Spectral analysis of jet turbulence
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Informed by large-eddy simulation (LES) data and resolvent analysis of the mean
flow, we examine the structure of turbulence in jets in the subsonic, transonic and
supersonic regimes. Spectral (frequency-space) proper orthogonal decomposition is
used to extract energy spectra and decompose the flow into energy-ranked coherent
structures. The educed structures are generally well predicted by the resolvent
analysis. Over a range of low frequencies and the first few azimuthal mode numbers,
these jets exhibit a low-rank response characterized by Kelvin—Helmholtz (KH) type
wavepackets associated with the annular shear layer up to the end of the potential
core and that are excited by forcing in the very-near-nozzle shear layer. These modes
too have been experimentally observed before and predicted by quasi-parallel stability
theory and other approximations — they comprise a considerable portion of the total
turbulent energy. At still lower frequencies, particularly for the axisymmetric mode,
and again at high frequencies for all azimuthal wavenumbers, the response is not
low-rank, but consists of a family of similarly amplified modes. These modes, which
are primarily active downstream of the potential core, are associated with the Orr
mechanism. They occur also as subdominant modes in the range of frequencies
dominated by the KH response. Our global analysis helps tie together previous
observations based on local spatial stability theory, and explains why quasi-parallel
predictions were successful at some frequencies and azimuthal wavenumbers, but
failed at others.
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1. Introduction

Large-scale coherent structures in the form of wavepackets play an important role
in the dynamics and acoustics of turbulent jets. In particular, their spatial coherence
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makes wavepackets efficient sources of sound (Crighton & Huerre 1990; Jordan
& Colonius 2013). They are most easily observed in forced experiments, where
periodic exertion establishes a phase reference. The measurements of a periodically
forced turbulent jet by Crow & Champagne (1971) served as a reference case for
wavepacket models. Early examples of such models include the studies by Michalke
(1971) and Crighton & Gaster (1976), who established the idea that the coherent
structures can be interpreted as linear instability waves evolving around the turbulent
mean flow.

Wavepackets in unforced jets exhibit intermittent behaviour (Cavalieri et al. 2011)
and as a result are best understood as statistical objects that emerge from the
stochastic turbulent flow. We use spectral proper orthogonal decomposition (SPOD)
(Lumley 1970; Towne, Schmidt & Colonius 2018) to extract these structures from
the turbulent flow. SPOD has been applied to a range of jets using data from both
experimental (Glauser, Leib & George 1987; Arndt, Long & Glauser 1997; Citriniti
& George 2000; Suzuki & Colonius 2006; Gudmundsson & Colonius 2011) and
numerical studies (Sinha et al. 2014; Towne et al. 2015; Schmidt et al. 2017).

Wavepackets have been extensively studied, mainly because of their prominent role
in the production of jet noise, and models based on the parabolized stability equations
(PSE) have proved to be successful at modelling them (Gudmundsson & Colonius
2011; Cavalieri et al. 2013; Sinha et al. 2014). This agreement between SPOD
modes and PSE solution breaks down at low frequencies and for some azimuthal
wavenumbers, and in general downstream of the potential core. In the present study,
we show that the SPOD eigenspectra unveil low-rank dynamics, and we inspect the
corresponding modes and compare them with predictions based on resolvent analysis.
The results show that two different mechanisms are active in turbulent jets, and they
explain the success and failure of linear and PSE models.

Resolvent analysis of the turbulent mean-flow field seeks sets of forcing and
response modes that are optimal with respect to the energetic gain between them.
When applied to the mean of a fully turbulent flow, the resolvent forcing modes
can be associated with nonlinear modal interactions (McKeon & Sharma 2010) as
well as stochastic inputs to the flow, for example the turbulent boundary layer in
the nozzle that feeds the jet. Garnaud et al. (2013) interpreted the results of their
resolvent analysis of a turbulent jet in the light of experimental studies of forced jets
by Moore (1977) and Crow & Champagne (1971). They found that the frequency of
the largest gain approximately corresponds to what the experimentalists referred to
as the preferred frequency, i.e. the frequency where external harmonic forcing in the
experiments triggered the largest response. In the context of jet aeroacoustics, Jeun,
Nichols & Jovanovi¢ (2016) restricted the optimal forcing to vortical perturbations
close to the jet axis, and the optimal responses to the far-field pressure. Their results
show that suboptimal modes have to be considered in resolvent-based jet noise
models.

In this paper, we use resolvent analysis to model and explain the low-rank behaviour
of turbulent jets revealed by SPOD. Recent theoretical connections between SPOD
and resolvent analysis (Towne et al. 2015; Semeraro et al. 2016a; Towne et al.
2018) make the latter a natural tool for this endeavour and provide a framework for
interpreting our results.

The remainder of the paper is organized as follows. The three large-eddy simulation
databases used to study different Mach number regimes are introduced in § 2. At first,
the focus is on the lowest Mach number case in §§3-5. We start by analysing the
data of this case using (mainly) SPOD in §3, followed by the resolvent analysis in
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§ 4. The results of the SPOD and the resolvent model are compared in §5. Section 6
addresses Mach number effects observed in the remaining two cases representing
the transonic and the supersonic regime. Finally, the results are discussed in § 7. For
completeness, we report in the Appendix all results for the higher Mach number
cases that were omitted in § 6 for brevity.

2. Large-eddy simulation

The unstructured flow solver ‘Charles’ (Bres et al. 2017) is used to perform
large-eddy simulations of three turbulent jets at Mach numbers M; = U;/c; of 0.4,
0.9 and 1.5. All jets are isothermal and the supersonic jet is ideally expanded. The
nozzle geometry is included in the computational domain, and synthetic turbulence
combined with a wall model is applied inside the nozzle to obtain a fully turbulent
boundary layer inside the nozzle. The jets are further characterized by their Reynolds
numbers Re = p;U;D/;, which correspond approximately to the laboratory values in
a set of companion experiments, and a Prandtl number of Pr = 0.7. The reader is
referred to Bres ef al. (2017) for further details on the numerical method, meshing
strategy and subgrid-scale model. A detailed validation of the M; = 0.9 jet including
the nozzle-interior turbulence modelling (i.e. synthetic turbulence, wall model) can
be found in Bres et al. (2018). The subscripts j, 0 and oo refer to jet, stagnation
and free-stream conditions, respectively. ¢ is the speed of sound, p density, D
nozzle diameter, p dynamic viscosity, 7 temperature and U; the axial jet velocity
on the centreline of the nozzle exit, respectively. Throughout this paper, the flow
is non-dimensionalized by its nozzle exit values, pressure by ,ojsz, lengths by
D and time by D/U;. Frequencies are reported in terms of the Strouhal number
St = w/(2nM;), where @ is the non-dimensional angular frequency. The parameters
of the three simulations are listed in table 1: py/ps is the nozzle pressure ratio,
Ty/Ts the nozzle temperature ratio, n..;s the number of control volumes, dfc.,/D the
computational time step and #y,,/c.D the total simulation time after the flow became
stationary, i.e. without initial transients. The unstructured large-eddy simulation (LES)
data are first interpolated onto a n, X n, X ng structured cylindrical grid spanning
x, r, 6 € [0, 30] x [0, 6] x [0, 2w]. Snapshots are saved with a temporal separation
Atcs,/D (see table 2 below). For both the spectral analysis in § 3, and the resolvent
model in §4, we Reynolds-decompose a flow quantity g into the long-time mean
denoted by (-) and the fluctuating part (-)" as

qx, 1, 0,0)=q(x,r,0)+4 (x,r,0,1). 2.1

A visualization of the subsonic jet is shown in figure 1. Only the domain of interest
for this study is shown (the full LES domain is much larger and includes flow within
the nozzle as well as far-field sponge regions).

