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ABSTRACT

Large-scale coherent structures are educed from a large
eddy simulation of an initially turbulent, M = 0.9 isother-
mal jet by means of spectral proper orthogonal decomposi-
tion. The modal energy spectra reveal a low-rank behavior
that leads to a preferred amplification of Kelvin-Helmholtz-
type wavepackets within certain frequency bands. We in-
vestigate the linear frequency response of the turbulent
mean flow, and demonstrate that a resolvent analysis is ca-
pable of predicting the jet’s statistical low-rank behavior,
and the associated modal structures accurately. The results
also explain why previous wavepacket models based on the
parabolized stability equations were largely successful in
predicting modal shapes for certain frequencies, but not at
others.

INTRODUCTION

Large-scale coherent structures in turbulent jets have
been studied extensively since their early experimental ob-
servation by Mollo-Christensen (1963). Crighton & Gaster
(1976) were among the first to interpret these coherent
structures as modal perturbations about the temporal mean
flow. Based on a separation-of-scales argument, the mean
flow can be regarded as a base state which can be analyzed
by means of linear stability theory. Large-scale structures
in jets are of particular engineering interest as they are in-
timately linked to the dominant low aft-angle (with respect
to the jet axis) noise, for example of jet engines. Their role
as compact acoustic sources of sound is well established
through a large body of theoretical and experimental stud-
ies (Jordan & Colonius, 2013).

We investigate the optimally forced linear dynamics
of the turbulent mean of an isothermal subsonic turbulent
jet issued from a convergent-straight nozzle. Modal solu-
tions are obtained by means of global resolvent analysis,
and the results are compared to large-scale coherent struc-
tures educed from a large eddy simulation (LES) database
via spectral proper orthogonal decomposition (SPOD). In

Towne et al. (2016b) and Schmidt et al. (2016b), we
showed that high subsonic jets exhibit intrinsic dynamics
in the form of acoustic resonance between the nozzle and
a frequency-dependent downstream location within the po-
tential core. Here, we are interested in the jet’s extrinsic
linear dynamics, and more specifically, it’s response to op-
timal forcing.
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Figure 1. Instantaneous streamwise perturbation velocity
field of the turbulent jet LES.

LARGE EDDY SIMULATION DATABASE
Large-scale coherent structures are educed from
10,000 snapshots of a large eddy simulation of a M; = 0.9,
Re =~ 10°, isothermal, turbulent jet. Figure 1 shows an ex-
ample of the instantaneous flow field. The database was
calculated with the compressible flow solver “Charles” de-
veloped at Cascade Technologies (Bres et al., 2017). We
denote by g(x,7) = [p uy u, ug T)T (x,7,0,1) the state vec-
tor of primitive variables. uy, u,, ug are the cylindrical ve-
locity components, and p and T the density and temper-
ature, respectively. All variables are non-dimensionalized
by their centerline value in the nozzle plane and the nozzle
diameter. The Strouhal number St is used to represent the
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frequency in dimensionless form. The snapshots are sep-
arated by Ar = 0.2 dimensionless acoustic time units, and
interpolated on a 656x 138 x 128 cylindrical grid spanning
x,1,0 € [0,30] x [0,6] x [0,27]. The fluctuations ¢’ about
the long time mean g are found from the usual Reynolds
decomposition

q(x,r,0,1) =q(x,r,0) +q (x,r,0,1). ¢))

Under the assumption that the jet is statistically stationary,
and since the jet is round, we further decompose the data
into temporal and azimuthal modes as

q (x,r,0,t) = Z e (X, r)efi(ﬂ)tfme). )
"o

Energy is measured in terms of the inner product and its
associated norm

lqllE = (g.9)r = 4" Wa, 3)

based on the weighting

H r ___ p
JIE dlag(yﬁMymmmY(y_l)mz)qrdxdrde
“
for compressible flows. The quadrature weights and the
weights for the individual state variables are absorbed into
the weight matrix W in the discretized form above.

