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Abstract The process of laminar-turbulent transition in streamwisecorner-flow is
considered my means of direct numerical simulation (DNS). It is shown that tran-
sition triggered by harmonic forcing originates from the near-corner region in the
shape of a turbulent wedge. The resulting mean flow deformation takes the shape of
an outward bulge, and can be linked to experimental observations. A spectral anal-
ysis of the transient flow data is undertaken to elaborate on non-linear interactions,
modal structures and spectral energy distribution. Additionally, the massive paral-
lel performance of the DNS code on the Cray XE6 supercomputeris discussed and
compared with the performance on previous vector architectures.

0.1 Introduction

The basic corner-flow setup consists of two semi-infinite perpendicular flat plates
with the freestream parallel to the intersection axis as sketched in figure 0.1. It serves
as a generic model for a variety of technical flows. Because ofits practical relevance
the corner-flow problem has been studied both, numerically and experimentally for
more than 60 years starting with the early theoretical considerations by Carrier [3].
The reader is referred to the work of Zamir [17] for a comprehensive review of ex-
perimental work that was mainly conducted during that period. Until now, numerical
studies were almost exclusively restricted to eigenvalue-based linear stability stud-
ies of the two-dimensional self-similar corner-flow solutions first obtained by Rubin
and Grossman [14] and [8] for incompressible and general compressible flows, re-
spectively. Overviews of the numerous numerical studies can be found, e.g. in the
work of Galionis and Hall [5]. There exists a remarkable discrepancy between ex-
periment and theory that has not been resolved. In linear stability studies, a critical
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Fig. 0.1 Sketch of the flow in
a streamwise corner:(x,y,z)
denote the Cartesian coordi-
nates with thex-coordinate
in the streamwise direction,
(η ,ζ ) the self-similar span-
wise coordinates and(s,q)
an auxiliary coordinate frame
with the ordinate along the
corner bisector. [16]

Reynolds number comparable to the one found for the closely related flat-plate sce-
nario is found while rapid transition to turbulence at shortdistances after the leading
edge is consistently observed in experiment. In the work at hand, we present the first
direct numerical simulation of the transition process in axial corner-flow. The study
is organized as follows: an introduction to the corner-flow problem is given in§0.1,
the numerical setup an the laminar self-similar base state are discussed in§0.2, and
the results are summarized in§0.3. The parallel performance of the direct numerical
simulation code is addressed in§0.4. Final conclusions are given in§0.5.

0.2 Numerical setup and base state

Governing equations The flow of a compressible fluid is governed by the full
Navier-Stokes equations

∂ρ
∂ t

= −∇ ·ρu, (0.1)

∂ρu
∂ t

= −
1
2

∇ · (u⊗ρu+ρu⊗u)−∇p+
1

Re
∇ · τ, (0.2)

∂ρe
∂ t

= −∇ ·ρeu+
1

(γ −1)RePrMa2∞
∇ · k∇T −∇ · pu+

1
Re

∇ · τu, (0.3)

where ρ is the density,u = (u,v,w)T the vector of Cartesian velocity compo-
nents,p the pressure,e the total energy,T the temperature andt the time. The
dynamic viscosityµ and the thermal conductivityk are fluid properties andτ =
µ

(

∇u+∇uT
)

− 2
3µ(∇ · u)I the viscous stress tensor. All flow quantities are non-

dimensionalized by their respective dimensional free-stream values denoted by(.)∗∞
and the coordinates by the boundary layer displacement thicknessδ ∗

1 . The dimen-
sionless Reynolds number Re= ρ∗

∞u∗∞δ ∗
1/µ∗

∞, Prandtl number Pr= c∗pµ∗
∞/k∗∞, and
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Mach number Ma= u∗∞/a∗∞ hence fully describe the flow. The set of governing
equations 0.1 is closed by the ideal gas lawp = ρT/(γMa2

∞) and Sutherland’s law
µ∗(T ) = µ∗

re f T 3/2(1+Ts)/(T +Ts) that empirically relates viscosity and tempera-

ture. The empirical constants are given asµ∗
re f (T

∗
re f = 280K) = 1.735×10−5kg/ms

andTs = 110.4K/T ∗
∞ . A technically relevant flow case with Ma= 0.8 and dry air at

standard conditions is chosen for the study at hand. The corresponding Prandtl num-
ber, heat capacity ratio, and dimensional freestream properties are listed in table 0.1.

