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The linear stability of supersonic �ow in a streamwise corner is examined. A steady base

�ow at a free-stream Mach number of Ma = 1.5 is calculated as a solution to the parabolized

Navier-Stokes equations. Temporal growth rates for incoming and outgoing waves are

compared. A new inviscid odd-symmetric corner mode not present in the incompressible

spectrum is identi�ed. Additionally, fast and slow traveling acoustic modes are calculated

in an enlarged computational domain and categorized with respect to bisector-symmetry

and wall-boundedness.

Nomenclature

α, β streamwise and spanwise wave numbers
δ1 displacement thickness
ı imaginary unit
κ heat capacity ratio
Ma Mach number
σ sponge zone weight function
q vector of primitive variables
A, B, C PNS coe�cient matrices
Dy, Dz Chebyshev di�erentiation matrices
L, r linear PNS operator and right hand side
µ dynamic viscosity
ω angular frequency
ρ density
a speed of sound
a, b grid transformation factors
c phase speed
cp, cv heat capacity at constant pressure and volume, respectively
k thermal conductivity
N number of collocation points
Pr Prandtl number
R ideal gas constant
Rex Reynolds number
T temperature
u, v, w Cartesian velocity components
x, y, z Cartesian coordinates

I. Introduction

We consider the linear stability of shock-free compressible �ow along an axial corner formed by two
perpendicular semi-in�nite �at plates. The generic corner �ow problem is of major interest as it models
a wide range of technical applications, e.g. the wing-fuselage or �n-fuselage intersections of an airplane.
Figure 1 depicts a schematic diagram of the geometry. Here, x, y and z denote the streamwise coordinate
and the two spanwise coordinates, respectively. At distances far from the corner, the �ow resembles the two-
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Figure 1. Schematic diagram of �ow in a streamwise corner.

dimensional �ow over a �at plate with an additional cross-�ow velocity component caused by the displacement
e�ect of the opposing wall. This cross-�ow component can be calculated by means of asymptotic theory
and enabled Weinberg and Rubin9 to derive a full set of self-similar equations governing the compressible
corner �ow problem using the formalism of matched asymptotic expansions. We take a di�erent path and
calculate the �ow as a solution to the parabolized Navier-Stokes (PNS) equations. The two-dimensional
stability of the incompressible limit was �rst examined by Parker and Balachandar5 within the framework
of temporal linear stability theory. Spatial stability was considered later by Galionis and Hall3 by means of
the parabolized stability equations (PSE). This paper intends to extend the linear stability analysis to the
compressible �ow regime. A representative supersonic free-stream Mach number of Ma = 1.5 is chosen for
this purpose. The procedure used to obtain the laminar base �ow is described in section II followed by the
temporal linear stability analysis in section III. Conclusions are presented in section V.

II. Base �ow

The laminar base �ow is calculated as a solution to the parabolized Navier-Stokes equations with zero
streamwise pressure gradient which can be written in compact matrix form as7

A
∂q

∂x
+ B

∂q

∂y
+ C

∂q

∂z
= 0. (1)

Equation (1) is linearized by lagging of coe�cients. The matrices A, B ,C are the coe�cient matrices and
q = [ρ, u, v, w, T ]T is the vector of primitive variables, namely, density ρ, Cartesian velocity components
u, v, w and temperature T . The solution is spatially advanced in the streamwise direction from q(i) to
q(i+1) over an integration step ∆x using the implicit Euler method starting from the initial solution vector
q0 = [ρ∞, u∞, 0, 0, T∞] at x = 0. For the transversal planes, a pseudo-spectral Chebyshev-Chebyshev
collocation method is used to calculate derivatives in the spanwise directions.2 Thus, derivatives in the y and
z-direction are obtained by multiplying the solution vector with the corresponding Chebyshev di�erentiation
matrices Dy and Dz. Additionally, a sponge zone enforces the asymptotic cross-�ow pro�le near the far-�eld
boundaries through a source term σ(q(i+1)−qr) in the momentum equations.1 σ is a weight function and qr

the asymptotic cross �ow solution calculated as suggested by.4 The resulting discretized di�erential equation
reads

A

(
q(i+1) − q(i)

∆x
+O(∆x)

)
+ BDyq

(i+1) + CDzq
(i+1) − σ(q(i+1) − qr) = 0 (2)
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and can be recast as a linear system
Lq(i+1) = r. (3)

Equation (3) is solved on a transformed Gauss-Lobatto grid

y = a
1 + ŷ

b− ŷ
, a =

yiymax

ymax − 2yi
, b = 1 +

2a

ymax
(4)

for the transversal planes. By means of transformation (4), the original Gauss-Lobatto points ŷj = ẑj =
cos(jπ/N), j = 1, 2, . . . N de�ned on [−1, 1] are transformed to the physical space [0, ymax] with half of
the grid points concentrated on the interval [0, yi].