The mean centreline velocity of the three jets is compared in figure 2(a). The
plateau close to the nozzle characterizes the potential core, whose length increases
with Mach number. A weak residual shock pattern is observed for x < 10 in the
supersonic case. The streamwise development of turbulent jets is usually described
in terms of an initial development region (0 < x/D < 25), and a self-similar region
(x/D =2 25): see e.g. Pope (2000). In the latter, the jet is fully described by a
self-similar velocity profile, and a constant spreading and velocity-decay rate. For a
dynamical description of the flow, we further divide the initial development region
into two parts. The initial shear-layer region extends up to the end of the potential
core (0 <x/D <5 for M =0.4) and is characterized by a constant velocity jump
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FIGURE 1. (Colour online) Instantaneous flow field of the subsonic jet: (a) streamwise
cross-section along the jet axis; (b—e) transverse planes at different streamwise locations
x. The streamwise velocity fluctuation i, is shown. The potential core and the jet width
are indicated as lines of constant u#, at 99 % and 5% of the jet velocity Uj;, respectively.

Po Ty dtco, LsimCoo
I; i Neells D D
Subsonic 04 045x10° 1.117 1.03 159 x 10° 1x1073 2000
Transonic 0.9 1.01 x 10° 1.7 1.15 159x10° 1x10°? 2000

Supersonic 1.5 1.76 x10% 3.67 145 31x10° 25x107* 500

Case M; Re

TABLE 1. Parameters of the large-eddy simulations.

over the shear layer, and a linearly increasing shear-layer thickness. The developing
jet region lies between the end of the potential core and the start of the self-similar
region (5 Sx/D < 25). In this region, the centreline velocity transitions rapidly to its
asymptotic decaying behaviour. The mean radial velocity profile, on the other hand,
has not yet converged to its self-similar downstream solution. The 1/x-scaling of the
centreline velocity with streamwise distance (Pope 2000) is indicated for the subsonic
case. The momentum thickness shown in figure 2(b) increases approximately linearly
in all three regions in all cases. These characteristic velocities and length scales in
each region imply different frequency scalings that will become important later.

In §§3-5, we will focus on the M =0.4 jet as the main conclusions are similar for
all three Mach number regimes, and we address Mach number effects in detail in § 6.

3. Spectral analysis of the LES data

In this section, we use spectral proper orthogonal decomposition (SPOD) to identify
coherent structures within the three turbulent jets. This form of proper orthogonal
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FIGURE 2. (Colour online) Mean-flow characteristics for the three jets: (a) centreline
velocity u, =u,(x, r=0); (b) momentum thickness §y = for' (puy/peue) (1 — u,/u.) dr, where
the integral is taken from the centreline to r; defined as u,(r) =i + 0.011; (the U, term
is included to account for a small coflow included in the simulations). The centreline
velocity becomes inversely proportional to the axial distance shortly after the potential
core, and the momentum thickness increases approximately linearly.

Interpolated database SPOD

Atcy
D

Subsonic 02 656 138 128 30 6 10000 256 128 78
Transonic 02 656 138 128 30 6 10000 256 128 78
Supersonic 0.1 698 136 128 30 6 5000 256 128 39

TABLE 2. Parameters of the structured cylindrical grid of the interpolated database (left),
and the SPOD parameters (right).

Case ny n. ng X n n Meg  Movip  Mpik

decomposition (POD) identifies energy-ranked modes that each oscillate at a single
frequency, are orthogonal to other modes at the same frequency and, as a set,
optimally represent the space—time flow statistics. SPOD was introduced by Lumley
(1967, 1970) but has been used sparingly compared to the common spatial form of
POD (Sirovich 1987; Aubry 1991) and dynamic mode decomposition (Schmid 2010).
However, recent work by Towne et al. (2018) showed that SPOD combines the
advantages of these other two methods — SPOD modes represent coherent structures
that are dynamically significant and optimally account for the random nature of
turbulent flows. This makes SPOD an ideal tool for identifying coherent structures
within the turbulent jets considered in this paper.
We seek modes that are orthogonal in the inner product

— p
(919, E—///q diag ( oM s 05 05 Ps )/()/—1)TMQ> q,rdxdrdo, 3.1)

which are optimal in an induced compressible energy norm (-, -)g (Chu 1965). The
energy weights are defined for the state vector ¢ = [p, uy, u,, ug, T)'(x, r, 0, £) of
primitive variables, density p, cylindrical velocity components u,, u, and uy, and
temperature 7. The notation (-)* indicates the Hermitian transpose. We discretize the
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inner product defined by (3.1) as

(g1, 9,)e=q1Wq,, (3.2)

where the weight matrix W accounts for both numerical quadrature weights and the
energy weights. Since the jet is stationary and symmetric with respect to rotation about

the jet axis, it can be decomposed into azimuthal Fourier modes (T)m of azimuthal
wavenumber m, temporal Fourier modes (-), of angular frequency w or combined
spatio-temporal Fourier modes Fourier modes ()

mw

qie, 1. 0.0=>_ 4,0, r.0e" = "§,0x, 1,0 =" §(x, ne"™e”.  (3.3)

To calculate the SPOD, the data are first segmented into sequences Q =
[q"g? --- q"=] each containing ny, instantaneous snapshots of g which are
considered to be statistically independent realizations of the flow under the ergodic
hypothesis. Details of the interpolated databases and spectral estimation parameters
are listed in table 2.

The spatio-temporal Fourier transform of the /th block is obtained by first
computing the discrete Fourier transform (DFT) in the time direction, i.e. along
the rows of Q. This allows us to restrict the analysis to positive frequencies, as the
LES data are real. Subsequently, the DFT of the complex temporally decomposed
data is taken in the circumferential direction, yielding a spectrum of positive and
negative m, which is, however, approximately symmetric due to rotational symmetry.
In practice, this procedure is most conveniently achieved by storing the raw data Q as
a three-dimensional array. The spatio-temporal Fourier transform yields the ensemble

A(l) NOEPS . L
Q... [q;il)qu,g)z qf,lll) ] of Fourier realizations, where q(l)k is the Ith realization

of the Fourier transform ‘at the kth discrete frequency. A periodic Hann window is
used to minimize spectral leakage. The ensemble of n,, Fourier realizations of the
flow at a glven frequency w; and azimuthal wavenumber m are now collected into a

data matrix Q,,,, = [qf;;kqfnzj)k . qzlc’j)’:)] For a particular m and w, the SPOD modes

are found as the eigenvectors ¥, = [¢() ¥@ ... 4p®w] and the modal energy as

mwy ¥ mwy mawy
the corresponding eigenvalues A, = dlag(/l“) A2 A=) of the weighted

mwy° mwg’ ° "
cross-spectral density matrix S, = Qmw‘ C?mwA as

éma)k W‘Ilma)k = ll’mkama)k . (34)

The modes are sorted by decreasing energy, ie. A0) > A% > ... > A%, This
formulation guarantees that the SPOD modes have the desired orthonormality property
(2 . W0 e = 8;, where §; is the Kronecker delta function, and are optimal in
terms of modal energy in the norm induced by (3.2). For brevity, we denote the /th
eigenvalue and the pressure component of the corresponding eigenmode as 4; and
wp(’), respectively. The dependence on a specific azimuthal wavenumber and frequency
is implied and given in the description. Since the SPOD modes are optimal in terms
of energy, we sometimes refer to the first SPOD mode as the leading or optimal
mode and to the subsequent lower-energy modes as suboptimal modes.