Pr [−] γ [−] p∗∞ [hPa] T ∗
∞ [K] c∗p

[

J
kgK

]

R∗
[

J
kgK

]

0.714 1.4 1013.25 293.15 1005 287

Table 0.1 Dimensionless quantities and freestream properties.

Discretization Direct numerical simulation of transitional flows demands for ac-
curate resolution of smallest flow structures, both spatially and temporal. In this
work we use the designated DNS codeNS3D [2, 1] with 6th-order accurate biased
compact differences

1
5

∂q
∂ξ

∣

∣

∣

∣

j−1,+

+
3
5

∂q
∂ξ

∣

∣

∣

∣

j,+
+

1
5

∂q
∂ξ

∣

∣

∣

∣

j+1,+

=
−q j−2−19q j−1 +11q j +9q j+1

30∆ξ
,

1
5

∂q
∂ξ

∣

∣

∣

∣

j−1,−

+
3
5

∂q
∂ξ

∣

∣

∣

∣

j,−
+

1
5

∂q
∂ξ

∣

∣

∣

∣

j+1,−

=
−9q j−1−11q j +19q j+1 +q j+2

30∆ξ
, (0.4)

used for the convective terms. The subscripts ’+’ and ’−’ denote up- and downwind
biasing andj the grid point index in some directionξ , respectively. First derivatives
of viscous terms are computed using a standard symmetric compact finite difference
stencil
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Similarily, second derivatives are obtained directly as
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A standard explicit 4th-order Runge-Kutta method is used for the temporal integra-
tion.

Base state and computational domainA fully three-dimensional simulation of
the transitional flow field is not feasible because of the complex asymptotic behavior
of the secondary cross flow, and pressure field. We hence rely on a perturbation
formulation that allows us to calculate the perturbation flow field solely upon a
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fixed steady base state. In the following, perturbation quantities are denoted by(.)′

and the base state by(.)0. The implementation of the perturbation formulation is
described in detail in [1]. The steady self-similar base state is calculated as a solution
to the parabolized Navier-Stokes equation as in [16]. The base flow is depicted in
figure 0.2. The complex nature of the secondary cross-flow becomes apparent in
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Fig. 0.2 Self-similar base flow; (a) isolines of the streamwise velocityu(y,z); (b) streamwise ve-
locity profiles: ( ) far-field,u(y,z → ∞); (−−−) along the corner bisector,u(y = z); (c) second
partial derivatives of streamwise velocity profiles: ( ) far-field,uyy(y,z→∞); (−−−) along the
corner bisector,uss(y = z); (d) isolines of the cross-flow velocityv(y,z): (−−−) negative; ( )
positive; (e) cross-flow velocity far-field profiles: ( ) wall normal direction,v(y,z→ ∞); (−·−)
tangential direction,w(y,z → ∞); (−−−) along the corner bisector,v(y = z) = w(y = z).

figure 0.2d. Also note that the streamwise velocity component becomes inflectional
in the near-corner-region as indicated by the change of signof the second derivative
along the corner bisector coordinates in 0.2c. Inflectional profiles are known to be
inviscidly unstable.

x0 Re0 x1 Re1 xp,0 xp,1 y1,z1 Nx Ny,Nz ∆ t

195.68 766.56 554.71 1290.31 197.12 208.61 54 1250 400 0.005
267.49 396.74 22.82 225 100

Table 0.2 Computational domain for the direct numerical simulation; subscript (0) and (1) denote
start and end,Nx,y,z the number of grid points in the respective direction,xp,0 andxp,1 delimit the
streamwise perturbation strip. The heating strip extent corresponds to 30 grid cells, starting at the
15th grid point. Blue numbers in the bottom line refer to the DMD subdomain depicted in figure
0.3b.
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The extent and spatial resolution of the computational domain for the DNS and
a smaller subdomain used for post-processing are summarized in table 0.2. The
streamwise domain extent corresponds to a Reynolds number regime of 15×104 ≤
Rex ≤ 42.5×104 based on the distance from the leading edge. Simulations at lower,
i.e. subcritical, Reynolds numbers are desirable but much more computationally
demanding due to the fast boundary layer growth in that region and the associated
necessity for a larger computational domain.

