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The stability of streamwise corner flow is investigated by means of direct numerical
simulation at subcritical Reynolds numbers. The flow is harmonically forced, and
global modes are extracted through a spectral decomposition. Spatial amplification in
the near-corner region is observed even though the flow is shown to be subcritical in
terms of spatial linear theory. This apparent discrepancy is resolved by extending the
local analysis to include non-modal effects. It is demonstrated that the amplification
is a result of the interaction between two coexistent spatial transient growth processes
that can be associated with different parts of the linear stability spectrum. A detailed
investigation of the underlying mechanisms shows that the transient amplification
behaviour is caused by pseudo-resonance between the inviscid corner mode, and
different sets of viscous modes. By comparison with studies of other locally
inflectional flows, it is found that viscid–inviscid pseudo-resonance might be a
general phenomenon leading to selective noise amplification.

Key words: Compressible boundary layers, Absolute/convective instability, Boundary layer
stability

1. Introduction
The viscous flow in a right-angled streamwise-aligned corner has been the focus of

numerous experimental and theoretical studies for over 60 years due to its significance
in many technical applications, especially in aeronautical engineering. Wing–body
junctions on airplanes and the corner regions in wind tunnels are prominent examples.

Most generically, the corner flow problem is modelled as two perpendicular semi-
infinite flat plates with the streamwise coordinate x along the intersection line and
the coordinates y and z spanning the transverse plane, as depicted in figure 1. The
superposition of the displacement effects of the two adjacent walls induces a highly
three-dimensional secondary flow field that decays algebraically with distance from
the opposing wall. The appropriate far-field boundary conditions are usually found by
means of asymptotic perturbation theory.

Early work on the subject was conducted by Carrier (1947). A major milestone
was the work by Rubin (1966), who derived the so-called corner flow equations that
govern the self-similar laminar viscous corner flow problem using the method of
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FIGURE 1. Sketch of the flow in an axial corner. Blue lines represent the computational
domain for the direct numerical simulation of § 4. The origin of the Cartesian coordinate
system (x, y, z) is located at the intersection point of the plates on the leading edge; u∞
is the potential free-stream velocity; (η, ζ ) is the alternative self-similar coordinate frame
used in the local analyses of §§ 3 and 5; and s is the coordinate along the corner bisector,
i.e. y= z. The harmonic forcing induced in the form of a heat flux by the heating strips
(red bands) is denoted by q̇.

matched asymptotic expansions. A numerical solution was first presented by Rubin &
Grossman (1971). In the latter, the authors relied on the work of Pal & Rubin (1971)
on asymptotic behaviour for the far-field boundary conditions. A remarkable feature
of the corner flow equations was found three decades later by Ridha (1992) in his
study of non-zero pressure gradient solutions. The equations exhibit dual solutions
distinguished by different wall shear, one of which can be identified as equivalent
to the classical Blasius boundary-layer solution and was the only solution studied
previously. The compressibility effect was introduced into the problem by Weinberg
& Rubin (1972) for a unity Prandtl number model fluid. Later, Mikhail & Ghia
(1978) extended the equations to general compressible fluids. Different other aspects
have been in the focus, such as variable corner angles (Barclay & Ridha 1980),
wall suction (Barclay & El-Gamal 1983, 1984), forced and free convection (Ridha
2002), as well as non-similarity solutions due to a more general form of the pressure
gradient (Duck, Stow & Dhanak 1999).

Most experimental work on the subject dates back to the 1970s and 1980s,
most notably the work by Zamir & Young (1970), Barclay (1973), El-Gamal &
Barclay (1978), Zamir & Young (1979), Zamir (1981) and Kornilov & Kharitonov
(1982), and before that period by Nomura (1962). Two key observations were
made throughout the experiments. First, the laminar mean flow deviates from the
self-similar solution in the near-corner region at some distance from the leading edge
in the form of an outward bulge in the lines of constant streamwise velocity. Second,
laminar–turbulent transition occurs much earlier than for the flat-plate scenario, even at
small favourable streamwise pressure gradients. A connection with the first-mentioned
velocity isoline deformation and early transition suggests itself. Kornilov & Kharitonov
(1982) argued that the deformation develops under the influence of a local pressure
gradient in the intersection region along the leading edge. A practically streamwise
pressure gradientless flow was achieved by the authors with a specifically designed
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leading-edge geometry. The realised flow did not exhibit the deformation and closely
resembled the theoretical self-similar solution.

However, there still exists an unresolved discrepancy between experimental findings
and theoretical results, which consistently predict a much higher critical Reynolds
number. Traditionally, the critical Reynolds number is determined by means of a
linear stability analysis, i.e. the amplification behaviour of wave-like perturbations
of infinitesimally small amplitude superimposed onto the steady base state. Here,
critical refers to the point in parameter space where neutral stability first occurs.
As a classical boundary-layer-type flow, the corner problem falls into the category
of convectively unstable flows, meaning that perturbations are constantly convected
downstream. Hence, the flow acts as a spatial amplifier of incoming perturbations
with no intrinsic dynamics, as opposed to absolutely unstable flows where initial
disturbances are amplified exponentially everywhere within the laboratory frame (see
e.g. Chomaz 2005). The first stability studies of Lakin & Hussaini (1984), Dhanak
(1992, 1993) and Dhanak & Duck (1997) were restricted to the one-dimensional
blending boundary-layer profile between the corner region and the asymptotic far
field. Two-dimensional local stability calculations of the transverse plane were first
conducted by Balachandar & Malik (1995) for the inviscid problem. Analyses of the
viscous problem by Lin, Wang & Malik (1996) and Parker & Balachandar (1999)
followed. The spatial stability problem was addressed by Galionis & Hall (2005)
through solution of the parabolised stability equations. Compressibility was taken into
account in a similar study by Schmidt & Rist (2011).

The aforementioned inviscid stability study by Balachandar & Malik (1995) revealed
an inviscid instability in the direct corner region due to the locally inflectional nature
of the streamwise velocity profile along the corner bisector. Their study of the
stability properties of the one-dimensional bisector profile implied a two orders of
magnitude lower critical Reynolds number as compared to the flat-plate scenario,
where viscous instability sets in at Rex,crit ≈ 9 × 104. However, none of the more
general two-dimensional stability studies conducted thereafter confirmed the findings,
even though the inviscid mechanism is recovered in the form of the so-called corner
mode, consistently identified in the spectrum of the viscous linear stability operator.
The neutral stability values for the corner mode differ drastically between different
studies, indicating a high sensitivity with respect to the numerical scheme and/or
far-field boundary treatment. Parker & Balachandar (1999) noted that no unstable
inviscid modes were observed for Rex,crit . 5 × 105, while Galionis & Hall (2005)
and Schmidt & Rist (2011) found the onset of inviscid instability to occur slightly
above the viscous stability limit. In two recent studies, Alizard, Robinet & Rist
(2010) and Alizard, Robinet & Guiho (2013) addressed the sensitivity to base-flow
variations and transient growth of (optimal) perturbations. The authors found that even
small base-flow variations can lead to a significant reduction of the critical Reynolds
number and, in the latter citation, that corner flow is prone to rapid transient growth
through the Orr mechanism and the lift-up effect, given a suitable initial condition.

Despite all efforts, the question of the cause of the rapid transition observed in
experiment has not yet been answered with certainty. Different routes to turbulence
are generally possible for wall-bounded shear-flow configurations, as charted in the
well-known review by Morkovin, Reshotko & Herbert (1994). According to the author,
laminar–turbulent transition can be categorised into five scenarios after environmental
disturbances are translated into shear-layer instabilities by some receptivity mechanism.
For low-amplitude perturbations, exponential eigenmode (in accordance with linear
stability theory) or algebraic non-modal growth can be expected. Alternatively, modal
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or non-modal growth can be bypassed in high-amplitude disturbance environments
leading directly to transition through nonlinear interaction. Combinations of the
different mechanisms produce the five paths to transition suggested. It is currently
not clear which scenario applies to streamwise corner flow.

The study at hand is motivated by the discrepancies between theoretical predictions
and experimental observations. We are focusing on the subcritical flow response to
low-amplitude harmonic forcing by deploying local spatial linear stability theory (§ 3)
and direct numerical simulation (§ 4) of the fully non-parallel problem without model
assumptions. The results are compared with the aid of a spectral decomposition of
the simulation data. At first glance, the results are found to be in disagreement.
However, the apparent discrepancy is resolved by an extended non-modal analysis of
the underlying spatial stability operator in § 5. It is demonstrated that spatial transient
growth caused by pseudo-resonance between viscous modes and the inviscid corner
mode explains the subcritical amplification behaviour observed in simulations. A
discussion of the results including indications for transition behaviour are given in
§ 6. In the following § 2, the reader is introduced to the governing equations, the base
state formulation and the numerical framework.