Since we wish to express the data in terms of modes that oscillate at real and
positive frequencies, we take the temporal Fourier transform in (3.3) first. Statistical
homogeneity in 6 implies that averaged quantities are the same for any £m. After

verifying statistical convergence, we add the contributions of positive and negative m.
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FIGURE 3. (Colour online) SPOD eigenvalue spectra (MBI, A; > A, > --- > Ay) for the
subsonic jet: (a) m =0; (b) m=1; (¢) m=2; (d) m = 3. For, m > 0, the positive
and negative azimuthal wavenumber components are summed. Red shaded areas (M red)
highlight the separation between the first and second modes.

The distribution of power into the frequency components a signal is composed of
is referred to as its power spectrum. Power spectra are commonly expressed in terms
of the power spectral density (PSD), which we will introduce later in (3.5). In the
context of SPOD, we are interested in finding a graphical representation that can be
interpreted in a similar way. In each frequency bin, the discrete SPOD spectrum is
represented by the decreasing energy levels of the corresponding set of eigenfunctions.
There is no obvious continuity in the modal structure of the most energetic mode
(or any other) from one frequency bin to the next. Nevertheless, it is instructive
to examine how the modal energy changes as a function of frequency, so that in
what follows we plot the SPOD eigenvalues for each mode [ as functions A,(St) of
frequency and refer to the resulting curves as the SPOD eigenvalue spectra.

The SPOD eigenvalue spectrum of the axisymmetric component of the subsonic jet
is shown in figure 3(a). The red shaded area highlights the separation between the first
and second modes. A large separation indicates that the leading mode is significantly
more energetic than the others. When this occurs, the physical mechanism associated
with the first mode is prevalent, and we say that the flow exhibits low-rank behaviour.


https://doi.org/10.1017/jfm.2018.675
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

960 O. Schmidt, A. Towne, G. Rigas, T. Colonius and G. Brés

(a) 3 SPOD mode 1 m=0 (b) SPOD mode 2
NI

00004 RAN A danc b s

@) I :
et )8 VU7 )T

(e) SPOD mode 1 m=1 f) SPOD mode 2
; S1=0.6
2000008280000 Bd: ¢
(gi D () -
'Y s)eiv)s] BF 2BO8580008

) SPOD mode 1 m=2 @) SPOD mode 2
St=0.6
0080808 - $0D0AN L v
0]

Y si=02 St=0.2 _
soDobusL’ s 8004 02D Bud

(m) SPOD mode 1 m=3 (n) SPOD mode 2

3

.2 B St=0.6

(1) sunshbbuhab R T U,
(Oi 3 St=0.2 P) St=0.2

[ HrDoAvN \ + 520000000 s

0 5 10 15 0 5 10 15 20

X X

FIGURE 4. (Colour online) Comparison between SPOD mode 1 (a.c,e,g.i,k,m,0) and
SPOD mode 2 (b,d,f,hj,lnp) at two representative frequencies for the subsonic jet: (a—d)
m=0; (e<h) m =1; (i-l) m = 2; (m—p) m = 3. The normalized pressure component
(M red, black, blue, —1 <¥,/l[¥,ll < 1) is shown in x, r € [020] x [0 3].

The low-rank behaviour is apparent over the frequency band 0.2 < St < 2, and
peaks at St~ 0.6. It is most pronounced for m =0 and m =1, shown in figures 3(a)
and 3(b), respectively. With increasing azimuthal wavenumber, the low-rank behaviour
becomes less and less pronounced. For m = 1, the dominance of the optimal gain
persists to low frequencies, whereas it cuts off below St~ 0.2 for m=0. For m=2 in
figure 3(c), the eigenvalue separation is less distinct, but a visual inspection of modes
confirmed that the leading mode is of the same physical nature for all frequencies.
These results should be compared with the optimal gain spectra shown in figure 8.
The corresponding spectra for the transonic and supersonic cases are reported in the
Appendix (figures 18 and 20).

Figure 4 shows the first (a,c,e,g,i,k,m,0) and the second (b,d,f.hj,l,np) SPOD
modes at two representative frequencies and for m =0, ..., 3. The most energetic
mode at m =0 and St = 0.6 is shown in figure 4(a). These parameters correspond
approximately to the point of maximum separation between the first and second
mode in figure 3(a). The pressure field takes the form of a compact wavepacket in
the initial shear-layer region of the jet (see figure 2). Its structure is reminiscent of
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the Kelvin—Helmbholtz shear-layer instability of the mean flow (Suzuki & Colonius
2006; Gudmundsson & Colonius 2011; Jordan & Colonius 2013). Crighton & Gaster
(1976) argued that the mean flow can be regarded as an equivalent laminar flow, and
found that it is convectively unstable (in the local weakly non-parallel sense) in the
initial shear-layer region. Following their interpretation of this structure as a modal
spatial instability wave, we refer to it as a KH-type wavepacket. The suboptimal
SPOD mode shown in 4(b) has a double-wavepacket structure with an upstream
wavepacket similar to the KH type and a second wavepacket further downstream.
This double-wavepacket structure is similarly observed at other frequencies and
azimuthal wavenumbers, most prominently in figure 4(b,f,h,j,n). The turbulent mean
flow in this region is convectively stable — it does not support spatial modal growth.
Tissot et al. (2017) argue that the presence of large-scale structures in this region can
be explained in terms of non-modal growth through the Orr mechanism. Our resolvent
model presented in § 4 supports this idea, and we therefore term these downstream or
Orr-type wavepackets. Large parts of this paper are dedicated to establishing a clear
separation and explanation of these two distinct mechanisms.

In order to further isolate mechanisms associated with different regions of the
jet, we construct empirical frequency—wavenumber diagrams by taking the Fourier
transform in the streamwise direction of the LES pressure along the lip line (r=0.5).
We compute the spatio-temporal PSD as

Npik

_ 1 .
Pyy=— Z |C]£,?wa|2’ 3.5)

L0/

where (T)a is the Fourier transform in the axial direction and « the axial wavenumber.
In figure 5, the PSD is plotted, and compared to the PSD computed with different
window functions constraining the signal to specific regions along the streamwise axis,
specifically 0 < x < 5, representing the annular shear layer, and 10 < x < 30, the
developing jet.

Qualitatively similar results are found for m = 0 (a—) and m =1 (d—f). In the
initial shear-layer region investigated in figures 5(a) and 5(d), the pressure PSD
follows the line of constant phase speed c,, = 0.8 and peaks at St~ 0.5 for m =0,
and a slightly lower frequency for m = 1. This phase speed is typical for KH-type
shear-layer instability waves, and the peak frequencies are close to the ones where the
low-rank behaviour is most pronounced in figures 3(a) and 3(b), respectively. In the
developing jet region in figures 5(b) and 5(e), waves propagate with approximately
half of the phase speed observed in the initial shear layer, and the PSD peaks at the
lowest resolved frequency. The PSD for the entire domain shown in figures 5(c) and
5(f), by construction, combines these effects.