SPECTRAL PROPER ORTHOGONAL DE-
COMPOSITION

For comparison with linear theory, we seek a modal de-
composition of the simulation data in the frequency domain.
For non-periodic but statistically stationary data, such a de-
composition can be found by a proper orthogonal decompo-
sition (POD) of an ensemble of (assumingly) independent
Fourier realizations of the flow. To this end, we partitioning
the database into sequences of 256 snapshots with an over-
lap of 50%. Each sequence is Fourier decomposed in time,
leaving us with an ensemble Q = [qfn]a), q,(,,zg, q,(,iﬁ} of
N = 78 Fourier realizations. For each frequency, the eigen-
value decomposition

QT WQY = WA. 5)

of the (weighted) cross-spectral density matrix Q7 WQ
yields a basis Q = QW of orthonormal modes which maxi-
mize the energy measured in the compressible energy norm
(4). As in the resolvent analysis, we sort the eigenval-
ues such that ?15,,1(2, is the most energetic mode. We term
this decomposition spectral proper orthogonal decomposi-

tion (SPOD).
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Figure 2. Normalized pressure field of the five most ener-
getic SPOD modes for St = 0.5 and m = 0.

Figure 2 shows five most energetic SPOD modes for
St = 0.5. The leading mode shown in figure 2(a) resembles
a wavepacket similar to a Kelvin-Helmholtz (K-H) shear-
layer instability. The second mode in figure 2(b) shows a
double-wavepacket structure. Higher modes appear as in-
creasingly less organized.
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Figure 3. SPOD eigenvalues (MO, A; > A, >---Ay) as a
function of frequency for m = 0 and m = 1. The difference
between the leading and the second mode is highlighted in
red (H).

The SPOD eigenvalues shown in 3 are a direct mea-
sure of the modal energy. For both m =0 and m = 1, an
almost monotonic decrease of modal energy with frequency
is observed. For frequencies larger than St 2 1, the modal
energies presumably approach a slope of f%. Note that
St = 2.78 is the highest frequency permitted by the saving
interval of the database. A slope of —2 is shown for com-
parison with later results from the resolvent analysis. It is
also observed that the difference between energy levels of
subsequent modes is largest for the leading modes. This
holds true for the first and second mode in particular, as in-
dicated by the red shaded area. For m = 1, this behavior is
observed from the lowest frequency up to St ~ 1.5, whereas
this difference is solely pronounced in the frequency range
0.2 < 8t < 1.5 for m = 0. This prevalence of the leading
mode is a strong indicator for a low-rank behavior of the
jet.

RESOLVENT ANALYSIS

Optimal forcing and responses have been successfully
computed for a range of flows in the past, such as chan-
nel flows (Jovanovi¢ & Bamieh, 2005), boundary layers
(Monokrousos et al., 2010; Sipp & Marquet, 2013), turbu-
lent pipe flows (McKeon & Sharma, 2010; Sharma & McK-
eon, 2013; Gémez et al., 2014), as well as incompressible
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(Garnaud et al., 2013) and compressible (Jeun et al., 2016;
Semeraro et al., 2016) turbulent jets.

We start by noting that the full Navier-Stokes equa-
tions,

99 _

at - ‘/V(q)a

(6)

here written in symbolic notation where the operator .4 (g)
represents their right-hand side, can be recast into a pertur-
bation form

a /!
L —wg +1,

5 O]

by means of the Reynolds decomposition (1), and noting
that ‘;—‘f = 0. All terms linear in the perturbation state g’
are lumped into the linear operator .2/, and the remaining
non-linear terms into the generic forcing function f. The
spectral representation

(_iw_%m)qmw :fma)7 ®)

of equation (7) is obtained by assuming perturbations of
normal mode form (2). We discretize equation (8) as

(=il = An) e = Bfme ©))

where we introduced the forcing matrix B that allows us to
restrict the forcing in space, or to specific quantities. Equa-
tion (10) can be written in compact form

Ime = mwfmw7 (10)

where we introduced the resolvent operator Rym =
(—iol — A,) "' B as the transfer function from forcings
fme tO responses g,,,. Optimal forcings in terms of the
energetic gain