2. Governing equations, base state and numerical methods
This section is subdivided as follows: the starting point is the compressible

Navier–Stokes equations introduced in § 2.1. A steady laminar base state is calculated
as a solution to a simplified set of equations, and with the aid of asymptotic
boundary conditions in § 2.2. The solution methodology for the full set of equations
used to compute the response of the base flow to harmonic forcing, i.e. direct
numerical simulation (DNS), is presented in § 2.3. Section 2.6 introduces the spectral
decomposition method used to reobtain modal information to compare DNS results to
solutions of the spatial local linear stability problem calculated as shown in § 2.4. The
short-time/distance response of a flow to forcing may differ from results obtained
by the eigenvalue-based linear stability approach. This behaviour is governed by
non-modal theory to be described in § 2.5.

2.1. Navier–Stokes equations for a compressible ideal gas
The flow of a compressible ideal gas is most generally governed by the three-
dimensional Navier–Stokes equations (NSE) consisting of the continuity equation
(2.1a), the momentum equation (2.1b) and the energy equation (2.1c):

∂ρ

∂t
= −∇ · ρu, (2.1a)

∂ρu
∂t
= −1

2
∇ · (u⊗ ρu+ ρu⊗ u)−∇p+ 1

Re
∇ · τ , (2.1b)

∂ρe
∂t
= −∇ · ρeu+ 1

(γ − 1)RePrMa2
∞
∇ · k∇T −∇ · pu+ 1

Re
∇ · τu. (2.1c)

Here, ρ is the density, u= (u, v, w)T the velocity in the Cartesian coordinate frame
x= (x, y, z)T, p the pressure, T the temperature and e the total energy. The dynamic
viscosity µ and the thermal conductivity k are material properties. The pressure is non-
dimensionalised by twice the dynamic pressure ρ∗∞u∗ 2

∞ , the x, y, z coordinates by the
local displacement thickness δ∗1 =

∫∞
0 [1− ρ∗u∗/ρ∗∞u∗∞] dy∗ and all other quantities by
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Ma Pr γ p∗∞ (hPa) T∗∞ (K) c∗p (J kg−1 K−1) R∗ (J kg−1 K−1)

0.8 0.714 1.4 1013.25 293.15 1005 287

TABLE 1. Dimensionless quantities and free-stream properties.

their respective dimensional free-stream value. Superscript ∗ and subscript ∞ denote
dimensional quantities and free-stream values, respectively. The viscous stresses in a
Newtonian fluid are given by

τ =µ(∇u+∇uT)+ λ(∇ · u)I, λ=−2
3
µ, (2.2a,b)

where the Stokes hypothesis (2.2b) simplifies the expression by relating the bulk
viscosity λ to the dynamic viscosity. The temperature can be calculated from the
definition of the total energy (2.3a). The system of equations (2.1) is closed by
relating the pressure to the density and temperature through the ideal gas law (2.3b):

T = γ (γ − 1)Ma2
∞

(
e− 1

2
u · u

)
, p= 1

γMa2
∞
ρT. (2.3a,b)

Here, γ is the heat capacity ratio and Ma∞ the free-stream Mach number. The Mach
number Ma, Reynolds number Re and Prandtl number Pr,

Re= ρ
∗
∞u∗∞δ

∗
1

µ∗∞
, Pr= c∗pµ

∗
∞

k∗∞
, Ma= u∗∞

a∗∞
, (2.4a,b,c)

describe the ratio of inertial to viscous forces, the ratio of momentum to thermal
diffusivity and the effect of compressibility, respectively.

2.2. Base state
A steady corner flow base state is calculated as a solution to the parabolised
Navier–Stokes equations (PNS). The latter are obtained most conveniently by omitting
the unsteady terms, the streamwise pressure gradient and all viscous terms containing
partial derivatives with respect to the streamwise direction from (2.1). The underlying
assumptions are justified for boundary-layer-type flows without a streamwise pressure
gradient (Rubin & Tannehill 1992; Tannehill, Anderson & Pletcher 1997). The
parabolised set of equations is solved by a Chebyshev–Chebyshev collocation method
in combination with implicit space marching as described in Schmidt & Rist (2011)
for the fluid properties listed in table 1. The reader is referred to the same paper
for a validation by comparison with the literature for Mach numbers up to 1.5 and
details on boundary conditions.

The ideal gas constant R∗ appears in the dimensional version of (2.3b), i.e. p∗ =
ρ∗R∗T∗. Sutherland’s law

µ∗(T)=µ∗ref T
3/2 1+ Ts

T + Ts
,

where µ∗ref (T
∗
ref = 280 K)= 1.735× 10−5 kg m s−1 and Ts = 110.4 K

T∗∞
,

(2.5)
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empirically connects the dynamic viscosity to the temperature using a dimensional
reference viscosity µ∗ref and a non-dimensional reference temperature Ts. By
introducing a self-similarity coordinate frame η= (η, ζ )T with

η=
√

2Rex

2x∗
y∗, ζ =

√
2Rex

2x∗
z∗, (2.6)

and the cross-flow velocity scaling law

v(η)= β√
2Rex

v(x∗), w(η)= β√
2Rex

w(x∗), (2.7)

the dependence of the solution on the streamwise coordinate is removed. Here
Rex = ρ∗∞u∗∞x∗/µ∗∞ is the Reynolds number based on the dimensional streamwise
position and β = ∫∞0 [1 − u/T] dη is the displacement-thickness-related quantity as
defined by Ghia & Davis (1974). In the latter citation, the authors provide the
momentum equation

µ0
d2w1

dη2
+
[

dµ0

dη
+ ρ0(ηu0 − v1)

]
dw1

dη
+ ρ0u0w1 = β,

with w1(0)= 0 and w1(η→∞)= β,

 (2.8)

that governs the first-order asymptotic cross-flow w1(η, ζ → ∞). The zeroth-order
quantities denoted by subscript 0 resemble the classical compressible flat-plate
boundary-layer solution. The solution to (2.8) is enforced on the far-field boundaries
and corresponds to the lower branch solution in the work of Ridha (1992). The
temporal stability results for the upper and lower branch solutions were found to differ
very little by Parker & Balachandar (1999) for a zero streamwise pressure gradient.
The parabolised stability equation-based approach for the spatial linear problem by
Galionis & Hall (2005) attested a slightly lower critical Reynolds number to the
lower branch solution but found the upper branch counterpart to be more sensitive
with respect to changes of the adverse pressure gradient. Apart from the study at
hand, the lower branch solution was also utilised in the more recent sensitivity study
by Alizard et al. (2010).

Using the procedure described above, a self-similar solution is converged by
integration in the parabolised coordinate direction. The converged solution can be
rescaled to any desired streamwise position subsequently. Just as for the closely
related flat-plate boundary-layer scenario, the solution becomes singular at the leading
edge and is therefore not valid in that region. The self-similar solution is preferred
over the PNS solution to allow for comparison with other authors. The differences
are, however, negligible. Figure 2 shows the base flow computed as described above.
The negative values of v in figure 2(b) close to the vertical wall at z = 0 indicate
a wall jet that pulls fluid towards the corner that is subsequently pushed out of the
domain along the corner bisector. The curvature of the bisector streamwise velocity
profile depicted in figure 2(c) reveals an inflexion point, suggesting the possibility of
an inviscid instability according to Rayleigh’s theorem.

2.3. Direct numerical simulations
The evolution of a perturbation upon the steady base-flow solution from § 2.2 is
simulated by solving the full set of governing equations (2.1), i.e. direct numerical
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FIGURE 2. Steady base flow for the DNS: (a) streamwise velocity u; (b) y component
v of the cross-flow velocity field; (c) streamwise bisector u(s) and asymptotic velocity
profiles u0(y); (d) curvature of u(s) and u0(y); and (e) bisector v(s)=w(s) and asymptotic
v1(y),w1(y) cross-flow velocity profiles.

simulation. The spatial discretisation of the computational domain Ω is based on
a sixth-order accurate compact finite difference scheme, which is stabilised by
alternating up- and downwind biasing as suggested by Kloker (1997). For time
integration, a standard fourth-order accurate Runge–Kutta method is employed. A
detailed description of the NS3D code can be found in Babucke (2009). The code is
validated by comparison with linear theory and turbulence statistics in wall-bounded
and free shear-layer flows. Prior to this, it was applied in the study of noise generation
in a plane mixing layer by Babucke, Kloker & Rist (2008).