6 All length scales are non-dimensionalized by the local
displacement thickness δ1, pressure by twice the dynamic pressure ρ∞u2

∞ and all other quantities by their
respective free-stream values. Subscript ∞ refers to free-stream values. We chose the incompressible def-

inition δ1 =
´∞
0

(
1− u

u∞

)
dy of the momentum loss thickness. The state of the �ow is described by the

dimensionless Reynolds, Prandtl and Mach number

Rex =
ρ∞u∞x

µ∞
, P r =

cpµ∞

k∞
, Ma =

u∞

a∞
. (5)

Here, µ is the dynamic viscosity, cp the heat capacity at constant pressure, k the thermal conductivity and
a the speed of sound. The system of equations is closed by the assumption of an ideal gas governed by the
equation of state

p = ρRT. (6)

with R denoting the ideal gas constant.The viscosity and thermal conductivity are determined as a function
of the local temperature from Sutherland's law. We chose the following gas properties

Ma = 1.5, P r = 0.714,

p∞ = 1.01325 · 105 Pa, T∞ = 293.15 K,

κ = 1.4, cp = 1005 J
kgK , R = 287 J

kgK ,

(7)

for our calculations. Here, κ = cp/cv is the heat capacity ratio and cv the heat capacity at constant volume.
An adiabatic wall is assumed for temperature and density. No-slip conditions are enforced for the velocity
components. A homogeneous Neumann, i.e. zero-gradient condition is applied to the solution vector on
far-�eld boundaries. The solution is marched in space with steps of size ∆x = 0.00015 from the initial
solution vector q0 = [ρ∞, u∞, 0, 0, T∞] on a 40×40 collocation point grid with ymax = 45 and yi = ymax/25.
Figure 2 shows a comparison between the PNS method at hand at an exemplary Reynolds number and the
self-similar solution by Weinberg and Rubin9 for three di�erent Mach numbers. It can be seen that the
streamwise (a) and cross�ow (b) velocity pro�les are in good agreement. The combined displacement e�ects
of the two walls result in a jet-like cross�ow pro�le as visualized in (c) by isolines of v.

III. Linear stability

Within the framework of temporal linear stability theory, the �ow �eld is decomposed into a time depen-
dent �uctuation q′ and a steady primary state q0

q(x, y, z, t) = q0(x, y, z) + q′(x, y, z, t). (8)

The steady primary state is given by the PNS solution in section II. The perturbation is assumed to be of
normal mode form

q′(x, y, z, t) = q̂(y, z) · eı(αx−ωt). (9)

Here, α is the streamwise wave number and ω is the angular frequency. Temporal growth of in�nitesimally
small disturbances occurs for imaginary parts of the angular frequency ωi > 0. Under the assumption of
equations (8), (9) and a parallel base �ow, the generalized eigenvalue problem of linear stability theory

Aq̂ = ωBq̂ (10)

3 of 8

American Institute of Aeronautics and Astronautics



Figure 2. (a,b) Velocity pro�les along symmetry line: (lines) self-similar solution of Weinberg & Rubin,9 (◦) PNS for
Ma = 0.01, (♦) PNS for Ma = 0.95, (�) PNS for Ma = 1.5; (a) streamwise velocity u, (b) cross�ow velocity v. (c) Isolines
of cross�ow velocity v in the transversal plane at Rex = 5 · 105 and Ma = 1.5: (thick lines) v > 0, (thin lines) v < 0,
(dashed line) u = u99, (+) v = vmax.

is deduced from the Navier-Stokes equations. More details on two-dimensional linear stability theory can be
found in Ref 8. At solid walls, zero velocity and temperature �uctuations are assumed

û = v̂ = ŵ = T̂ = 0. (11)

Sommerfeld's radiation condition
∂q̂

∂n
= ıβq̂ (12)

permits imposition of a phase angle tan−1(β/α) on far-�eld boundaries.5 Figure 3 compares the spectra
for a high resolution 65×65 grid with a lower resolution grid of 45×45 collocation points. It can be seen
that the latter yields comparably good results in the relevant part of the spectrum (dashed box) with the
grid clustering parameter yi properly chosen. The dashed box encloses the most ampli�ed modes of the
Tollmien-Schlichting (TS) branch at phase speeds c ≈ 0.5 and the inviscid corner modes (see section IV).
The otherwise continuous branch is rendered discrete by the spacial discretization and the �nite domain
extend that allow only for modes of certain spanwise wave numbers to be resolved.