Boundary conditions Adiabatic no-slip wall boundary conditions are enforced on
both walls. The wall pressure is extrapolated from the interior field and the density is
calculated from the ideal gas law. Homogeneous Neumann conditions are applied on
the inlet and on the far-field boundaries. On the outlet, a subsonic outflow condition
[1] is applied. A sponge region is used at the inlet and outletregions of the compu-
tational domain to cancel the fluctuations before reaching the boundaries in order to
prevent reflection back into the solution domain. The spongezone is restricted to the
the outmost 2.5% of the inlet and outlet regions and follows afifth-order polynomial
distributionσ(ξ ) = ±σmax(1−6ξ 5 + 15ξ 4−10ξ 3) for ξ ∈ [0,1], whereξ is the
locally scaled distance from the inlet and outlet boundary,respectively, andσmax

is the sponge amplitude or gain. A wall heating strip is used to force a harmonic
perturbation along the walls. For this purpose, the adiabatic wall boundary condi-
tion is locally replaced within some streamwise extendxp,0 ≤ x ≤ xp,1. A dipole
distribution of the form

T ′ = a
81
16

(2ξ )3[3(2ξ )2−7(2ξ )+4
]

cos(ωt) onξ ∈ [0,0.5],

T ′ = −a
81
16

(2−2ξ )3[3(2−2ξ )2−7(2−2ξ )+4
]

cos(ωt) onξ ∈ [0.5,1], (0.7)

is used to generate a harmonic perturbation wave of angular frequencyω and an
amplitude determined by the amplitude coefficient a. Here again, the auxiliary co-
ordinateξ ∈ [0,1] is then scaled to the desired heating strip extentxp,0 ≤ x ≤ xp,1.
A mono-frequential perturbation withω = 0.09 and a= 0.75 was found to trigger
rapid transition due to non-linear interactions and was used to obtain the following
results.

0.3 Results

All results presented are obtained after all initial transients have died out, i.e. taken
from a period on the limit cycle. The following three paragraphs are dedicated to the
instantaneous coherent flow structures of the transitionalflow structures, the mean
flow deformation, and the spectral content of the transient flow field.

Coherent structures of transitional flow Instantaneous isosurfaces of theλ2-
criterion are depicted in figure 0.3. It can be seen that turbulence develops in form of
a turbulent wedge originating from the near-corner region.A closer look at the flow
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structures in the initial phase of the transition as depicted in figure 0.3b reveals the
emergence of hairpin vortices, typically observed during the transition process, see
e.g. [12]. Note that while the perturbation flow field appearssymmetric with respect
to the corner bisector in the initial stage of the transitionprocess as seen in figure
0.3b, the symmetry is broken further downstream as can be deduced from a closer
look at individual flow structures in figure 0.3a. The break ofsymmetry is likely to
stem from small numerical errors and/or the alternating up-and downwind biased
compact finite difference scheme used. However, the break ofsymmetry is an inher-
ent feature of turbulence, and a perturbation-free environment is not experimentally
realizable, either.

Fig. 0.3 Snapshot visualization of the transition process; isosurfaces of the λ2-criterion [6] at
λ2 = −0.01 colored by the local streamwise velocity of the base state and isocontours of the wall
pressure perturbation atρ ′ = 0.002 ( ) and ρ ′ = −0.002 (−−−): (a) entire computational
domain and (b) enlarged view of the DMD subdomain as listed in the top and bottom row of table
0.2, respectively.

Mean flow deformation The time-averaged steamwise velocityu = N−1Σ N
i=1ui

and mean flow deformationu − u0 field at the beginning, in the middle, and at
the end of the post-processing subdomain are depicted in figure 0.4. By comparing
with the laminar base state depicted in figure 0.2a it is observed that the flow field
at x = 267.49 in figure 0.4a still closely resembles the self-similar solution. The
velocity isolines in the domain center in figure 0.4b exhibita distortion in form of a
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Fig. 0.4 Contours of the time-averaged streamwise velocity () and mean flow deformation
(filled: (yellow/bright) positive, (blue/dark) negative) in transversal planes at (a)x = 267.49, (b)
x = 332.12, and (c)x = 396.74, corresponding to the beginning, the middle, and the end of the
DMD subdomain, respectively.

convex bulge as seen in experimental studies [17]. A strong mean flow deformation
is observed in figure 0.4c forx = 396.74 where an additional outward bulge can be
seen atη ,ζ ≈ 10 on each of the walls. The latter correspond to the hairpin vortices
flanking the bisectorial centered vortex structure seen in figure 0.3.
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Fig. 0.5 Dynamic mode decomposition from 140 snapshots over one fundamentalperiod; (a) em-
pirical Ritz values (◦); (b) magnitudes of the Koopman modes on a linear (black bars) anda loga-
rithmic scale ( ). The dashed line (−−−) shows a slope ofℑ(ω)−5/3.