The asymptotic nature of the base flow in combination with perturbations that are
active over the entire spanwise domain extent permits the use of standard boundary
conditions on the far field. We therefore rely on a perturbation formulation that allows
us to impose boundary conditions solely on the perturbation flow field while keeping
the base state constant (see e.g. Rist & Fasel 1995). Traditionally, the flow field is
Reynolds decomposed into a steady base state q0(x) and a time-varying perturbation
part q′(x, t) as

q(x, t)= q0(x)+ q′(x, t). (2.9)
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x0 Re0 x1 Re1 xp,0 xp,1 y1, z1 Nx Ny, Nz 1t

79.89 312.95 303.57 610.04 86.61 100.06 50 500 250 0.0195

TABLE 2. Computational domain for the DNS: subscripts 0 and 1 denote start and end;
Nx,y,z is the number of grid points in the respective direction; and xp,0 and xp,1 delimit the
streamwise perturbation strip in (2.16).

Here, q= (ρ, ρu, ρv, ρw, e)T is the solution vector of conservative variables to (2.1).
The perturbation formulation of the Navier–Stokes equations is found by inserting
ansatz (2.9) into (2.1). Under the assumption that q0(x) satisfies (2.1) for itself,
all terms consisting of base-flow derivatives only vanish, leaving a set of evolution
equations for q′(x, t). We use an alternative strategy that allows us to impose boundary
conditions on the perturbation field with minimal code modification, i.e. just by adding
a source term to (2.1) instead of implementing the perturbation equations. Consider
the equivalent operator notation form

∂q
∂t
=NS (q) (2.10)

of (2.1a). By introducing ansatz (2.9) into (2.10), noting that NS (q)=NS (q0+ q′),
splitting the time derivative and rearranging, we obtain

∂q′

∂t
=NS (q)− ∂q0

∂t
. (2.11)

From (2.11), any solver for (2.1) can be converted to an equivalent perturbation
formulation by adding −∂q0/∂t as a source term. Conveniently, the latter temporal
derivative of the base flow has to be computed only once by the same algorithm
at the beginning of the simulation if the time step 1t is kept constant. Note that
the assumption that q0(x) is a solution to (2.1) can be dropped in this context
without any loss of generality, yielding an even more flexible computational method
in comparison to a dedicated perturbation formulation solver. For the case at hand,
∂q0/∂t was found to be small and most likely caused by the different differentiation
schemes and the underlying assumptions of the PNS method. Hence, it is concluded
that the self-similar base state is a good approximation to a full Navier–Stokes
solution.

2.3.1. Computational domain and boundary conditions
Details about the computational domain extent and resolution are listed in

table 2. The streamwise extent corresponds to a Reynolds-number regime of
2.5 × 104 6 Rex 6 9 × 104. Note that this is below the critical Reynolds number
of Recrit ≈ 9 × 104 found from linear stability theory. The displacement thickness
δ∗1(x0) = 1.7528 × 10−5 m at the inlet is used for non-dimensionalisation of the
coordinates. A total of 65 grid points are concentrated in the near-wall regions
y < 6 and z < 6, while the rest are equidistantly distributed in the far field. Grid
independence of the solutions was confirmed by comparison with higher resolved test
calculations.

Adiabatic no-slip wall boundary conditions are enforced on both walls, i.e.

u′ = 0,
∂T ′

∂n
= 0 on (x, y= 0, z) and (x, y, z= 0), (2.12)
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where n denotes the respective boundary normal direction. The pressure is extrapolated
from the interior field and the density is calculated from the ideal gas law (2.3b). On
the inlet and both far-field boundaries, homogeneous Neumann conditions

∂q′

∂n
= 0 on (x, y= y1, z), (x, y, z= z1) and (x= x0, y, z) (2.13)

are applied. The outlet is treated by a subsonic outflow condition

∂q′

∂t

∣∣∣∣
N

= ∂q′

∂t

∣∣∣∣
N−1

on (x= x1, y, z), (2.14)

which sets the temporal fluctuation of the flow field at the last point N at the outlet
equal to that of the second to last N − 1. Additionally, a sponge region in the form
of a source term −σq′ added to the right-hand side of (2.11) is used to force the
perturbation field to a minimum in the outermost 2.5 % of the inlet and outlet regions
to prevent reflection and numerical instability. This region is not regarded as part of
the solution field. The distribution function

σ =±σmax(1− 6x̂5 + 15x̂4 − 10x̂3) on x̂ ∈ [0, 1] (2.15)

follows a fifth-order polynomial, where x̂ is the locally scaled distance from the
respective boundary. An amplitude σmax = 3 was found sufficient for all cases.
Harmonic perturbations are introduced into the domain by local heating strips. The
perturbation introduction via the wall temperature is preferred over other means of
triggering instabilities for mainly two reasons. First, temperature is a scalar field.
Acting on the velocity field by wall blowing and suction leads to a problem in the
corner region where any actuation always affects the low-speed near-wall region
boundary layer on the opposite wall. Second, wall heating is most easily realisable in
experiment in contrast to, for example, volume forcing. The enforced perturbation wall
temperature follows, on both walls equally, a dipole distribution in the streamwise
direction of the form

T ′ =
N∑

i=1

ai
81
16
(2x̂)3[3(2x̂)2 − 7(2x̂)+ 4]

× cos(ωit+ θr,i) on x̂ ∈ [0, 0.5],
T ′ = −

N∑
i=1

ai
81
16
(2− 2x̂)3[3(2− 2x̂)2 − 7(2− 2x̂)+ 4]

× cos(ωit+ θr,i) on x̂ ∈ [0.5, 1],


(2.16)

to generate a superposition of N waves of individual amplitudes ai, angular
frequencies ωi and random phases θr,i. A dipole is preferred over a monopole
distribution to keep the perturbation as energy-neutral as possible in an integral sense.
Wherever active, the local heating strip replaces the adiabatic wall boundary condition
(2.12). The perturbation strip is located between the streamwise locations xp,0 and xp,1

as given in table 2, corresponding to 30 grid cells, starting at the 15th grid point.
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2.4. Linear stability theory
The stability of a steady base flow with respect to infinitesimally small disturbances
is analysed in linear stability theory. Under the assumption that the base state q0(x)
is a solution to the Navier–Stokes equations and that terms that are quadratic in the
disturbance are small and can be dropped, the evolution of a disturbance is governed
by the linear perturbation equation

∂q′

∂t
=L q′, (2.17)

where L is the linearised operator. Equation (2.17) is cast into an eigenvalue problem
by introducing a normal mode ansatz for q′. Parallel flow is assumed for one- and two-
dimensional base states. The ansatz reads q′(y, t)= q̂(y)ei(αx+βz−ωt) for one-dimensional
cases such as the classical flat-plate boundary layer, the asymptotic corner far-field
solution or the flow along the corner bisector, and

q′(y, z, t)= q̂(y, z)ei(αx−ωt) (2.18)

for a two-dimensional flow with just one homogeneous direction such as the
self-similar corner flow solution we are primarily interested in. Here, wave-like
behaviour of the perturbation is assumed by introducing a streamwise wavenumber
α in the streamwise direction only. In any case, the amplitude function q̂ appears
as the eigenvector and the angular frequency and wavenumber as eigenvalue or free
parameter. If α ∈ R and ω ∈ C, the perturbation amplitude A, e.g. A , ‖û‖∞, will
change with time according to the relation Im(ω)= (1/A) ∂A/∂t. This case is referred
to as temporal amplification theory, and Im(ω) represents the temporal amplification
rate. In spatial amplification theory, ω ∈R is the free parameter, α ∈C appears as the
eigenvalue and −Im(α) = (1/A) ∂A/∂x is identified as the spatial amplification rate.
The temporal two-dimensional problem results in a 5N2 size eigenvalue problem

(L+Mω)q̂= 0, (2.19)

with q̂= (ρ̂, û, v̂, ŵ, T̂)T, and the spatial problem in a 9N2 size eigenvalue problem

(L̃+ M̃α)q̃= 0, (2.20)

with q̃ = (ρ̂, û, v̂, ŵ, T̂, ũ, ṽ, w̃, T̃)T. As the eigenvalue α originally appears squared
in the latter problem, it is rewritten as a first-order problem by use of the auxiliary
variables ũ=αû, ṽ=αv̂, w̃=αŵ and T̃ =αT̂ . Here, L, M and L̃, M̃ are the coefficient
matrices of the discretised problems. Both problems are solved using the same spectral
Chebyshev–Chebyshev collocation method on an N=45 Gauss–Lobatto grid, and with
the same validated parameters as for the temporal case in Schmidt & Rist (2011).
Comprehensive introductions to one- and two-dimensional linear stability theory can
be found in Mack (1984) and Theofilis (2003), respectively.