4. Resolvent model

A key concept that emerged from the early studies of transient growth (Farrell
& loannou 1993; Reddy & Henningson 1993; Reddy, Schmid & Henningson 1993;
Trefethen et al. 1993) is that of the resolvent operator. The resolvent operator is
derived from the forced linearized equations of motion and constitutes a transfer
function between body forces and corresponding responses. It has been used to
study the linear response to external forcing of a range of laminar flows including
channel flow (Jovanovi¢ & Bamieh 2005; Moarref & Jovanovi¢ 2012), boundary
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FIGURE 5. (Colour online) Frequency—wavenumber diagrams (CJM white, blue, red,
log,,(P,,)) of the subsonic simulation along the lip line (r = 0.5) over axial sections
representative of the potential core (a,d), downstream of the potential core (b,e) and the
entire jet (c,f). The behaviours for m =0 (a—c) and m =1 (d—f) are similar. Two lines
of constant phase speed (——, ¢,; =0.8) and (---, c¢,, =0.4) are shown as a reference.
Rows share the same contour levels.

layers (Monokrousos et al. 2010; Sipp & Marquet 2013) and the flow over a
backward-facing step (Dergham, Sipp & Robinet 2013).

When the resolvent is computed for the turbulent mean flow, the forcing can be
identified with the nonlinear effects, namely the triadic interactions that conspire to
force a response at a given frequency and azimuthal wavenumber (McKeon & Sharma
2010). Previous resolvent analyses of turbulent jets include those of Garnaud et al.
(2013), Jeun et al. (2016) and Semeraro et al. (2016b).

The use of a resolvent model is motivated by recent findings that connect SPOD and
resolvent analysis (Towne ef al. 2015; Semeraro et al. 2016b; Towne et al. 2018).
Specifically, SPOD and resolvent modes are identical when the SPOD expansion
coefficients are uncorrelated, which is typically associated with white-noise forcing.

4.1. Methodology

We start by writing the forced linear governing equations, here the compressible
Navier—Stokes equations, as an input—output system in the frequency domain

(—iwl — Aq,,,, = Bf . (4.1)
j\’mw = C@mw’ (4'2)

where A, is the linearized compressible Navier—Stokes operator, ¢,,, is the state vector
as before and f,,, the (for now unspecified) forcing. Equation (4.2) defines the output,
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or response, ¥, as the product of an output matrix C with the state. Analogously, an
input matrix B is introduced in (4.1). Without forcing, the right-hand side of equation
(4.1) is zero, and the global linear stability eigenvalue problem for g, and ® is
recovered. We use the same discretization scheme as in Schmidt er al. (2017) and
refer to that paper for details of the numerical method.

Equations (4.1) and (4.2) allow us to express a direct relation between inputs and
outputs,

j\’mw = Hmw Amw’ (43)
by defining the resolvent operator

H,., = C(—iwl — A,)"'B 4.4)

as the transfer function between them. We further define the modified, or weighted,
resolvent operator

Ruw= W, *H,,W; P = YZF" (4.5)

that accounts for arbitrary inner products on the input and output spaces that are
defined shortly. In the last equality of equation (4.5), we anticipated the result that

1 2 N
the optimal responses Y =[50 52 ... 5% forcings F = [f,(ml f,(m)u : f,(nw)]
amplitude gains ¥ = diag(oy, 0, ..., O’N) can be found from the singular Value

decomposition (SVD) of the modified resolvent operator. By (-) we denote singular
or eigenvectors. The modified resolvent operator in (4.5) is weighted such that the
orthonormality properties

Gt T )y =Ty Wy =8 and (4.6)
fl(l) (]) f —f " Wff ) — 3 4.7

mw? mw

hold for the optimal responses in the output norm (-, -),, and the forcings in the
input norm (-, -)s, respectively. The optimal forcings and responses are found from
the definition of the optimal energetic gain

/\
> >

(f )_ max mw’j}mw>y — (ymw,j’mw)y

Hfmu)”f_l <fmwafmw>f (jma)’ jmw>f

between inputs and outputs (see e.g. Schmid & Henningson 2001). By writing the
energetic gain in the form of a generalized Rayleigh quotient and inserting equations
(4.3) and (4.4), it is found that the orthogonal basis of forcings optimally ranked by
energetic gain can be found from the eigenvalue problem

=Gf)=0f @8

w;' B (—iwl — A,) "W, C(—iwl — A,) "' Bf,0 =2 f 0. (4.9)

mw

Equation (4.11) is solved by first factoring (—iwl — A,,) = LU (Sipp & Marquet 2013)
and then solving the eigenvalue problem

w,'B'U L c’w,cUu'L"'BF = FX? (4.10)

for the largest eigenvalues using a standard Arnoldi method. The corresponding
responses are readily obtained as

Y=R..F=w)’cu'L"'Bw;"F. (4.11)
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In this study, we quantify both the energy of the input and the output in the
compressible energy norm, as defined in (3.2), by setting W, = W; = W. The
matrices B and C we use for the sole purpose of restricting the analysis to the
physical part of the computational domain by assigning zero weights to the sponge
region. The physical solution domain corresponds to the domain of the LES data
detailed in table 2. Note that the nozzle is not part of this computational domain.
This simplifies the numerical discretization, and is motivated by the convective nature
of the KH-type shear-layer instability waves. As discussed in the literature review
in §1, the KH waves can be modelled as local spatial instability modes, or PSE
solutions that are initiated by a local mode at some distance downstream of the
nozzle. We therefore do not expect a significant effect on their modal shape. Other
studies (Garnaud er al. 2013; Jeun et al. 2016; Semeraro et al. 2016b) include a
pipe as a nozzle subtitute, and we would expect quantitative changes to the gain,
as the additional spatial upstream extent allows for a more efficient exploitation of
the convective non-normality. The Orr-type waves are most efficiently forced close
to their spatial support, as discussed in § 4.2 below, and we therefore do not expect
them to be affected by the nozzle.

The solution domain is surrounded by a sponge region of width D, and discretized
using 950 x 195 points in the streamwise and radial direction, respectively. The
streamwise extent of the domain sets a limit of St > 0.2 on the lowest possible
frequency. For lower frequencies, the response structures become so elongated that
domain truncation affects the gain. An upper limit on St is imposed by the numerical
discretization, i.e. the capability of the differentiation scheme to resolve the smallest
structures in the response and forcing fields for the given resolution. This limit is
St < 2.5 for the subsonic, St < 1.5 for the transonic and St < 1 for the supersonic
case, respectively. A molecular Reynolds number of Re =3 x 10* is used for this
study. We return to this issue later and discuss our rationale in §4.3.