IV. Results

The linear stability problem (10) is solved for Rex = 8.9 · 104 corresponding to the critical Reynolds
number of the one-dimensional asymptotic far-�eld pro�le at β = 0. The spanwise wave numbers resolved in
the computational domain are not known a priori due to the break of symmetry by the corner. Therefore,
we calculate solutions for a range of β enforced on far-�eld boundaries by means of Sommerfeld's radiation
condition. Figure 4(a) shows part of the spectrum with pairs of even (-E) and odd-symmetric (-O) modes
connected by dashed lines. Symmetric refers to symmetry with respect to the corner bisector. Latin numbers
indicate multiples of the fundamental spanwise wave number. In addition to the viscous modes, a pair of
inviscid corner modes (-C) can be seen. The odd-symmetric corner mode at ωi ≈ 0.25 was not observed up to
the present in incompressible corner �ow stability studies. The dependence of the temporal ampli�cation rate
on β is depicted in 4(b). It can be seen that all modes but mode II-E experience maximum ampli�cation at
some negative value of β, i.e. incoming waves. The odd-symmetric corner mode shows almost no dependence
on β as expected while its even-symmetric counterpart exhibits a small increase in temporal ampli�cation
around ωi ≈ −0.05.
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Figure 3. Convergence of eigenvalues for Rex = 2.5 · 105, Ma = 1.5, α = 0.2, β = 0: (◦) N = 65, yi = 2, (•) N = 45,
yi = ymax/5, (dashed box) relevant part of spectrum.
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Figure 4. Dependence of temporal ampli�cation on β for Ma = 1.5, α = 0.19 at the critical Reynolds number of the
one-dimensional far-�eld; (solid symbols, -E) even/symmetric TS modes, (empty symbols, -O) odd/antisymmetric TS
modes, Latin numbers indicate increasing spanwise wave numbers, (dashed lines) connect even/odd mode pairs of equal
spanwise wave number, (F, C) corner mode: (a) spectrum, (b) modal growth rates ωi versus spanwise wave number β.
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This viscous behavior of mode C-E is further investigated by visualizations of the eigen�eld structure in
�gure 5. Isolines of the streamwise perturbation velocity û are shown in (a), a spatial-temporal reconstruction
of the eigen�eld is shown in (b) and a near-wall cutting plane of the latter at y = 1 in (c). It is observed that
the mode changes its form towards a modulated structure typical for higher harmonic TS type instabilities
at some distance from the corner (y, z & 15).

Figure 5. Eigen�eld of streamwise perturbation velocity û for the even-symmetric corner mode (C-E) at Rex = 8.9 · 104,
Ma = 1.5, α = 0.19, β = −0.21: (a) contours of |û|, (b) temporal isosurfaces (blue: û = −0.75ûmax, red: û = 0.75ûmax),
(c) Temporal evolution of streamwise perturbation velocity contours over 1.5 periods at constant wall distance z = 1;
(thick lines) û > 0, (thin lines) û < 0, (dashed line) û = 0.

The odd-symmetric corner mode as shown in �gure 6 is spatially restricted to the corner region and
possesses a higher temporal growth rate. However, both modes are damped for the Reynolds number
investigated.

Figure 6. Same as Figure 5 for the odd-symmetric corner mode (C-O).

In a next step, the computational domain is spatially extended for proper resolution of acoustic modes.
This is done by extrapolation of the PNS base �ow solution from ymax = 45 to ymax = 80 under the assump-
tion of a constant far-�eld solution comprised of the asymptotic limit for all �ow quantities. Additionally,
the number of collocation points along each direction is increased to N = 60 to obtain converged results.
A spectrum for the enlarged domain calculation is depicted in �gure 7. The most distinct features of the
spectrum are the continuous branch at c ≈ 1, the fundamental and two higher harmonic TS branches and
the horizontally aligned fast (right, c & 1.66) and slow (left, c . 0.33) traveling acoustic mode branches.
Note that all acoustic modes are temporally dampened as in the �at-plate scenario.

The acoustic modes can be categorized with respect to speed (fast and slow, c = 1±1/Ma), symmetry and
wall-boundedness. Examples of each are presented in �gure 8. While modes (a-c) are active in the far-�eld,
modes (d) and (e) appear wall-bounded. Among higher harmonics of wall-bounded and non-wall-bounded
modes an acoustic corner mode is identi�ed in the slowly traveling branch (f, note the di�erent coordinate
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Figure 7. Eigenvalue spectrum for Rex = 8.9 · 104, Ma = 1.5, α = 0.19, β = 0, N = 60, yi = ymax/8, ymax = 80.

scaling).

V. Conclusions

The linear stability of the �ow in a streamwise corner is studied atMa = 1.5 and Rex = 9.8·104. Temporal
growth rates of incoming and outgoing waves are obtained by variation of the far-�eld phase angle through
Sommerfeld's radiation condition. A new inviscid, odd-symmetric corner mode is identi�ed in the spectrum
which was not observed in hitherto existing studies. Additionally, acoustic disturbances are calculated in an
enlarged computational domain. Among them, an acoustic corner mode is found.
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Figure 8. Isosurfaces of the streamwise perturbation velocity û for Rex = 8.9 · 104, Ma = 1.5, α = 0.19, β = 0, N = 60,
yi = ymax/8, ymax = 80 (blue: û = −0.75ûmax, red: û = 0.75ûmax): (a) even fast acoustic mode, (b) odd fast acoustic
mode, (c) even slow acoustic mode, (d) fundamental and (e) higher harmonic wall-bounded slow acoustic modes, (e)
slow even acoustic corner mode.
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