2.5. Non-modal stability theory
Linear stability theory governs the long-time response of infinitesimal perturbations.
However, there are prominent examples of flows where short-term transient energy
growth can lead to rapid transition, even when all eigenmodes decay exponentially. A
priori, it is not clear whether a certain flow configuration is prone to transient growth.
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In the corner flow case, the studies by Alizard et al. (2010, 2013) do suggest that
this may well be the case. Transient amplification behaviour is directly linked to the
non-normality of the linear operator. Therefore, it may be inappropriate to conclude
anything about the stability of a flow just by examining individual eigenvalues if
the linear operator is highly non-normal. Two aspects of non-modal stability theory
are employed in § 5 to link the subcritical simulation results from § 4 to the linear
stability results of § 3, namely ε pseudo-spectra to be introduced in the following
§ 2.5.1, and eigenvector expansion based optimal growth in § 2.5.2. The concept of
normality necessitates a vector norm induced by an inner product 〈.〉E that we choose
to be

‖q̂‖2
E = 〈q̂, q̂〉E =

∫ ∞
0

∫ ∞
0

q̂HW q̂ dy dz,

where W = diag{T/(ργMa2), ρ, ρ, ρ, ρ/(γ (γ − 1)TMa2)},

 (2.21)

for q̂= (ρ̂, û, v̂, ŵ, T̂)T as the solution vector to (2.19) or (2.20) (Mack 1984), where
superscript H denotes the conjugate transpose. The derivation of the above energy
norm (2.21) for compressible gases can be found in Chu (1965) and Hanifi, Schmid &
Henningson (1996). Here, we define the energy norm locally for the transverse plane
spanned by y and z, i.e. as an energy density.

2.5.1. ε-pseudospectrum
The sensitivity of eigenvalues with respect to perturbations of the underlying linear

operator can be determined by means of ε pseudo-spectra as shown by Trefethen
(1991). The application to hydrodynamic problems was pioneered by Reddy, Schmid
& Henningson (1993), and by Trefethen et al. (1993) shortly after. A complex number
ω ∈C is in the ε pseudo-spectrum if

‖(Mω− L)−1‖E >
1
ε
, (2.22)

where (Mω − L)−1 is the resolvent and ‖.‖E the energy norm defined in (2.21).
Analogously, we define the resolvent for the spatial problem as

‖(M̃α − L̃)−1‖E >
1
ε
, (2.23)

with α ∈ C. The isolines for a certain value of ε can intuitively be interpreted as
the outer bound of all possible eigenvalues of the same operator, but randomly
perturbed by superposition with a random perturbation matrix P of norm ‖P‖E 6 ε.
If ε is small, then a small perturbation of the linear system can lead to a response
of substantial amplitude. Transient growth can be expected in the regions where
the pseudo-spectrum extends the farthest into the unstable half-plane, and the
corresponding frequencies/wavelengths can be determined. The case where a large
response results from the non-normality of the underlying operator is referred to as
pseudo-resonance, whereas the general term resonance refers to the situation where
a system is forced close to one of its eigenvalues. Note that physical sensitivity
due to non-normality and sensitivity with respect to discretisation errors of the
numerical scheme cannot be distinguished without further examination (Schmid &
Henningson 2001). The resolvent can be computed directly by means of singular
value decomposition. However, we resort to the much more efficient routines of the
EigTool library (Wright 2002).
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2.5.2. (Sub)optimal spatial perturbations
Transient energy growth of an optimised initial condition was first calculated

by Farrell (1988). The previously cited work of Reddy et al. (1993) ties directly
into Farrell’s work and connects to the concept of ε pseudo-spectra presented in
§ 2.5.1. As we are interested in the amplification behaviour downstream from a
harmonic perturbation source, i.e. the signalling problem, we roughly follow Tumin
& Reshotko (2001), who contributed decisively to the extension of the theory to
spatial perturbations. The basic idea is to represent the downstream response q at
some position x as the linear superposition

q(x, t)= e−iωt
N∑

k=1

κkq̂k(y, z)eiαkx (2.24)

of N eigenfunction solutions q̂ to the spatial stability problem (2.20). Here, it
is assumed that the set of eigenvectors is a complete basis, i.e. that an arbitrary
perturbation field can be constructed in terms of the sum in (2.24). If we restrict the
expansion to some subspace SN = span{q̂1, q̂2, . . . , q̂N} of the full solution space, a
suboptimal response is obtained. The expansion coefficients κ are calculated from the
optimisation problem

G(x)=max
q0 6=0

‖q(x)‖2
E

‖q0‖2
E

(2.25)

for the maximum energy growth G(x) that relates the energy of the response ‖q(x)‖2
E

to the energy of the initial condition ‖q0‖2
E at the perturbation source location x =

0. For the practical solution of the optimisation problem (2.25), the energy norm is
reduced to a standard L2-matrix norm as G(x)= ‖FΛxF−1‖2

2, where F HF = C is the
Cholesky decomposition of the correlation matrix C with entries Ck,l = 〈q̂k, q̂l〉E, and
Λx = diag{eiα1x, eiα2x, . . . , eiαN x}. Now, G(x) can readily be obtained as the L2-matrix
norm of FΛxF−1 in the form of its principal singular value σ1. The reader is referred
to Schmid & Henningson (1994) for further details.

The latter method of representing local optimal solutions in terms of a linear
combination of eigenfunctions is preferred for our work as it allow us to directly
relate linear stability results to non-modal growth. By looking at the factors in the
expansion equation (2.24), it becomes clear that transient growth of the norm of the
sum can occur if the eigenvectors are non-orthogonal, even if Im(α) > 0 for all α.
The expansion coefficients κ are used to reconstruct the optimal solution from (2.24),
and give valuable information on the modes involved in the transient growth process.

2.6. Dynamic mode decomposition
The dynamic mode decomposition extracts coherent structures as well as their
corresponding frequencies and growth rates from a time series of snapshots of a
flow field. The method is based on the spectral analysis of the Koopman operator,
which maps an observable of a dynamical system to its next instant. In the context
of DNS, the whole flow field can be taken as the observable and the resulting modes
resemble global modes of a single frequency. Classical global linear stability modes
are obtained from linearised flow dynamics or flow fields that are generated by
a nonlinear code but with small perturbations. However, the decomposition is not
restricted to the linear regime. It is equally valid for fully nonlinear flows where the
modes accurately capture the dynamical behaviour as demonstrated by Rowley et al.
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(2009) and Bagheri (2013) for the case of a jet in cross-flow and a cylinder wake,
respectively. The reader is referred to the latter citations for a detailed introduction to
Koopman-operator-based spectral analysis. In the DNS context, the terms ‘Koopman
mode’ and ‘dynamic mode’ are equivalent. The dynamic mode decomposition (DMD)
was introduced by Schmid (2010) as a robust and efficient method of computation. In
linear stability theory, the long-time behaviour of a given base flow is examined by
an eigenvalue decomposition of the governing linear stability operator as described
in § 2.4. Similar information can be extracted from a time series of N consecutive
snapshots in the form of a matrix,

QN
1 = [q′1 q′2 q′3 . . . q′N] (2.26a)
= [q′1 Aq′1 A2q′1 . . . AN−1q′1], (2.26b)

under the assumption of a linear mapping A that carries a snapshot to the next time
instant, that is,

q′i+1 = Aq′i. (2.27)

The notional time series (2.26a)(b) is referred to as a Krylov sequence. The linear
mapping or propagator A is closely related to the linear stability operator L defined
in (2.17) and its eigenvalues can be approximated by the eigenvalues of a matrix S̃=
UHQN

2 WΣ−1, where the factors on the right-hand side originate from a singular value
decomposition QN

1 =UΣW H of the snapshot matrix (2.26a) and QN
2 = [q′2 q′3 q′4 . . . q′N].