4.2. Resolvent spectra and modes

Figure 6 shows the optimal and the five leading suboptimal forcings and responses for
St=0.6 and m =0. The leading mode in figure 6(b) resembles a KH-type instability
wavepacket that is confined to the initial shear-layer region. The corresponding optimal
forcing in figure 6(a) is confined close to the nozzle. The inset in figure 6(a) reveals
that the KH-type wavepacket is most efficiently forced by a structure that is oriented
against the mean shear in the vicinity of the lip line. This is a typical manifestation
of the Orr mechanism and has similarly been observed in resolvent models of other
flows (e.g. in Garnaud et al. 2013; Dergham et al. 2013; Jeun et al. 2016; Semeraro
et al. 2016b; Tissot et al. 2017). The suboptimal modes in figure 6(d,f.h.j,[) contain
two wavepackets: one in the initial shear layer region that is similar to the KH
wavepackets in the optimal mode, and a second further downstream in the developing
jet region. With increasing mode number, the downstream wavepacket moves upstream
and becomes more spatially confined. It is optimally forced downstream of the inlet
and over an axial distance comparable to the length of the response. Following
the same arguments as for the suboptimal SPOD modes presented in figure 4, we
term the downstream wavepackets Orr-type wavepackets. Both the KH-type and the
Orr-type wavepackets are optimally exerted via the Orr mechanism. From a local
stability theory point of view, the two mechanisms are distinguished by their modal
and non-modal nature: see Jordan et al. (2017) and Tissot et al. (2017).

Tissot et al. (2017) found that the critical layer, defined where the phase speed
of the wavepacket is equal to the local mean velocity, plays an important role
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FIGURE 6. (Colour online) Optimal and suboptimal resolvent forcings (a,c,e,g,i,k) and
corresponding responses (b,d,f,h.j,[) of the subsonic jet for St = 0.6 and m = 0. The
pressure field (MM red, black, blue) is normalized with respect to its maximum absolute
value. The optimal response mode in (a) is of KH type, whereas all suboptimal modes
combine the KH- and Orr-type waves. The inset in (a) shows the forcing structure close
to the nozzle. The shear layer and the potential core are outlined as in figure 1.
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FIGURE 7. (Colour online) The critical layer effect in the subsonic jet for St =0.6 and
m=0: (a) estimated phase velocity ( red, first mode; blue, second mode); (b,c)
normalized pressure of the first and second mode (ME[J) and critical layer location where
¢pn =1u,. The KH and Orr wavepackets clearly follow the critical layer.

in the forced linear dynamics of jets. In accordance with our interpretation, their
results suggests that the Orr mechanism is active downstream of the potential
core. Figure 7(a) shows the phase velocity of the leading and first suboptimal
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FIGURE 8. (Colour online) Optimal energetic gain spectra (WL}, oy > 0, > - - - > oy) for
the subsonic jet: (a) m=0; (b) m=1; (¢) m=2; (d) m=3. The difference between
the optimal and the first suboptimal mode (M red) highlights the low-rank behaviour. The
thirty largest singular values were computed for m =0, and the three largest for m > 0. In
the inset in panel (a), the KH-type mode is tracked ( blue) into the frequency range
where it becomes suboptimal. The leading mode at St =0.33 (4) serves reference and the

scalar projection (g?, q,(.:;) £ onto that mode is used for the tracking.

resolvent response for m = 0 and St = 0.6. The phase velocity is approximated as
cpn ~ w/(06,/0x), where 0, = arg(¢,) is the local phase of the pressure along r=0.5.
The phase velocity is plotted for the regions where the pressure exceeds 25 % of its
global absolute maximum value. The phase velocity of the upstream wavepacket in
the initial shear layer is almost identical for the first and second response modes.
Besides their similar structure, this also suggests that the primary wavepacket
of the suboptimal mode is of KH type. The phase velocity of the downstream
wavepacket decreases with axial distance in accordance with the jet’s velocity-decay
rate. Figure 7(b,c) shows that the first and second wavepackets closely follow the
critical layer. The variation of the phase speed with axial distance explains why the
KH and Orr wavepackets are characterized by broad bands in frequency—wavenumber
space: see figure 5.

Resolvent gain spectra for the first four azimuthal wavenumbers are shown in
figure 8. As in figure 3, we highlight the difference between the leading and the first
suboptimal gain to emphasize low-rank behaviour. A pronounced low-rank behaviour
is evident for 0.3 < St <2 for m =0 as can be seen in figure 8(a). The 20 leading
modes were calculated for m = 0, and the the three leading modes for m > 0. The
inset in panel 8(a) shows that the KH mechanism persists into lower frequencies
as a suboptimal mode (—— blue). The reference mode is of pure KH type, and
it was confirmed by visual inspection of the mode shapes (not shown) that the KH
signature indeed prevails in the suboptimal modes. The vertical line segments indicate
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FIGURE 9. (Colour online) Reynolds number effect on the energetic gain of the subsonic
jet: (a,b) optimal gain spectra for m =0 and m = 1; (c,d) energetic gain at St =0.6 for
m=0 and m = 1. The blue dashed line marks the Reynolds number Re =3 x 10* used
for the present study.

transitions to the next lower singular suboptimal. At high frequencies, the continuation
is more obvious. For all four azimuthal wavenumbers, the curve associated with the
KH wavepacket crosses the suboptimal gain curves at St ~ 2. This marks the end
of the low-rank frequency band. For m > 0, the low-rank band extends to lower
frequencies. Figure 8(b) shows that a strong low-rank behaviour is predicted for
frequencies even lower than the minimum frequency St < 0.2 for m = 1. With
increasing azimuthal wavenumber, the low-rank behaviour becomes less and less
pronounced. All these qualitative trends are reflected in the empirical SPOD energy
spectra in figure 3. The direct comparison of the SPOD analysis with the resolvent
model is the subject of §6.

4.3. Reynolds number effects

The effect of the Reynolds number on the spectrum of the discretized linearized
Navier-Stokes operator A, is studied in Schmidt et al. (2017, appendix D). In
figure 9, the effect of the Reynolds number on the resolvent gain is investigated. The
optimal gain o} for m =0 and m =1 shown in figures 9(a) and 9(b), respectively,
increases with increasing Reynolds number over the entire frequency range. Above
Re > 3 x 10%, the gain does not show a pronounced dependence on the Reynolds
number for all but the lowest frequencies for m = 0. The gain of the leading ten
modes at a fixed frequency of St = 0.6 is shown in figure 9(c,d). At this particular
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frequency, the optimal gain is significantly higher than the suboptimal gains, which are
all of comparable magnitude. Similar to the modal energy gap in the SPOD analysis,
this reflects the low-rank behaviour of the jet in the resolvent model. The suboptimal
gains follow an approximate power law behaviour over the range of Reynolds number
studied. The different behaviour of the optimal and the suboptimal gains highlights
the disparate physical nature of the two mechanisms. Their different scalings highlight
the importance of a proper choice of Reynolds number for mean-flow-based resolvent
models. In particular, the model Reynolds number determines which of the two
mechanisms dominates at a certain frequency. This becomes apparent, for example,
for m=0 at low frequencies: the kink in the gain curves in figure 9(a), which marks
the transition from one scaling to another, shifts to higher frequencies with increasing
Reynolds number. For Re = 7.5 x 10%, the exchange of optimal mechanisms occurs
at St ~ 0.35, whereas it occurs at St ~ (0.25 for Re = 5000. We chose a Reynolds
number of Re =3 x 10* for the present study. This choice is motivated by the good
correspondence with the LES, as discussed in the next section. For now, and in
the absence of a proper model for the effective Reynolds number, the Reynolds
number has to be understood as a free model parameter. Mettot, Sipp & Bézard
(2014), for example, demonstrate that resolvent analyses based on the linearized
Reynolds-averaged Navier—Stokes (RANS) equations with modelled turbulence do not
necessarily give superior results to our ad hoc approach.