Spectral analysis The global stability properties of the transient flow field are best
analysed by means of a spectral deconposition technique, i.e. decomposition into
global modes of a single frequency. Here, we use the Koopman operator-based dy-
namic mode decomposition (DMD) introduced by Schmid [15] and analysed in de-
tail by Rowley et. al. [13]. The reader is referred to the latter literature for details
on the method. The empirical Ritz values are depicted in figure 0.5a in the com-
plex plane. It can be seen that all Ritz values are located on the the unit circle,
indicating zero temporal growth as expected for a convective problem on its limit
cycle. Also, the values are evenly distributed, meaning that the flow field is clearly
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decomposed into mono-frequencial modes of integer multiples of the forcing fre-
quency. The modal amplitudes are shown in figure 0.5b as a function of the modal
frequency on a linear and a logarithmic scale. The first Koopman mode is found
to be the most energetic. This result is not surprising as thefirst mode embodies
the steady component withω = 0 which is similar but not necessarily equal to the
mean flow deformation, cf. Chen et. al. [4]. The second most energetic mode is the
direct response of the base state to the forcing frequency atω = 0.09. For higher fre-
quencies, the modal energy distribution is found in good agreement with the−5/3
power-law of the inertial subrange of the energy cascade [7].
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Fig. 0.6 Dynamic modes from the visualized by isosurfaces of the streamwise perturbation ve-
locity: (a) fundamental frequencyℑ(ω) = 0.09, (b) first higher harmonicℑ(ω) = 0.18, and (c),
second higher harmonicℑ(ω) = 0.27. Isosurfaces are drawn at±0.2|u′|max.

The modal structures corresponding to the fundamental frequency and the first
two higher harmonics are vizualised in figure 0.6. The coherent flow structures ap-
pear elongated as commonly observed in non-linearly developing flows. It can also
be seen that energy is distributed towards higher wave numbers in accordance with
the energy cascade. This is clearly indicated by the increasingly fine flow patterns
when comparing the modes in the given order of increasing frequency.
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0.4 Performance

Originally theNS3D program was designed and optimized for the vector computing
architecture of the NEC-SX supercomputers at HLRS Stuttgart. A combination of
shared and distributed memory parallelization features are applied to account for the
typically small ratio of CPUs per node to overall number of nodes. A sketch of the
layout is shown in figure 0.7. The computational domain is decomposed in blocks of
equal number of grid points by splitting the streamwise and wall-normal direction.
These blocks communicate via MPI routines [9] to exchange neighbouring data.
Additionally the spanwise direction is parallelized by means of openMP directives
[10]. Details of the algorithm can be found in [1].

Fig. 0.7 Domain decompo-
sition in x- andy-direction
and parallelization features in
NS3D program

z

x
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!omp parallel do

do k=0,kff
...

enddo

mpi_send()
mpi_recv()

mpi_send()
mpi_recv()

MPI-P
roc: 1

MPI-P
roc: 4

MPI-P
roc: 5

MPI-P
roc: 2

MPI-P
roc: 6

MPI-P
roc: 3

In spanwise direction the classical Thomas algorithm is applied independently on
each process in order to efficiently solve the linear system of equations arising from
the compact finite difference scheme, i.e. equations 0.4, 0.5, 0.6. In streamwise and
wall-normal direction however a pipelined version of the Thomas-algorithm [11] is
implemented which fully conserves the order of the compact scheme across domain,
i.e. process boundaries along the respective direction. Unfortunately this comes at
the expense of idle CPU time for subsequent processes as illustrated in figure 0.8.
As long as the number of linear systems is sufficiently largerthan the number of
processes, which has been the case for the NEC-SX vector computers, the benefit of
the homogeneous order throughout the whole domain outdoes the computationally
costly idling. On scalar architecture computers on the other hand the ratio of CPUs
per node to overall number of nodes usually is less advantageous for a pipelined
computation of the linear systems of equations. One has to compensate the reduced
specific CPU times encountered on scaler computers by a larger number of pro-
cesses. For small scale problems the CPU time per grid point and time step (specific
CPU time) on vector parallel computers (NEC-SX9) and massively parallel comput-
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Fig. 0.8 Pipelined Thomas algorithm: blue indicates compute time, hatched indicates idle time.
Reproduced from [1]