The eigenvalues λi of S̃ are then a subset of the eigenvalues of A defined through
the equality S̃yi= λiyi, with yi being the corresponding eigenvectors. The ith dynamic
mode φi is obtained as

φi = Uyi, (2.28)

and the complex frequency is recovered as ωi = log(λi)/1t with 1t as the time
interval between two snapshots. As the Koopman modes are interpreted as global
stability modes in our case, we choose the same notation for the solution vector,
i.e. φ = (ρ̂, û, v̂, ŵ, T̂)T. We prefer the DMD over a traditional temporal discrete
Fourier transform (DFT) for the reasons elaborated by Chen, Tu & Rowley (2011).
First, by subtracting an equilibrium point of the dynamics, i.e. the laminar base
state q0 from § 2.2, the calculated DMD modes will satisfy homogeneous boundary
conditions and be solutions to the linearised dynamics (2.17). In general, the zeroth
Fourier component, i.e. the mean field, is not a solution to the steady dynamics, and
the higher Fourier modes are not solutions to the linearised transient dynamics. The
second argument is that DMD recovers growth rates. However, this argument does
not directly apply to our case since the problem is convective. All modal growth
rates are expected to vanish for that reason, corresponding to all λi lying on the unit
disc in the complex plane.

3. Spatial linear stability analysis
The spatial linear stability problem was previously considered by Galionis & Hall

(2005) for incompressible corner flow. By space marching the parabolised stability
equations (PSE), the authors calculated the amplification behaviour of selected modes.
We are, however, interested in connected branches of discrete modes, and choose
to solve the spatial eigenvalue problem (2.20) instead. The structure of the spatial
spectrum is found to be comparable to the temporal spectrum as shown in figure 3.
For now, we restrict our attention to the relevant part of the spectrum containing
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FIGURE 3. Comparison between temporal and spatial discrete branch solutions at Rex =
57 500: (a) temporal spectrum for α= 0.1412; (b) spatial spectrum for ω= 0.1. The grey
shaded areas represent the respective unstable half-planes. Dashed lines connect the even
symmetric (E) modes, and dotted lines connect odd symmetric (O) modes. The inviscid
corner mode is marked as C. The free parameters are chosen in such a way that the
fundamental symmetric TS mode (I-E) has the same phase speed in both cases.

the Tollmien–Schlichting (TS) like eigenmode branch and the isolated inviscid corner
mode. Viscous modes are found to be either even (E) or odd (O) symmetric with
respect to the corner bisector, and are sorted in increasing order by the number of
maxima of the perturbation amplitude along the spanwise directions, or equivalently
by the spanwise wavenumber (capital Roman numerals). The fundamental modes
I-E and I-O have only one maximum along each spanwise coordinate located on
the far-field boundaries, while modes downwards (upwards) from the branches of
the temporal (spatial) solution possess higher spanwise wavenumbers dictated by the
computational domain extent.

Examples of the three categories of relevant spatial modes are depicted in figure 4.
Note that even symmetric modes feature a local amplitude maximum whereas odd
symmetric modes are null along the corner bisector, and that the inviscid mode shown
in figure 4(c) is symmetric, and has no significant spatial support for (η, ζ )& 15. It
was shown by Schmidt & Rist (2011) that the corner mode has an odd symmetric
counterpart that becomes relevant at supersonic speeds but does not appear in the
Ma= 0.8 case at hand.

The neutral stability diagram shown in figure 5 is constructed from a 15 × 45
solution grid in the parameter space (ω, Rex) ∈ [0.03, 0.15] × [8.5× 104, 5× 105]. At
each point, 25 modes of the discrete branch (including the corner mode) are calculated
using the shift-and-invert Arnoldi method. Neutral stability curves of individual modes
are found in a post-processing step by cross-correlation. A critical Reynolds number
of ReI−O

x,crit ≈ 1.32 × 105 is found, occurring for mode I-O at αI-O
crit ≈ 0.11. The corner

mode becomes first unstable at ReC
x,crit≈2.54×105, and for αC

crit≈0.084. It can be seen
that the stability characteristics of even and odd symmetric perturbations are similar.
The two-dimensional corner flow results shown compare well with the literature in the
sense that the linear stability results are similar to one-dimensional (Blasius) flat-plate
solutions but with a somewhat higher critical Reynolds number, and no significant
difference between spatial and temporal theory is observed. The latter statement was
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FIGURE 4. Three examples of spatial eigenfunctions of the streamwise perturbation
velocity û for Rex= 57 500, ω= 0.12: (a) symmetric mode IV-E; (b) odd symmetric mode
IV-O; (c) corner mode. Solid lines represent constant values of ‖û‖, blue isocontours are
values of Re(û) > 0, and yellow isocontours are values of Re(û) < 0.

confirmed by mutually converting the results using Gaster’s transformation (Gaster
1962), i.e. Im(α)≈−Im(ω)/c.

4. Direct numerical simulation

For comparison with linear theory, we are interested in a broad-band response
of the base flow to harmonic forcing. A total of 30 harmonic perturbations in the
form of a uniformly spaced frequency band ωi ∈ [0.01, 0.3], and of random phase are
forced in the DNS set-up summarised in table 2 by means of wall heating (2.16). The
Reynolds-number regime under investigation is subcritical in terms of linear stability
theory, see figure 5. Therefore, all perturbations are expected to decay monotonically.
Wall-bounded instabilities, such as Tollmien–Schlichting waves, are usually found
to behave linearly for perturbation amplitudes < 1 % of the free-stream velocity.
Here, we use the term linear if the amplification rate is independent of the actual
perturbation amplitude, and hence in agreement with the linear ansatz. A maximum
streamwise perturbation amplitude of ‖u′‖∞ . 5 × 10−6 was realised to guarantee
linear behaviour within the subdomain used for the spectral analysis by setting the
temperature amplitude coefficient to ai = 1× 10−5.

4.1. Spectral analysis
The dynamic mode decomposition method described in § 2.6 enables us to extract
discrete frequency components in the form of global coherent structures from
DNS data. The initial transients before the perturbations reach the outlet of the
computational box are ignored, i.e. only time-periodic data are analysed. The
receptivity process that translates the initial temperature forcing to the final convective
instability is spatially localised in the direct vicinity of the heating strip, and is also
excluded from the analysis by conducting the decompositions within a subdomain
that starts at a distance x= 110 somewhat downstream of the wall heating. A Krylov
sequence of 125 snapshots, Q125

1 , over one fundamental period determined by the
lowest frequency component ωmin = 0.01 is used for the DMD.
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FIGURE 5. Spatial neutral stability diagram. The neutral stability curve (dashed) of the
one-dimensional asymptotic far-field solution (ρ0, u0, v1,w1, T0)

T is shown for comparison.
The computational domain extent of the DNS (dotted vertical lines) and the perturbation
strip location (shaded grey band) are depicted for later reference in § 4, as well as the
first (red dashed line with + signs) and second (red full line with + signs) neutral points
of the global (DMD) modes.

The Ritz circle and the modal amplitudes of the decomposition are depicted in
figure 6. It can be seen from figure 6(a) that the empirical Ritz values corresponding
to the forced frequencies, and their conjugate complex counterparts lie on the
unit disc. This agrees with the expectation of zero temporal amplification in
the case of a statically stationary process. The remaining modes are identified
as nonlinearly generated higher harmonics, and numerical artefacts of very low
amplitude. A reconstruction of instantaneous flow fields from the reduced set of
modes corresponding to the 30 forcing frequencies recovers > 99.5 % of the global
perturbation energy. It is hence concluded that the decomposition is well converged,
and that nonlinear effects are negligible.