. <Qma) ) Qmw>E

= ; an
<fma):fma)>E

> (fmo)

can be computed as solutions to the eigenvalue problem

(i)

WL RE WR,0 7, = 6270 (12)

with o1 > 0y > -+ > o®™). The discretized eigenvalue
problem (12) is solved using a standard IRAM method,
yielding two orthonormal bases F = [j‘,(nl(z, ]A‘,(nz()o ]A‘,(,[,Va;}
and Q = [@,(nl(z, @,(3(2, @%2] of optimal forcing and re-
sponse vectors, respectively. In the present study, we dis-
cretize the LES solution domain x,r € [0,30] x [0,6] with
a 950x 195 points Cartesian grid using the same numeri-
cal framework as in Schmidt et al. (2016a,c, 2017). Grid
points are clustered in regions of high shear such as the
shear-layer in the near-nozzle region. The domain size re-
stricts the analysis to frequencies of St 2 0.2, below which

g
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the forcing and response structures become too long to fit in
the domain. The grid resolution imposes an upper limit of
St =~ 1.5, above which the increasingly high wavenumbers
cannot be resolved sufficiently.
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Figure 4. Optimal gain spectra for varying Reynolds num-
bers.

Figure 4 addresses the effect of the Reynolds number
on the optimal gain for m = 0. The optimal gain monoton-
ically increases with increasing Reynolds number, as can
be seen in figure 4a, and all curves with Re > 103 approx-
imately collapse under a Re™2 scaling, as shown in fig-
ure 4b. The modal structures (not depicted) are found to
agree well with the SPOD modes for Re > 10*. At high
Reynolds numbers Re > 5 - 104, no further improvement
of this agreement is observed, but the modal structures are
increasingly hard to resolve, especially for suboptimals at
higher frequencies. For these reasons, the chose an inter-
mediate Reynolds number of Re = 3 - 10* for the remainder
of this study.
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Figure 5. Pressure fields of the leading three optimal forc-
ings and corresponding responses for St = 0.5 and m = 0.

Figure 5 shows the leading three optimal forcings and
corresponding responses for St = 0.5 and m = 0, as an ex-
ample. The leading response mode seen in figure 6b com-
bines a compact K-H-type wavepacket with an acoustic core
mode in the potential core. The response is forced by a
combination of acoustic and vortical disturbances, predom-
inantly acting in or on the initial shear layer and within the
potential core, as can be seen in figure 6b. Please refer to
Towne et al. (2016a) and Schmidt ef al. (2016a) for details
on the acoustic wave component. The two suboptimals ex-
hibit a two-wavepacket structure with a larger spatial sup-
port, and are optimally forced in the shear layer downstream
of the potential core.
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Figure 6. Resolvent gain (8O, o7 > 0, > ---0y) of the
6 leading modes as a function of frequency for m = 0 and

0.5 1 15
St

m = 1. The difference between the leading and the second
mode is highlighted in red ().

Resolvent gain spectra for m = 0 and m = 1 are de-
picted in figure 6. The highlighted areas (red) in both cases
signify that the optimal gain curves are well separated from
the first suboptimal and all subsequent gain curves over a
range of frequencies. For m = 0, this behavior is cut on
abruptly at St ~ 0.2, whereas it persists over the entire fre-
quency range under consideration for m = 1. This domi-
nance of the leading response mode was previously associ-
ated with the preferred amplification behavior observed in
forced jets (Crow & Champagne, 1971) by Garnaud et al.
(2013). It can also be seen that the suboptimal gain curves
scale roughly as ¢ ~ S¢~1, or as $t~2 in terms of energy in-
stead of gain. The same slope is shown in the SPOD spectra
depicted in figure 3 above, for comparison.

OPTIMAL VS. EMPIRICAL RESULTS

In the preceding sections, we showed that leading em-
pirical SPOD and optimal resolvent response modes both
resemble K-H wavepackets. Furthermore, the SPOD analy-
sis suggested that the natural jet at hand exhibits a low-rank
behavior in accordance with the predictions of the resolvent
analysis. The preferred amplification behavior of forced jets
studied by (Crow & Champagne, 1971), presumably is a
manifestation of exactly this low-rank behavior which we
observe in a statistical sense in the natural jet at hand. In
the following, we compare the empirical results to optimal
linear theory in order to support this argument.