5. Comparison of the SPOD and resolvent models

In this section, we make comparisons between the high-energy SPOD modes and
the high-gain resolvent modes. This comparison is facilitated by recently established
theoretical connections between the two methods (Towne et al. 2015; Semeraro
et al. 2016b; Towne et al. 2018). Specifically, the resolvent operator relates the
cross-spectral density of the nonlinear forcing to the cross-spectral density of the
response. If the forcing were uncorrelated in space and time with equal amplitude
everywhere, i.e. unit-variance white noise, then the SPOD and resolvent modes would
be identical. This result is conceptually intuitive: when there is no bias in the forcing,
the modes with highest gain are also the most energetic.

The nonlinear forcing terms in real turbulent flows are, of course, not white. Zare,
Jovanovi¢ & Georgiou (2017) showed that it is necessary to account for correlated
forcing in order to reconstruct the flow statistics of a turbulent channel flow using
a linear model. Of particular relevance to our study, Towne, Brés & Lele (2017a)
investigated the statistical properties of the nonlinear forcing terms in a turbulent jet.
They found limited correlation in the near-nozzle shear layer but significant correlation
further downstream, especially near and beyond the end of the potential core.

Correlated nonlinear forcing leads to differences between SPOD and resolvent
modes. Precisely, the correlation causes a bias in the forcing that preferentially
excites certain resolvent modes and mixes them together via correlations between
different modes (Towne et al. 2018). As a result, multiple resolvent modes are
required to reconstruct each SPOD mode. Accordingly, we do not expect a one-to-one
correspondence between the SPOD and resolvent modes of the jet. Rather, we are
looking for the signatures of the high-gain resolvent modes within the high-energy
SPOD modes. That is, we seek evidence that the mechanisms identified in the
resolvent modes are active in the real flow and responsible for the most energetic
coherent structures.

The leading mode SPOD energy spectra (see figure 3) and optimal resolvent gain
curves (see figure 8) for m=0, ..., 3 are compared in figure 10. In figure 10(a), we
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FIGURE 10. (Colour online) First SPOD mode energy spectra (a) and optimal resolvent
gain (b) for 0 <m < 3 for the subsonic jet. A five-point moving average filter was used
to increase the clarity of the SPOD spectrum.
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FIGURE 11. (Colour online) Empirical SPOD modes (a,c,e,g,i,k) and optimal resolvent
response modes (b,d,f,h,j,l) for St =0.6 and m =0 for the subsonic jet. The normalized
pressure is shown. The leading resolvent response in (b) accurately models the leading
SPOD mode in (a).

show the relative energy of the leading mode in percentages of the total energy at
each frequency. We choose this quantity as a qualitative surrogate for the gain, which
is not defined for the LES data. The resolvent gain curves capture the trends of the
SPOD eigenspectra remarkably well. The peak in relative energy of the leading m =0
SPOD mode in figure 10(a) clearly indicates low-rank behaviour. At low frequencies,
the ordering of the resolvent gains is directly reflected in the relative importance of
the corresponding SPOD modes.

A comparison of the six leading resolvent and SPOD modes for m =0 and St=0.6
is shown in figure 11. The KH-type wavepacket of the first SPOD mode in 11(a)
closely resembles the optimal resolvent mode in figure 11(b). Unlike the resolvent
responses (as discussed in the context of figure 6), the subdominant SPOD modes
do not follow an immediately obvious hierarchy. Similar to the resolvent modes, they
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FIGURE 12. (Colour online) Comparison between leading empirical SPOD modes
(a,c.e.g,ik,mo,q) and optimal resolvent response modes (b.d,f,hj,l.np,r) at three
representative frequencies for the subsonic jet: (a—f) m=0; (g-I) m=1; (m—r) m=3.
The normalized pressure is shown. The leading modes compare favourably with the
exception of the low frequency case for m =0 shown in (e,f), where the SPOD mode
is of KH type, whereas the optimal response mode is of Orr type. Only part of the
computational domain is shown for clarity.

exhibit a multi-lobe structure and peak downstream or at the end of the potential
core. Close to the nozzle, their structure resembles the KH-type waveform of the
first mode. Their highly distorted structure suggests that their statistics may not be
as well converged as the leading mode. The first three modes are characterized by
an increasing integer number of lobes or successive wavepackets (this becomes much
more evident in figure 14 below).

Figure 12 makes direct comparisons between the leading SPOD and resolvent
modes for different frequencies (St =1.0, 0.6, 0.2) and azimuthal wavenumbers (m =
0, 1, 3). In general, the modes compare well for frequency—azimuthal wavenumber
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FIGURE 13. (Colour online) Isolation of the mechanisms for spatial modal growth in the
initial shear layer, and non-modal spatial growth further downstream for the subsonic jet:
(a) SPOD spectra; (b) optimal resolvent gain spectra; (c—f) normalized pressure field for
St = 0.6. For the SPOD, the restriction is realized via the weight matrix and the non-
zero weighted regions are shown. For the resolvent analysis, the forcing and response are
restricted via the input and output matrices.

combinations that exhibit low-rank behaviour according to the SPOD and resolvent
gain spectra in figures 3 and 8, respectively. For example, good agreement is
obtained for St =0.6 and St =1.0 for m =0 and m =1, i.e. figure 12(a—d,g—j). In
figure 12(e,f), the leading resolvent mode is an Orr-type wavepacket far downstream
of the potential core, whereas the SPOD mode peaks further upstream and has a larger
axial wavelength. For m = 3 in figure 12(m—g) and higher azimuthal wavenumbers,
the SPOD modes appear to be less well converged as compared to their low m
counterparts. This is, again, explained by the observation that the low-rank behaviour
decreases as m increases.

Both the SPOD and resolvent methodologies allow us to isolate the characteristics
of the KH-type wavepackets near the nozzle and the downstream Orr-type wavepackets
through their different spatial support. In the SPOD analysis, we utilize the weight
matrix W to assign zero weight to the region we wish to exclude, e.g. x > 10, to focus
on the initial shear-layer region and vice versa for the developing jet region. The
resulting energy spectra and modes are depicted in figure 13(a,c,e). For the resolvent
analysis, we restrict both the forcing and the response to the region of interest
through the input and output matrices B and C. The resulting gain spectra and modes
are shown in figure 13(b,d,f). The SPOD and gain spectra consistently separate the
two mechanisms. In both cases, the spectra obtained without spatial restriction are a
superposition of the spectra of the two isolated physical mechanisms. The different
spatial support of the restricted SPOD (figure 13e) and resolvent (figure 13f) modes
emphasizes that the forcing of the subdominant mode is clearly not white, though
there are obvious similarities in the wavepacket shape indicating a similar mechanism.
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FIGURE 14. (Colour online) Frequency—axial distance diagrams ([, f’pp) along the lip
line (rp =0.5) for m =0 (top half) and m =1 (bottom half) for the subsonic jet. The
three leading SPOD and resolvent modes are compared. The estimated pressure PSD, 13,, ,
is normalized by its maximum value at each frequency. The end of the potential core
(---, x=15.3), and a Strouhal number of St=0.3 ( blue) differentiate shear layer from

developing jet behaviour. The different frequency scalings of shear layer ( magenta,
St~ 1/x) and jet wavepackets ( green, St~ 1/x?) are indicated.
Plotting the temporal and azimuthal PSD,
~ 1 Nblk
Poy=—>"14%,(c. r=ry)P’, (5.1)

Mot * 7

as a function of x along a line of constant distance r, from the axis allows us to locate
the wavepackets in space. The resulting frequency—axial distance diagrams are shown
in figure 14 for m=0 and m=1. The results for the SPOD and the resolvent response
modes are directly compared. This form of visualization of the SPOD modes brings to
light the hierarchal structure of the SPOD modes more clearly. From figures 12(a—c)
for m = 0, and 12(g—i) for m = 1, respectively, it becomes apparent that the
higher-order modes are characterized by an increasing number of subsequent
wavepackets in the streamwise direction.
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FIGURE 15. (Colour online) Azimuthal wavenumber dependence of the relative modal
energy of the SPOD (a), and the optimal resolvent gain (b) for three representative
frequencies for the subsonic jet.