Examples of three global modes are visualised in figure 7. All three modes
exhibit two distinct features: a parallel modulated wave train along both walls that
is readily identified as Tollmien–Schlichting instability, and a perturbation pattern
consisting of 3-shaped structures in the near-corner region. Note that the two
features appear increasingly separated from each other with increasing downstream
distance, suggesting the possibility of different spatial amplification behaviour. The
two structures can be examined individually and in more detail in the planar contour
plots of the modal streamwise perturbation velocity presented in figure 8. Here,
the ω = 0.13 mode is chosen as a representative example. The far-field plane in
figure 8(a) shows the characteristic signature of a Tollmien–Schlichting wave. It
can be seen that the perturbation decays monotonically while being convected in
the streamwise direction. The decay rate is in agreement with the linear stability
results for the one-dimensional far-field profile previously presented in figure 5. An
inspection of perturbation isolines in the bisector plane shown in figure 8(b) reveals
major differences from the Tollmien–Schlichting wave. The perturbation pattern
appears tilted in the direction of the mean shear, and its maxima are located at a
higher distance from the wall. Most notably, the perturbation appears to grow spatially
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FIGURE 7. Examples of dynamic modes visualised by isosurfaces of the streamwise
perturbation velocity: (a) ω = 0.04, (b) ω = 0.09, (c) ω = 0.13. Isosurfaces are drawn at
û/‖û‖∞ = 0.2 (yellow) and û/‖û‖∞ =−0.2 (blue).

over some distance. This behaviour is in contradiction to the linear stability results.
However, the latter statement stems from qualitative observations of the flow field.
In the next step (§ 4.2), we seek quantitative confirmation by considering an integral
measure of perturbation energy that allows direct comparison with linear theory.

4.2. Spatial amplification behaviour
The modal spatial amplification behaviour is to be expressed in terms of the
compressible energy norm (2.21). For the case at hand, it has to be taken into
account that the base flow is non-parallel, the perturbation field has no compact
support, and the amplification behaviour differs regionally as observed in § 4.1. The
effect of non-parallelism, i.e. boundary-layer growth, can be eliminated by applying
the self-similar transformation (2.6) to the spanwise coordinates with a fixed upper
integration limit. The amplification behaviour of the 3 structure is isolated from the
decaying Tollmien–Schlichting wave train by choosing an appropriate upper limit. As
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FIGURE 8. Planar views of the streamwise perturbation velocity of the Koopman mode
corresponding to ω = 0.13: (a) far-field plane (x, y) at z = 50; (b) corner bisector plane
(x, s), where y= z. Isolines are drawn at equally spaced values of û/‖û‖∞ > 0 (blue, full
line) and û/‖û‖∞ < 0 (yellow, dashed line).

it happens, the amplification behaviour was found to be rather insensitive to the exact
choice of the upper integration limit. Almost identical curves are obtained within a
regime of 10± 2. Hence, we define

‖φ‖2
C = 〈φ, φ〉C =

∫ 10

0

∫ 10

0
φHWφ dη dζ (4.1)

as an appropriate quantity to quantify the near-corner perturbation evolution. For
mutual comparison, and comparison with linear theory, the modal amplification
curves are normalised with respect to the energy ‖φ‖c,0 at the respective first neutral
point, yielding the normalised energy density

dE = ‖φ‖c

‖φ‖c,0
. (4.2)

The streamwise location of ‖φ‖c,0 is found for each mode at the transition point
between the energy decay downstream of the receptivity region, and the onset of
spatial amplification, i.e. at the position where ∂‖φ‖c/∂x = 0. This procedure is
successfully applied for all global modes with ω < 0.19. No spatial amplification
is observed below that value. Figure 9(a) depicts the modal amplification curves,
and figure 9(b) the derivative of the latter in the streamwise direction. Only modes
that possess a second extremum in the form of a maximum, i.e. all modes with
ω > 0.06, are depicted. After a short initial transient that is qualitatively similar for
all curves, it can be seen that lower-frequency curves undergo a change of slope
while a simpler shape is observed for higher ω. This behaviour becomes more
apparent when considering the slope directly, as in figure 9(b). Modes with ω& 0.11
possess a parabola-like slope distribution, while a second extremum emerges for small
frequencies, resulting in a second inflexion point for ω6 0.8.

The first and second neutral points of each frequency are also incorporated into
figure 5 (dashed and solid red line, respectively). The fact that the observed spatial
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FIGURE 9. Modal perturbation amplification in the corner region: (a) downstream
development of the perturbation energy density dE for different modes; (b) downstream
rate of change of dE. The line connecting the modal maxima is shown (red line with +
signs) along with the corresponding modal frequencies (red numbers). The line of maxima
from panel (a) is reproduced in (b) for comparison (grey line with + signs).

growth between the resulting neutral curves occurs in a region that is predicted to be
stable by linear theory suggests that physical mechanisms different from exponential
growth of normal-form perturbations are at play.

4.3. Energetic analysis
More insight into the nature of a perturbation can be gained by considering the
modal energy balance, i.e. by analysing certain terms of the perturbation kinetic
energy transport equation

ρ
Dk
Dt
= Dt︸︷︷︸

turbulent diffusion

+ Dv︸︷︷︸
viscous diffusion

+ P︸︷︷︸
production

+ εk︸︷︷︸
dissipation

. (4.3)

Here, k= 1
2(u
′2 + v′2 +w′2) is the perturbation kinetic energy, and D/Dt= ∂/∂t+u ·∇

the material derivative. In particular, the production term

P = −ρ
(

u′2
∂u
∂x
+ u′v′

∂v

∂x
+ u′w′

∂w
∂x

u′v′
∂u
∂y

+ v′2 ∂v
∂y
+ v′w′ ∂w

∂y
u′w′

∂u
∂z
+ v′w′ ∂v

∂z
+w′2

∂w
∂z

)
(4.4)

is of interest. By calculating each term individually, it is found that the two terms
associated with the work of the Reynolds stress tensor against the transverse
shear components, ∂u/∂y and ∂u/∂z, are dominant, as typically observed for
wall-bounded shear-flow instabilities. The two terms are combined into a single
quantity Pu = u′v′ ∂u/∂y + u′w′ ∂u/∂z. The perturbation energy production in terms
of Pu is visualised in figure 10. For comparison, the same mode as depicted in
figure 8 is analysed. On the bisector plane in figure 8(a), the energy production
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FIGURE 10. Planar views of the perturbation kinetic energy production Pu of the
Koopman mode corresponding to ω= 0.13: (a) corner bisector plane (x, s), where y= z;
(b) transverse plane (y, z) at x = 145. Isolines are drawn at equally spaced values of
û/‖û‖∞ > 0 (full line) and û/‖û‖∞ < 0 (dashed line).

is shown to coincide closely with the perturbation field. When comparing with
the representative transverse plane cut shown in figure 8(b), it can be seen that
the production of k is exclusively restricted to the near-corner region, and that the
overall maximum is located along the outer parts of the 3 structure. The observation
that Pu is not evenly distributed in coincidence with the perturbation field itself,
and is partly negative, suggests an ongoing deformation of the structure in both
planes. The examination of one-dimensional flow-field profiles extracted from the
transverse plane permits an even closer look at the instability mechanism. Profiles
along and parallel to the bisector at four different spanwise locations are plotted in
figure 11(a–d). The streamwise base-flow profile can be compared directly with the
perturbation energy production distribution and the streamwise perturbation amplitude.
Also, the profiles can be related to the wall-normal position of the critical layer,
and the inflexion point in the base flow. Along the bisector coordinate, as shown
in figure 11(a), the maximum of the perturbation amplitude and the maximum of
perturbation energy production approximately coincide with the location of the critical
layer and the inflexion point. Therefore, the Rayleigh–Fjørtoft necessary criterion for
inviscid instability is met (see e.g. Drazin & Reid 2004). In figure 11(b), the ordinate
is positioned such that the profiles represent the region of maximum perturbation
energy production, i.e. within the outer part of the 3 structure (compare figure 8b).
Here, we note that the maxima of the perturbation amplitude and production also
coincide with the critical layer but not, however, with the location of the inflexion
point. The perturbation’s footprint resembles that of a viscid instability, as the
necessary criterion for inviscid instability is hence not met in this case. The transition
to a Tollmien–Schlichting type of instability towards the far field is portrayed in
figure 11(c,d). It can be seen that the perturbation energy production is dominantly
negative, in accordance with the predicted monotonic decay of the one-dimensional
Tollmien–Schlichting wave.

