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Optimal wavepackets in streamwise corner flow
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The global non-modal stability of the flow in a right-angled streamwise corner
is investigated. Spatially confined linear optimal initial conditions and responses
are obtained by use of direct-adjoint looping. Two base states are considered, the
classical self-similar solution for a zero streamwise pressure gradient, and a modified
solution that mimics leading-edge effects commonly observed in experimental studies.
The latter solution is obtained in a reverse engineering fashion from published
measurement data. Prior to the global analysis, a classical local linear stability and
sensitivity analysis of both base states is conducted. It is found that the base-flow
modification drastically reduces the critical Reynolds number through an inviscid
mechanism, the so-called corner mode. A survey of the geometry of the two base
states confirms that the modification greatly aggravates the inflectional nature of the
flow. Global optimals are calculated for subcritical and supercritical Reynolds numbers,
and for two finite optimization times. The optimal initial conditions are found to be
self-confined in the spanwise directions, and symmetric with respect to the corner
bisector. They evolve into streaks or streamwise modulated wavepackets, depending
on the base state. Substantial transient growth caused by the Orr mechanism and the
lift-up effect is observed.
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1. Introduction
Linear optimal initial conditions for the flow in an axial corner are considered. The

classical corner-flow problem, as sketched in figure 1, consists of two right-angled,
semi-infinite flat plates with the potential flow u∞ aligned with the intersection line.
Here, x denotes the streamwise direction, and the two spanwise coordinates y and z
span the transversal plane. In addition, a 45◦-rotated, auxiliary coordinate system is
introduced with its abscissa s along the corner bisector. A set of equations based on
the Blasius similarity transformation and matched asymptotic expansions, the so-called
corner-flow equations, was derived by Rubin (1966). They describe the laminar,
incompressible flow in the transversal corner plane and were first solved numerically
by Rubin & Grossman (1971). As far-field boundary conditions, the authors relied
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FIGURE 1. (Colour online) Sketch of the flow in a streamwise corner
(Schmidt & Rist 2011).

on the solution of an additional set of equations governing the asymptotic secondary
cross-flow induced by the superposition of the displacement effects of the two plates
(Pal & Rubin 1971). Detailed overviews of many numerical corner-flow studies can
be found in the works of Ridha (2003), Galionis & Hall (2005) and Schmidt & Rist
(2011). The topics include the effects of compressibility (Weinberg & Rubin 1972),
a non-zero streamwise pressure gradient (Ridha 1992) and arbitrary corner angles
(Barclay & Ridha 1980). The main difficulty in corner-flow computations stems from
the observation that the influence of the corner on the cross-flow field does not decay
exponentially with increasing distance from the intersection line. Consequently, either
a sufficiently large computational domain has to be chosen or a coordinate transform
that maps the far-field boundaries to true infinity as realized by Ghia (1975) and
Mikhail & Ghia (1978) has to be applied.

Numerous linear stability analyses based on the self-similar corner-flow solutions
mentioned above have been conducted in the past, starting with studies of one-
dimensional velocity profiles of the blending boundary layer between the corner
region and the asymptotic far-field solution by Lakin & Hussaini (1984), Dhanak
(1992, 1993) and Dhanak & Duck (1997). The two-dimensional linear stability
problem for the self-similarity solution was first addressed by Balachandar & Malik
(1995) within an inviscid framework. The effect of a streamwise pressure gradient
was included in the viscous corner-flow stability study by Parker & Balachandar
(1999), the influence of compressibility in Schmidt & Rist (2011) and the spatial
non-parallel stability problem was examined by Galionis & Hall (2005) and Alizard,
Rist & Robinet (2009) by solving the parabolized stability equations.

Despite the different approaches taken, a major inconsistency between numerical
studies and experimental surveys remains unsolved. While linear stability analyses
of the self-similar base state predict a critical Reynolds number of Rex,c ≈ 9 × 104

(Balachandar & Malik 1995; Parker & Balachandar 1999; Galionis & Hall 2005;
Schmidt & Rist 2011), experimental evidence suggests a transitional Reynolds number
as low as Rex,c ≈ 104 (even for a small favourable pressure gradient). Experimental
data from more than two decades starting with early measurements by Nomura (1962)
was collected and compared with each other and with theory by Zamir (1981). The
reader is referred to this comprehensive aggregation of data for an insight into the
experimental evidence. A major point of discussion is the validity of the self-similarity
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solution as measurements commonly show a deviation from the theoretical laminar
flow in the near-corner region. Kornilov & Kharitonov (1982) attributed the deviation
to the pressure field induced by the intersection of the plates in the leading-edge
region in their experimental study.