10C-1

o OFNwW

d) SPOD 1, St =0.2,m =1

S asals 1B

h) SPOD

0000000080824 ¢

1, St=06,m=1

HFNWOHN OFHNW OHN OFRN®WORN OFNW

k) response 1, St =1, m = 1
£00000000000000088%
1)SPOD 1, St=1,m=1

OHN OFRNWORN

000000000008 84 - .+ 4

20 25 30

Figure 7. Optimal resolvent response modes and empiri-
cal SPOD modes for m = 0 and m = 1 at different frequen-
cies.

Figure 7 compares the modal structures of the leading
optimal response modes for m = 0 and m = 1 at different
frequencies to the corresponding SPOD modes extracted
from the LES. The leading symmetric (m = 0) response
mode at the lowest frequency St = 0.2 shown in figure 7a
does not resemble the corresponding SPOD mode in figure
7b in terms of spatial support and streamwise wavenum-
ber. A much better correspondence is found for m = 1 and
the same frequency in figure 7c and 7d, respectively. For
all higher frequencies and both azimuthal wavenumbers, a
very good agreement between the theoretical and the empir-
ical modes is found. When comparing these findings with
the gain curves depicted in figure 6, we observe that the
major discrepancy between of the modes at St =0.2, m =0
coincides with the region in which no low-rank behavior is
predicted by theory.
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Figure 8. Leading optimal resolvent gains, and leading
SPOD mode energies as a function of frequency for m =

0,....3.

We further investigate the low-rank behavior of the jet
by comparing the optimal resolvent gain to the empirical
modal energy content for different azimuthal wavenumbers
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Figure 9. Leading optimal resolvent gains and SPOD
mode energies for three representative frequencies as a
function of m.

in figure 8. In 8b, the SPOD eigenvalues are normalized
with respect to total energy at each given frequency. This
allows for a direct comparison with the optimal resolvent
gains, that are linear by construction and hence do not pos-
sess a physical amplitude that relates solutions at differ-
ent frequencies. The SPOD eigenvalue curves have been
smoothed using a five-point moving average for clarity. A
good qualitative agreement is found between the optimal
gains and the modal energies in terms of their relative or-
der and frequency dependance. The leading m = 1 mode
is dominant up to St ~ 1. The predicted abrupt change to
low-rank behavior is clearly observed for m = 0. This find-
ing explains the success of the near-field wavepacket mod-
els by Gudmundsson & Colonius (2011) and Cavalieri et al.
(2013), but also sheds light on why the favorable agreement
of their parabolized stability equation (PSE) solutions did
not extend frequencies of St < 0.3 at m = 0. The depen-
dance of the optimal gain and the empirical modal energy
on the azimuthal wavenumber is studied in figure 9. As the
jet is statistically stationary and round, we restrict our at-
tention to the positive m sector, i.e. under the premise that
the SPOD wavenumber spectrum is symmetric to a great
degree. Three representative frequencies are picked as ex-
amples. For all azimuthal wavenumbers but m = 0, the lead-
ing mode of the lowest frequency of St = 0.2 dominates in
the resolvent analysis in figure 9a. The higher gain of the
St = 0.5 mode for m = 0 is another manifestation of the pre-
ferred amplification behavior as previously discussed in the
context of figure 8. For m < 5, the general trend of increas-
ing energy with decreasing frequency as predicted by the
resolvent analysis is also reflected in the normalized SPOD
mode energies plotted in 9b. The peak at m = 1 found in
agreement in both graphs confirms that the prediction of a
high optimal gain directly translates into higher modal en-
ergy levels in the actual flow. From 9c, it can be inferred that
the modal structures at lower frequency are in general more
energetic, which can be explained through the presence of
an energy cascade, and the observation that the spacial sup-
port of the wavepackets decreases with frequency.
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