The change from KH-type shear-layer instability to Orr-type wavepackets in the
developing jet is apparent from the change of the slope of the PSD at (x, St) = (6, 0.3).
Different frequency scalings in the two regions explain this sudden change. They can
be directly deduced from the varying characteristic velocity and length scales of each
region as shown in figure 2. The initial shear layer grows linearly as 8, ~ x while
the characteristic velocity in that region, for example taken as (1/2)u,, stays constant
as u. #f(x). The frequency of the high-frequency wavepackets therefore scales with
St ~ u./8p ~ 1/x. The radial extent of the jet in the developing and self-similar
jet regions and can be characterized by the jet’s half-width r;,(x) defined as
u(x, r12) = (1/2)u.(x). It increases linearly with x (Pope 2000). The centreline velocity,
however, decays in inverse proportion to the axial distance. The frequency in that
region consequently scales with St~ u./r;» ~ 1/x*. The different frequency scalings
in the two regions of the jet are apparent in other studies on wavepacket modelling
(Cavalieri et al. 2016; Sasaki et al. 2017), and on acoustic-source localization (Bishop,
Ffowcs Williams & Smith 1971; Schlinker et al. 2009).

The optimal response modes in figures 14(d) and 14(j) accurately predict the
wavepacket location in the initial shear-layer region in the leading SPOD modes. For
m=1 in figure 14(j), the low-rank behaviour of the jet permits accurate predictions at
low frequencies. For m =0 (figure 14d), on the contrary, the non-low-rank behaviour
at low frequencies hinders a rank-one resolvent mode representation of the leading
SPOD mode. Similarly, the subdominant SPOD modes shown in figures 14(b,c) and
14(h,i) cannot be represented by a single suboptimal resolvent mode.

The azimuthal wavenumber dependence of the SPOD energy and the resolvent gain
is investigated in figure 15. As in figure 10, we show the percentage of the energy of
the first SPOD mode to highlight low-rank behaviour. The fall-off of the SPOD energy
spectra seen in figure 15(a) implies that the low-rank behaviour is more pronounced
at low azimuthal wavenumbers and lower frequencies. For higher frequencies such
as St = 1, the relative energy of the first SPOD mode is not a strong function of
the azimuthal wavenumber. At higher azimuthal wavenumbers m 2 10, its relative
energy content stays at &5 %, which is above the levels of the two lower-frequency
cases. Similar trends are observed for the resolvent gain shown in figure 15(b). The
maximum gain, for example, is attained for m =1, and the gain curve for the highest
frequency is a much weaker function of the azimuthal wavenumber than in the case
of two lower frequencies. For higher azimuthal wavenumbers, the gain falls off almost
monotonically.
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FIGURE 16. (Colour online) Comparison between leading empirical SPOD modes and
optimal resolvent response modes at three representative frequencies for m = 1 for the
transonic (a—f) and the supersonic jet (g—I). Panels (m) and (n) zoom in on a trapped
acoustic mode (Schmidt et al. 2017; Towne et al. 2017b) in the transonic jet, and an
upstream-propagating subsonic mode (Tam & Hu 1989) in the supersonic jet, respectively.
The normalized pressure is shown.

6. Effect of the Mach number

In the following, we address the effect of compressibility on the low-rank behaviour.
SPOD and resolvent analyses are conducted for the other two LES cases with

M;=0.9 and M; =1.5, respectlvely (see table 1). The main conclusions drawn from
the analysis of the subsonic case in §§ 3—4 regarding the behaviour of the KH- and
Orr-type wavepackets apply to the other regimes as well. We therefore catalogue the
complete results for the two additional higher Mach number cases in the Appendix,
and focus on specific Mach-number-dependent physical effects in this section.

Figure 16 shows a side-by-side comparison of SPOD and resolvent modes for the
transonic and the supersonic jet. The leading modes are shown for three frequencies.
Similar to the subsonic case in figure 12, favourable agreement between the empirical
modes and the model is found. Significant discrepancies in terms of the length of
the wavepackets and their radial structure is only observed for the transonic jet at
the lowest frequency, as shown in figure 16(e,f). In figure 16(g—j), it can be seen
that the resolvent model accurately predicts the super-directive Mach wave radiation


https://doi.org/10.1017/jfm.2018.675
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Spectral analysis of jet turbulence 975

@ [ sPoD, M=009 @) 17 Resolvent, M =0.9
20
~ 15 108
< o?
=0 109 m=0
m=1
10* m=2
%2 03 05 115 02 03 05 115 =3
(© 25| SPOD, M=1.5 @) 197 [ Resolvent, M =15
20
~ 15 106
< o?
= 10 10° \/\
104
2 03 0.5 1 02 03 0.5 1
St St

FIGURE 17. (Colour online) SPOD energy spectra (a,c) and optimal resolvent gains (b,d)
as in figure 10, but for the transonic (a,b) and the supersonic (c,d) jet.

of the supersonic jet. Sinha et al. (2014) found similarly good agreement with their
PSE model.

Besides the KH- and Orr-type wavepackets, which are vortical, jets also support
different types of frequency-dependent acoustic waves. The transonic jet, for example,
supports trapped acoustic waves within the potential core (Towne et al. 2017b;
Schmidt et al. 2017). Such a trapped acoustic wave can be seen close to the nozzle
in the detail shown in figure 16(m). In the supersonic jet, a closely related mechanism
(Tam & Hu 1989; Towne et al. 2017b) is visible further downstream in figure 16(n).
The reader is referred to Towne et al. (2017b) for details. In the present context, it
suffices to recapitulate that the trapped waves are the result of an acoustic resonance
in the transonic jet regime 0.82 <M; < 1. More important than their physical nature for
the present study is the observation that the resolvent analysis emphasized this type of
intrinsic mechanism. This becomes clear from a closer inspection of figures 16(c,d)
and 16(k,l), respectively. The acoustic wave phenomena are evident in the SPOD
modes, but are more pronounced in the resolvent modes. Two factors contribute to
this fact. First, the frequency and Reynolds number scaling of the various physical
effects is different, which leads to the same modelling challenges as for the KH- and
Orr-type modes discussed in the context of figure 9 (see also the Appendix, figure 21).
Second, efficient means of forcing, such as resonances, are optimally exploited by
the resolvent model, whereas they might not be forced as efficiently in the real flow.
A method to single out the trapped acoustic wave components in the transonic jet is
presented in Schmidt er al. (2017).