4.4. Note on bisector symmetry
In a second DNS of the same set-up, a 1θ =π phase shift between the perturbations
along the two walls was enforced in (2.16) to consider the behaviour of odd
symmetric perturbations. However, no spatial amplification was detected within the
computational domain, unlike in the symmetric case discussed so far. This is another
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FIGURE 11. Profiles of the streamwise base-flow component u (dashed line), streamwise
perturbation amplitude ‖û‖/‖û‖∞ (blue full line), and kinetic energy production amplitude
‖Pu‖/‖Pu‖∞ with Pu > 0 (green full line) and Pu < 0 (red full line), respectively.
Profiles are drawn for x= 145 along 45◦ angle lines to the lower wall parallel to s starting
at: (a) (y0, z0) = (0, 0), i.e. along s; (b) (y0, z0) = (0, 7.25); (c) (y0, z0) = (0, 20); and
(d) (y0, z0) = (0, 30). Additionally, the position of the inflexion point (filled circle) and
the critical layer (open circle) are indicated. The critical layer is determined for a group
velocity of cg = 0.548, estimated from the local modal perturbation wavelength.

indication for the prominent role of the inviscid corner mode, as no such mode is
present in the asymmetric case for the parameter regime under consideration.

5. Local non-modal analysis
Whenever linear stability theory fails to predict perturbation amplification even

though all underlying assumptions, i.e. local parallelism and linearity, are met, it is
strongly suggested that non-modal (transient) behaviour is observed (Trefethen et al.
1993).

5.1. Resolvent-based sensitivity
In the following, the non-normality of the temporal and spatial discretised linear
stability operator is addressed by means of the resolvent norm introduced in § 2.5.1.
Figure 12 compares the temporal and spatial ε pseudo-spectra. It can be seen that
the magnitude and the distribution of the resolvent norm are similar. In both cases,
the values of ε are several orders of magnitudes lower than for a normal operator,
suggesting a strong non-normality. The imprint of the Tollmien–Schlichting branch
on the isolines is obvious, while almost no deformation is observed in the vicinity
of the corner mode. This can be explained by the fact that the spatial support of the
corner mode differs from that of the viscous modes (see figure 4).

The distribution of the resolvent norm along the real axis is an indicator of where
to expect non-modal interactions in parameter space, i.e. in the region where the
resolvent attains its minimum value. The free parameters (α, Rex) in the temporal
case and (ω, Rex) in the spatial case are varied with the other parameter fixed in
figure 13(a,b) and figure 13(c,d), respectively. In the temporal case, the lowest values
of the resolvent are found for low values of α (figure 13a) and high values of Rex
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FIGURE 12. Isolines of the resolvent norm on a log10 scale (full lines) and eigenvalues
(blue circles) for the same parameters as in figure 3: (a) temporal and (b) spatial ε pseudo-
spectra. The grey shaded areas mark the unstable region.

(figure 13b). The latter observation is highly expected as the entire discrete spectrum
moves towards the unstable half-plane with increasing Rex due to the convectively
unstable nature of the problem. The same Reynolds number dependence holds in the
spatial case (see figure 13d). In any of the above cases, the position of the minimum
resolvent associates the non-normality predominantly with the viscous branch at
typical phase velocities of 0.3 . c . 0.45. Low values of α for the maximum
in the temporal case agree with the common notion that non-modal behaviour,
i.e. pseudo-resonance, is associated with long wavelengths. A qualitatively different
behaviour is observed for the dependence of the resolvent on the frequency as shown
in figure 13(c), where the minimum resolvent abruptly jumps towards higher phase
velocities when the frequency is decreased below ω ≈ 0.05, and a local minimum is
identified at (ω, c)≈ (0.11, 0.43). Hence, pseudo-resonance is expected simultaneously
within two different spanwise wavenumber regimes for low frequencies. Remarkably,
the frequency of the local minimum coincides with the frequency associated with the
maximum streamwise rate of change of the perturbation energy when compared to
the DNS results in figure 9(b). The possible distinction of two different mechanisms
deduced from the simulation data is supported by the present nonlinear analysis.
However, only the spatial non-modal approach predicts a non-monotonic dependence
on frequency, even though spatial and temporal linear stability calculations are found
to be equivalent when converted into each other by means of Gaster’s transformation.

5.2. Suboptimal transient growth
In the following, suboptimal non-modal spatial amplification is predicted by means
of the linear stability eigenfunction expansion technique introduced in § 2.5.2. Here,
we refer to suboptimal transient growth because the optimal gain is sought within a
limited subspace of the full solution space of the linear operator. If not mentioned
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otherwise, the subspace

STS∪C = span{q̂C
, q̂I−E

, q̂I−O
, q̂II−E

, q̂II−O
, . . .}, (5.1)

consisting of the 29 leading (even or odd symmetric) Tollmien–Schlichting modes
and the corner mode, is used. The underlying assumption is that the wall-bounded
perturbation waves introduced in the direct simulation can be represented by the latter
wall-bounded set of eigenmodes, and has to be confirmed a posteriori. For now, the
assumption is solely based on the simple geometric argument of comparable spatial
support. The local analysis is conducted for Rex = 57 500, which corresponds to the
middle of the computational domain, and is a somewhat arbitrary (least-biased) choice.
The spectral distribution of the modal expansion coefficients and the associated
optimal initial condition for ω = 0.13 are depicted in figure 14(a,b), respectively.
From figure 14(a), it can be seen that only even symmetric modes contribute to the
expansion. The highest expansion coefficient is found for mode II-E, corresponding
to ≈ 25 % of the total sum, while a moderate contribution of ≈ 8 % is found for
the corner mode. The spatial structure of the resulting suboptimal initial condition
is visualised in the accompanying figure 14(b). We observe that the suboptimal
flow structure is exclusively located in the near-corner region with a spanwise extent
similar to the corner mode. This observation is remarkable, considering that > 90 % of
the contributing modes, i.e. all even symmetric Tollmien–Schlichting modes, possess
strong non-decaying spatial support along both walls up to the far field. Seemingly,
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FIGURE 14. Optimal spatial initial condition for Rex= 57 500 and ω= 0.13: (a) spectrum
indicating the amplitude |κ| of the modal expansion coefficients; (b) spatial structure
visualised as in figure 4.

the complex expansion coefficients are optimised in such a way that destructive wave
interference leads to localisation in the near-corner region.

In order to shed some light on the role of specific modes in the expansions, the
corresponding modes are excluded in reduced subspaces, and the resulting energy
gain curves are compared in figure 15(a). Figure 15(b–d) depict the spectra of the full
subspace, the reduced subspace with the leading mode II-E removed, and the reduced
subspace with the corner mode C removed, respectively. The expansion coefficient
moduli are indicated as in figure 14(a). Per definition, the overall maximum energy
gain is achieved for the non-reduced subspace of 30 modes. From figure 15(c) and
the corresponding energy gain curve in figure 15(a), no qualitative difference can be
seen when the leading mode is removed. The expansion coefficient amplitude gets
redistributed among the other even viscous modes, and the maximum gain attained
is somewhat lower. If, however, the corner mode is removed, then the gain decreases
monotonically, and no transient energy amplification is observed. It is hence concluded
that the corner mode plays a catalytic role in the expansion: no transient energy gain
is possible if the mode is excluded from the expansion, whereas the occurrence of
transient growth is not dependent on a full set of viscous modes. In conclusion,
the spatial energy amplification can be regarded as the result of a viscid–inviscid
interaction. This observation is also in agreement with the energetic analysis, where
inviscid and viscid stability characteristics were associated with different parts of the
3 structure (compare figure 11(a,b), respectively).

The response corresponding to the suboptimal expansion at the streamwise location
of maximum gain is visualised in figure 16(a). Figure 16(b) shows a three-dimensional
reconstruction of the same local solution for comparison with the global mode of
the same frequency from the direct simulation (§ 4.1), i.e. figure 7(c). Apparently, the
suboptimal response closely resembles the 3 structure seen in the simulation results.

A quantitative comparison between non-modal theory and the numerical simulation
is presented in figure 17 by means of modal amplification curves. The streamwise
origin of the local analysis is moved to the neutral point position of the simulation
data (same as shown in figure 9a). A good agreement between non-modal theory and
numerical data in terms of the streamwise maxima’s location and the relative offset
of the curves is observed for ω ∈ [0.13, 0.19]. For lower values of ω, however, the
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reconstruction assuming parallel flow and zero spatial amplification visualised as in
figure 7.

trend reverses and increasingly lower values of maximum gain are predicted by theory.
It is noteworthy, though, that the deviation from the simulation occurs for ω ≈ 0.11,
the same frequency as earlier identified as the separating value between two supposed
mechanisms in the simulation (see figure 9b), and by the sensitivity analysis (see
figure 13c). Obviously, the low-frequency mechanism cannot be represented by the
eigenfunction expansion within the subset STS∪C. This is consistent with the analysis
of the dependence of the resolvent norm on the frequency discussed in § 5.1.
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Note that the transient energy gain G in figure 17 is on a slightly different scale.
In general, the non-modal approach underpredicts the simulation data by ≈ 20 %.
It has to be considered, though, that the approach is local, and therefore has a
certain ambiguity in the choice of the Reynolds number for a convective problem.
The results can be brought to very good agreement in terms of the positions of the
maximum gains by slightly adjusting the Reynolds number. However, we wish to
demonstrate that good agreement can be achieved even by taking the least biased
choice, i.e. the middle of the computational domain. A possible explanation for the
second mechanism, and reasons for why the eigenfunction expansion fails in this
context, are addressed in appendix A.

