09. For higher fre-
quencies, the modal energy distribution is found in goocegrent with the-5/3
power-law of the inertial subrange of the energy cascade [7]

z 20

Fig. 0.6 Dynamic modes from the visualized by isosurfaces of the streamwiseripation ve-
locity: (a) fundamental frequendyl(w) = 0.09, (b) first higher harmoni€l(w) = 0.18, and (c),
second higher harmonig(w) = 0.27. Isosurfaces are drawn-80.2|u/ | yax.

The modal structures corresponding to the fundamentaliéecy and the first
two higher harmonics are vizualised in figure 0.6. The cafiteftew structures ap-
pear elongated as commonly observed in non-linearly dpireddlows. It can also
be seen that energy is distributed towards higher wave nigmib@ccordance with
the energy cascade. This is clearly indicated by the inarghsfine flow patterns
when comparing the modes in the given order of increasirgigacy.
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0.4 Performance

Originally theNS3D program was designed and optimized for the vector computing
architecture of the NEC-SX supercomputers at HLRS Stuttgacombination of
shared and distributed memory parallelization featuresipplied to account for the
typically small ratio of CPUs per node to overall number ofles. A sketch of the
layout is shown in figure 0.7. The computational domain isodgmosed in blocks of
equal number of grid points by splitting the streamwise aatl-nwormal direction.
These blocks communicate via MPI routines [9] to exchandgght®uring data.
Additionally the spanwise direction is parallelized by mgaf openMP directives
[10]. Details of the algorithm can be found in [1].

lomp paramﬁ\

do k=0,kff

mpi_send()
mpi_recv()

Fig. 0.7 Domain decompo-
sition in x- andy-direction
and parallelization features in
NS3D program

In spanwise direction the classical Thomas algorithm idiegindependently on
each process in order to efficiently solve the linear systbegoations arising from
the compact finite difference scheme, i.e. equations 064 006. In streamwise and
wall-normal direction however a pipelined version of theofas-algorithm [11] is
implemented which fully conserves the order of the compauese across domain,
i.e. process boundaries along the respective directiofortimately this comes at
the expense of idle CPU time for subsequent processes sisdlied in figure 0.8.
As long as the number of linear systems is sufficiently latgan the number of
processes, which has been the case for the NEC-SX vectouterapthe benefit of
the homogeneous order throughout the whole domain outtieesomputationally
costly idling. On scalar architecture computers on therdtlaed the ratio of CPUs
per node to overall number of nodes usually is less advaotegir a pipelined
computation of the linear systems of equations. One hasmtpensate the reduced
specific CPU times encountered on scaler computers by arlatgeber of pro-
cesses. For small scale problems the CPU time per grid paihtime step (specific
CPU time) on vector parallel computers (NEC-SX9) and mabgiparallel comput-
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Fig. 0.8 Pipelined Thomas algorithm: blue indicates compute time, leatd¢hdicates idle time.
Reproduced from [1]

ers (XEB) are comparable but the NEC SX computers exhibitge lperformance
boost due to the vectorization for large numbers of grid {soas they are usu-
ally encountered in direct numerical simulations (cf. ¢éadI3). Taking into account
the expansion ire-direction it was opted to use 200 nodes to distribute a tital
2.108 grid points on the Cray XE6 supercomputer to simulate thelpro at hand.
Each node was set to use 32 threads for openMP parallelizs&d. tAdditionally

Table 0.3 Comparison of CPU time per grid point and time step.

Grid Time steps Specific CPU timg§]
NEC-SX9 Cray XE6

100 x 100 10000 2.257 3.051

250 x 1000 10000 0.335 3.791

20 nodes have been employed to perform online postprocessitines. Two runs
of 22 hrs each where necessary to reach the limit cycle athathie sampling for
all subsequent analysis was undertaken. The specific CRuftinthese computa-
tions amounted to excruciatingly high & per grid point and timestep stemming
foremost from the use of a pipelined linear systems solvigurge 0.9 underlines

(@) (b)
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\\:\ 5l //
0x R ] v s MPI
Te—e— v openMH
0-0~=~450p 2000 3000 4000 T 10 20 30
# processors # processes, # threads

Fig. 0.9 Parallel scaling of compact FD (dashed line) and subdomain confagsolid line)
scheme. (a) Efficency (weak scaling); (b) Speedup (strong s¢dbng@penMP and MPI parall-
lelization. Ideal efficiency and speedup are indicated bg bihes
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the massive performance drop of the MPI parallelizationambination with the
coupled linear systems on the XEG6. The efficiency E is obthfrmm weak scaling
tests on a range of 1-256 MPI processes using 16 CPUs eaaty Wgirocesses
already leads to only 50% efficiency which keeps on droppimgrdto 7% for the
largest simulation. Strong scaling tests underline thegtitmal parallelization of
the pipelined Thomas algorithm on a scalar computer. Thedsge defined as ratio
of sequential compute time to parallel compute time-SU;/Tp, depicts strong
sublinear behaviour starting from 8 processes and onwéidsthe sake of com-
pleteness the speedup for purely openMP parallelized Kttroos is also shown in
figure 0.9. Almost ideal speedup can be reached for up to 8dlsrehich correlates
to the size of a NUMA node within a compute node of the Cray XBfputer.
For 9-32 threads still sufficient albeit slightly sublinesmeedup can be obtained. In
order to significantly improve the parallelization for freusimulations a so-called
sub-domain compact scheme has been implemented intdSBi@ program. This
scheme decouples the discretizatiom-iandy-direction such that the linear system
of equations can be solved independently on each sub-doRwithat purpose it is
necessary to partly replace the left hand side of the conspaatil at domain bound-
ary points by explicit values. In order to sustain the chizrdstic wave resolution of
the compact scheme explicit finite differences Bf@der are used to compute these
values. Performing the aforementioned scaling analysith#® new solver routine
demonstrates the near-ideal efficiency reached by decapfiie domains as well
as a superlinear speedup due to favourable cache effedtsefoegarded problem
size.

0.5 Conclusions

A direct numerical simulation of the transition in strearsg/corner-flow at a techni-
cally relevant Mach number dfla = 0.8 was conducted. The transition takes place
in form of a turbulent wedge situated in the near-corneraedr his result is remark-
able in the sense that it is found in accordance with measueebut in opposition
to linear theory which does not predict a dominant instgbitiechanism due to the
presence of the corner as compared to the single flat-plateaso. The turbulent
flow structures were found in agreement with other wall-lo®dhshear flows, and
the spectral content of the transitional flow extracted Wiaal mode decomposition
of a snapshot sequence was found to match the theoreticallijcped power-law.
From the computational side, the DNS code was found to parfoferior in the
massive parallel environment of the CRAY XE6 as comparedhéovector archi-
tectures it was originally designed for. However, a reged#veloped recast sub-
domain compact scheme allowed for a decoupled processitige abutines while
maintaining the overall accuracy of its fully implicit prasor. The decoupling led
to a significant gain in computational performance for distied memory paral-
lelization. Scaling tests indicated almost ideal efficieaod superlinear speedup
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for the new implementation. Scaling tests for the shared omgrparallelization
showed almost ideal speedup for up to 8 threads as well.
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