Figure 17 shows the leading SPOD mode energy and the optimal resolvent gain for
the transonic (a,b) and supersonic (c,d) cases. As in figure 10, spectra for the first four
azimuthal wavenumbers are reported. As in the subsonic case, favourable agreement
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FIGURE 18. (Colour online) SPOD eigenvalue spectra (MEL], 4, > A, > --- > Ay) as in
figure 3, but for the M =0.9 transonic jet: (@) m=0; (b) m=1; (c) m=2; (d) m=3.

of the qualitative trends is found between the SPOD analysis and the resolvent model.
The presence of the acoustic resonance mechanism associated with the trapped modes
is apparent in the gains. The peaks seen in figure 10(b), for example at (St, m) =
(0.4, 0) and (St, m) =~ (0.7, 1), coincide with the frequencies of branches of trapped
acoustic modes. The associated eigenvalues are only marginally damped in the global
spectra of the same operator (Schmidt et al. 2017). This proximity of the eigenvalues
to the real axis explains the peaks in the gain curves as a pseudo-resonance. The
acoustic branch locations are marked in the resolvent gain spectra shown in figure 19
(Appendix).

7. Summary and conclusions

Large-scale structures taking the form of spatially modulated wavepackets have
long been observed in turbulent jets, and past attempts to model them using linear
theory have met with partial success (Jordan & Colonius 2013). In this paper, we
use SPOD to distil these wavepackets from a high-fidelity numerical simulation and
demonstrate that a resolvent mean-flow model predicts them well. Both approaches
paint a consistent picture of two coexisting mechanisms. The KH-type instability
is active, over a range of frequencies and azimuthal wavenumbers, in the initial
shear layer whereas the region downstream of the potential core is dominated by
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FIGURE 19. (Colour online) Optimal energetic gain spectra ( , 01.3) as in figure 8 but
for the transonic M =0.9 jet: (a) m=0; (b) m=1; (¢) m=2; (d) m=3. The locations of
the branches of trapped acoustic modes are indicated by the doublets (m, n,), where n, is
their radial order and m the azimuthal wavenumber, as before. See Towne er al. (2017b)
and Schmidt er al. (2017) for details.

Orr-type waves. Moreover, in the initial shear-layer region, Orr-type waves are also
present but not readily observed as they are swamped by the high-gain KH waves.
We quantified both types of structures over a range of frequencies and azimuthal
wavenumbers. In addition to their differing spatial regions of dominance, they are
distinguished by their spatial support, phase speed and frequency scaling. KH-type
wavepackets can be regarded as local spatial instabilities. They convect with a phase
velocity of ¢,, ~ 0.8U; and are triggered by fluctuations close to the nozzle. This
spatial separation between optimal forcing and response characterizes a convective
non-normality (Marquet et al. 2009) in the presence of a spatial instability mechanism
(Alizard, Cherubini & Robinet 2009; Dergham et al. 2013; Beneddine et al. 2016).
By contrast, Orr-type waves convect at a lower speed in accordance with the jet’s
velocity-decay rate, and are most effectively sustained by distributed forcing. Both
the KH and Orr waves peak at the height of the critical layer in the radial direction
and are optimally forced by the Orr mechanism.

In the LES data analysis, frequencies at which the KH mechanism dominates are
identified by a separation between the first and second eigenvalues in the SPOD
spectrum, and the resolvent gain reliably predicts this low-rank behaviour. Although
this low-rank behaviour can in principle be inferred from the success of past studies
based on spatial linear stability theory (e.g. Michalke 1971), it is most compellingly
revealed in the SPOD and resolvent spectra. Equally important to its presence is
its absence. For m = 0 at very low frequencies, for example, the KH mechanism
is absent as the initial shear layer becomes short as compared to the perturbation
wavelength. Here, the jet exhibits non-low-rank behaviour and both the SPOD and
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(d)

FIGURE 20. (Colour online) SPOD eigenvalue spectra (ME[], 1, > A, > --- > Ay) as in
figure 3, but for the M = 1.5 supersonic jet: (a) m=0; (b) m=1; (c) m=2; (d) m=3.

the resolvent model predict the coexistence of Orr-type waves of similar energy. For
m=1, on the contrary, the KH mechanism persists to very low frequencies.

The non-low-rank behaviour explains why wavepacket models based on PSE such
as the ones by Gudmundsson & Colonius (2011), Cavalieri et al. (2013) and Sinha
et al. (2014) fail at these very low frequencies for m = 0. For example, the PSE
method is initialized with the locally most unstable spatial wave, which is then
propagated downstream by space marching. In the non-low-rank regime, this mode
does not optimally trigger transient growth and appears as a subdominant resolvent
mode. Furthermore, as volumetric forcing by the turbulence is not accounted for,
PSE cannot support the dominant Orr-type waves. With the goal in mind of further
improving its predictive capabilities, in particular at low frequencies, we plan to model
the second-order statistics of the forcing and incorporate them into a resolvent-based
jet noise model in future work.
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FIGURE 21. (Colour online) Optimal energetic gain spectra ( , 013) as in figure 8 but
for the supersonic M =1.5 jet: (a) m=0; (b) m=1; (c) m=2; (d) m=3. The pressure
of the leading and first suboptimal modes at (m, St) = (0, 0.2) are shown in (e) and (f),
respectively.

Appendix. Spectral analysis and resolvent model for the transonic and
supersonic jets

This appendix reports the additional results for the SPOD and resolvent analyses of
the M =0.9 and M = 1.5 jets, that were omitted in § 6 for brevity. The resolvent gain
spectra for the transonic and supersonic jets are reported in figures 19 and 21, and the
SPOD energy spectra in figures 18 and 20, respectively. The azimuthal wavenumber
dependence of the optimal gain and SPOD energy is studied in figure 22 for both jet
configurations. In figure 19, the locations of the branches of trapped acoustic modes
(Schmidt et al. 2017) are indicated, and their effect on the resolvent gain becomes
apparent.

For the supersonic jet shown in figure 21, a sudden change of slope is observed in
the suboptimal gain curves. An inspection of the modal structures confirms that this
change is associated with the presence of upstream-propagating subsonic waves (Tam
& Hu 1989), as previously discussed in the context of figure 16. In figure 21(e,f), the
dominant and the first suboptimal mode for (m, St) = (0, 0.2) are compared. At this
frequency, the leading mode is of KH type, whereas the second mode is of mixed
Orr/acoustic type. In the second mode in figure 21(f), the acoustic wave component
appears isolated in the stretch 6 <x < 12 along the axis. The trapped acoustic waves
in the transonic jet and the upstream-propagating subsonic waves in the supersonic
jet have a direct effect on the resolvent gain, as can be seen in figures 19 and 21,
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FIGURE 22. (Colour online) Azimuthal wavenumber dependence of the relative modal
energy of the SPOD (a,c), and the optimal resolvent gains (b,d) as in figure 15, but for
the transonic (a,b), and supersonic jet (c,d).

respectively. It is a remarkable property of the resolvent analysis that it is able to
isolate these physical phenomena. Both types of waves are also apparent in the SPOD
modes. However, they appear much less pronounces in the latter. This discrepancy is
also reflected in the SPOD energy spectra in figures 18(a) and 20(b), respectively. In
the SPOD spectra, the effect of these special waves is not apparent. This observation
further highlights the importance of the second-order forcing statistics. Other factors
are the Reynolds number dependence and the choice of norm.
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