ers (XE6) are comparable but the NEC SX computers exhibit a large performance
boost due to the vectorization for large numbers of grid points as they are usu-
ally encountered in direct numerical simulations (cf. table 0.3). Taking into account
the expansion inz-direction it was opted to use 200 nodes to distribute a totalof
2·108 grid points on the Cray XE6 supercomputer to simulate the problem at hand.
Each node was set to use 32 threads for openMP parallelized tasks. Additionally

Table 0.3 Comparison of CPU time per grid point and time step.

Grid Time steps Specific CPU time [µs]
NEC-SX9 Cray XE6

100 x 100 10000 2.257 3.051
250 x 1000 10000 0.335 3.791

20 nodes have been employed to perform online postprocessing routines. Two runs
of 22 hrs each where necessary to reach the limit cycle at which the sampling for
all subsequent analysis was undertaken. The specific CPU time for these computa-
tions amounted to excruciatingly high 56µs per grid point and timestep stemming
foremost from the use of a pipelined linear systems solver. Figure 0.9 underlines

# processors
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(b)

Fig. 0.9 Parallel scaling of compact FD (dashed line) and subdomain compactFD (solid line)
scheme. (a) Efficency (weak scaling); (b) Speedup (strong scaling) for openMP and MPI parall-
lelization. Ideal efficiency and speedup are indicated by blue lines
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the massive performance drop of the MPI parallelization in combination with the
coupled linear systems on the XE6. The efficiency E is obtained from weak scaling
tests on a range of 1-256 MPI processes using 16 CPUs each. Using 4 processes
already leads to only 50% efficiency which keeps on dropping down to 7% for the
largest simulation. Strong scaling tests underline the suboptimal parallelization of
the pipelined Thomas algorithm on a scalar computer. The speedup, defined as ratio
of sequential compute time to parallel compute time SU= T1/TP, depicts strong
sublinear behaviour starting from 8 processes and onwards.For the sake of com-
pleteness the speedup for purely openMP parallelized stimulations is also shown in
figure 0.9. Almost ideal speedup can be reached for up to 8 threads which correlates
to the size of a NUMA node within a compute node of the Cray XE6 computer.
For 9-32 threads still sufficient albeit slightly sublinearspeedup can be obtained. In
order to significantly improve the parallelization for future simulations a so-called
sub-domain compact scheme has been implemented into theNS3D program. This
scheme decouples the discretization inx- andy-direction such that the linear system
of equations can be solved independently on each sub-domain. For that purpose it is
necessary to partly replace the left hand side of the compactstencil at domain bound-
ary points by explicit values. In order to sustain the characteristic wave resolution of
the compact scheme explicit finite differences of 8th order are used to compute these
values. Performing the aforementioned scaling analysis for the new solver routine
demonstrates the near-ideal efficiency reached by decoupling the domains as well
as a superlinear speedup due to favourable cache effects forthe regarded problem
size.

0.5 Conclusions

A direct numerical simulation of the transition in streamwise corner-flow at a techni-
cally relevant Mach number ofMa = 0.8 was conducted. The transition takes place
in form of a turbulent wedge situated in the near-corner region. This result is remark-
able in the sense that it is found in accordance with measuremnts but in opposition
to linear theory which does not predict a dominant instability mechanism due to the
presence of the corner as compared to the single flat-plate scenario. The turbulent
flow structures were found in agreement with other wall-bounded shear flows, and
the spectral content of the transitional flow extracted via direct mode decomposition
of a snapshot sequence was found to match the theoretically predicted power-law.
From the computational side, the DNS code was found to perform inferior in the
massive parallel environment of the CRAY XE6 as compared to the vector archi-
tectures it was originally designed for. However, a recently developed recast sub-
domain compact scheme allowed for a decoupled processing ofthe routines while
maintaining the overall accuracy of its fully implicit precursor. The decoupling led
to a significant gain in computational performance for distributed memory paral-
lelization. Scaling tests indicated almost ideal efficiency and superlinear speedup
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for the new implementation. Scaling tests for the shared memory parallelization
showed almost ideal speedup for up to 8 threads as well.
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