6. Discussion and conclusions
The spatial stability of streamwise corner flow at Ma = 0.8 has been studied by

means of linear stability theory, and compared to a DNS of the harmonically forced
base state. Even though the flow is found to be subcritical by means of linear theory,
frequency-dependant spatial amplification over some distance is observed behind
the perturbation source in the DNS in the form of a 3-shaped structure located in
the near-corner region. A direct comparison of the results is enabled by spectrally
decomposing the multi-frequency response of the simulated flow field by means of
dynamic mode decomposition. The amplification behaviour suggests the presence of
two distinct mechanisms that get mingled during the spatial downstream amplification
process. This conjecture is further confirmed by a sensitivity analysis of the spatial
linear stability operator, and quantitative agreement between the DNS results and
local non-modal growth theory is achieved for the mechanism associated with higher
frequencies. The corresponding spatial structure of the suboptimal response is also
found in good visual agreement with the 3 structure observed in the DNS. In the
low-frequency regime, the eigenvector expansion fails to predict correct amplification
rates for numerical reasons detailed in appendix A. Despite these numerical issues, a
highly likely scenario for the low-frequency mechanism is deduced from the numerical
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evidence. It is further demonstrated that the inviscid corner mode plays a unique
catalytic role in the spatial transient growth process. In conclusion, the subcritical
amplification is identified as spatial transient growth through pseudo-resonance of
viscous Tollmien–Schlichting waves with the inviscid corner mode. Beforehand, both
inviscid and viscous characteristics are attested to the 3 structure by considering the
modal perturbation energy balance.

Note that no optimal perturbation was specifically forced in the DNS, and yet
spatial transient growth is observed and accurately predicted by theory. The present
results are in agreement with the results of Alizard et al. (2013), where the authors
calculated optimal perturbations for the incompressible corner flow solution under
the parallel-flow assumption. The optimal structures found there compare well with
the ones identified in the present study. Compare figure 19a,b in that reference with
figures 4(b) and 16(a) of the present work, respectively. In their optimal temporal
framework, Alizard et al. (2013) also identified two mechanisms that lead to a local
and a global maximum in the temporal energy evolution.

It is found that physical insight into an instability mechanism can be gained by
identifying the involved parts of the local linear stability spectrum through optimal
expansions in the region of interest. The role of specific modes can also be examined
by exclusion from the basis, as demonstrated for the corner mode in figure 15. The
cooperation of two different types of global modes to form an optimal solution
was also noticed by Garnaud et al. (2013) in a different context. Here, the authors
found that the spatial structures associated with optimal body forcing inside the
pipe of an incompressible configuration are built of a combination of local shear
layer and jet column modes. As in our case, one mode is associated with a highly
inflectional region, i.e. the shear layer in Garnaud et al. (2013), and the corner mode
in ours. The weighting of the two mechanisms was found to be frequency-dependent,
again, as in our case, and maximum transient growth was found for a combined
scenario. This is a strong indication that viscid–inviscid pseudo-resonance might
be a general phenomenon leading to selective noise amplification. This is also
supported by the work of Alizard, Cherubini & Robinet (2009) where the authors
investigated the sensitivity and optimal forcing in a laminar separation bubble. The
latter flow shares the locally inflectional nature of streamwise corner flow, or the
aforementioned jets, and reveals a similar tendency towards large transient growth
through a pseudo-resonance. Seemingly, this particular kind of pseudo-resonance has
to be expected whenever an inviscid and a viscid global structure spatially overlap. It
would be desirable to test this conjecture further by considering other related flows
such as the flow behind roughness elements, or over cavities and steps.

In ongoing work, the nonlinear behaviour of corner flow up to transition
is examined by means of the same DNS set-up. The analysis of the stability
characteristics in terms of an input–output analysis based on global singular modes
in the spirit of Sipp & Marquet (2013) is numerically challenging, and also remains
a future task.
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Appendix A. Low-frequency transient amplification and limitations of the
eigenfunction expansion

The discontinuity of the maximum resolvent’s phase speed when ω is reduced in
figure 13(c) suggests that a different or enlarged subset of eigenfunctions should be
used to properly expand the low-frequency mechanism. Indeed, two likely candidates
of discrete-mode branches are found close to the continuous branch in the full
spectrum. The two branches consist of modes that are even and odd symmetric with
respect to the bisector, and have spatial support around the latter. It is observed that
these bisectorial modes get increasingly badly conditioned with increasing distance
from the real axis. In general, it is found that ill-conditioned modes (often modes
whose far-field behaviour is not properly represented by the boundary conditions) lead
to non-physical transient amplification predictions when included in the eigenfunction
expansion. As this is a rather numerical issue, it is addressed in appendix B. Transient
growth calculations with the bisectorial mode branches included were conducted,
and in fact do predict a second local maximum approximately at the anticipated
streamwise locations. However, the energy gain is by far overpredicted, and the
flow structures corresponding to the optimal initial condition and response exhibit
maxima in the far-field corner. This indicates improper boundary conditions for the
modes in question. In summary, the low-frequency transient amplification behaviour
is likely to be described by the eigenfunction expansion including the bisectorial
modes. However, the numerical techniques used for the present work do not allow
for a proper representation of such modes, and hence the low-frequency transient
growth. Please refer to appendix B for more details on eigenvector conditioning, and
the connection with improper far-field boundary conditions for truncated modes.

Appendix B. Eigenvector conditioning of the spatial linear stability operator
In § 5.2, it became apparent that the inclusion of certain eigenfunctions in the

expansion (2.24) leads to non-physical transient growth predictions. In the following,
we connect the latter observation to the conditioning of eigenvectors, and to the
far-field boundary representation, as well as domain truncation. The condition number
of a simple eigenvalue αi is given as

ς = p̃H
i q̃i

‖p̃i‖2‖q̃i‖2
= 1
|cos θi| , (B 1)

where θi is the angle between a right eigenvalue q̃i and a left eigenvalue p̃i of −M̃−1L̃.
The interpretation is that perturbation of O(ε) can cause a perturbation of O(ε/|cos θ |)
in the eigenvalue α. The discretised linear spatial stability operator −M̃−1L̃q̃ = αq̃
results from the reduction of the generalised eigenvalue problem (2.20) to a standard
one, and requires the inversion of M̃ . The condition number ς is calculated for
the full set of eigenvectors obtained by means of the QR algorithm for ω = 0.19
and ω = 0.06, representing the high- and the low-frequency regime, respectively.
In figure 18, the condition number is indicated in the corresponding spectra. The
highest values referring to the most ill-conditioned eigenvectors are found for the
modes close to the real axis at unity phase velocity, i.e. continuous modes of a high
spanwise wavelength. In general, the homogeneous Neumann boundary conditions do
not represent the two-dimensional wave structure of such modes sufficiently, and lead
to maxima of the eigenvector along the far-field boundaries. This effect gets more
pronounced with increasing spanwise wavelength. For the same reason, the corner
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FIGURE 18. Spectra showing the eigenvalue condition number ς of the spatial linear
stability matrix −M̃−1L̃ at Rex = 57 500 for (a) ω= 0.19 and (b) ω= 0.06.

mode is the best conditioned mode in figure 18(a) since it has compact support,
and is hence not influenced by the far-field conditions. In figure 18(b), the two
parabola-shaped branches of bisectorial modes are readily identifiable as they enclose
the continuous spectrum. This class of modes is favourably conditioned close to the
real axis. Here, the modes’ spatial extent is limited to the region close to the corner,
whereas their bisectorial extent increases further upwards in the spectrum, and results
in inferior conditioning. The latter ill-conditioned modes exhibit numerical artefacts
in the far-field corner region, and prohibit a successful eigenvector expansion of the
low-frequency transient growth mechanism. In this case, it is no longer possible to
distinguish between numerical error and physical transient growth.
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