Balachandar & Malik (1995) explained the discrepancy between experiment and
theory by the presence of an inviscid mechanism in the corner region. They found
a critical Reynolds number of Rex,c = 435 for the one-dimensional bisector-profile
instability but could not confirm this number for the two-dimensional problem.
A nonlinear mechanism was brought into the discussion as a possible cause by
Galionis & Hall (2005). Only recently, Alizard, Robinet & Rist (2010) computed the
sensitivity of the self-similar corner-flow solution with respect to base-flow variations
and suggested a transient growth mechanism to explain the low transitional Reynolds
number. In this paper, we follow that route and assess the question of how much
kinetic energy a localized perturbation can maximally gain from the mean flow while
being advected downstream over some finite time τ . This is done by computing
global optimal initial conditions that are artificially restricted to a finite streamwise
extent. A time-stepper-based optimization technique, as introduced by Monokrousos
et al. (2010) for the computation of optimal solutions for flat plate boundary layer, is
employed for that purpose. The artificial localization of the optimal initial condition
is a numerical necessity caused by the spatial inhomogeneity of the base flow. The
resulting response manifests in form of a wavepacket. The use of optimization
techniques to calculate optimal perturbations in fluid dynamic applications dates back
to Farrell (1988), who calculated the optimal excitation in constant shear flow, first
in two and later in three dimensions (Butler & Farrell 1992; Farrell & Ioannou
1993). The authors found three-dimensional optimal structures which exhibit large
energy growth despite the absence of unstable normal modes. Two already known
mechanisms were identified as the main causes of non-modal growth. First, the Orr
mechanism (Orr 1907; Lindzen 1988) that allows perturbation waves whose fields of
constant phase are initially inclined against the mean shear to extract energy from the
base flow by adopting to the mean shear while being convected downstream. Second,
the lift-up mechanism as described by Ellingsen & Palm (1975) and Landahl (1975,
1980). It describes the generation of streamwise streaks caused by momentum transfer
from vortical structures in the cross-flow plane to the streamwise velocity component.
The lift-up of a low-speed streak leads to an inflection point in the streamwise
velocity profile and, hence, gives rise to an inviscid instability of secondary nature.
The Orr and the lift-up mechanisms were identified by Monokrousos et al. (2010)
on the flat plate as the origin of transient growth for long and short optimization
times, respectively. In recent work by Alizard, Robinet & Guiho (2012), the authors
investigated the non-modal behaviour of the self-similar corner-flow solution within a
parallel framework, and found that the same two effects lead to substantial transient
growth. The maximum gain was achieved by optimal structures that are antisymmetric
with respect to the corner bisector. In a direct numerical simulation (DNS) conducted
by Schmidt & Rist (2014), it was found that corner flow is prone to spatial transient
growth under harmonic forcing at subcritical Reynolds numbers. It was demonstrated
that pseudo-resonance between the inviscid corner mode and viscous branch solutions
causes a moderate transient perturbation amplification. The present study elaborates on
the non-modal worst-case scenario in form of linear global optimal perturbations. The
results are put in the context of the last mentioned DNS findings, the computations
by Alizard et al. (2010, 2012) and the investigation of the related flat-plate flow by
Monokrousos et al. (2010). In fact, the present work can be regarded as a continuation
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of the aforementioned studies: the transient growth study by Alizard et al. (2012) is
extended by incorporating non-parallel effects, and the survey on optimal disturbances
by Monokrousos et al. (2010) by considering a fully three-dimensional base state,
i.e. without homogeneity in the spanwise direction.

The paper is organized as follows: the governing equations and theoretical concepts
are introduced in § 2. Subsequently, their numerical implementation is explained in § 3.
The main part of the paper consists of the presentation and interpretation of the results
of the global non-modal study in § 4. Prior to this, the two base states are presented
and a classical local stability and sensitivity analysis is conducted. The paper ends
with a summary of the results and a comparison with previous literature in § 5.

2. Theoretical background
The governing equations and their linearized counterpart are presented in § 2.1.

Under the assumption of infinitesimally small wave-like perturbations, the eigenvalue
problem (EVP) of classical linear stability theory is obtained in § 2.2. The ε-
pseudospectrum-based sensitivity analysis of linear operators is recapitulated in the
same section. Finally, the theory of global linear optimals which is at the basis of
the present study is addressed in § 2.3.

2.1. Governing equations
The motion of an incompressible fluid in a domain D is governed by the
incompressible Navier–Stokes equations supplemented by the continuity equation

∂u
∂t
=− (u · ∇) u−∇p+ 1

Re
∇2u, ∇ · u= 0 in D, (2.1)

where u(x, t) = [u v w]T (x, y, z, t) is the vector of Cartesian velocity components
and p(x, y, z, t) the pressure. Here Re = u∞δ/ν is the Reynolds number based
on some characteristic length δ, the far-field velocity u∞ and the kinematic
viscosity ν. Velocities are non-dimensionalized by u∞, Cartesian coordinates by
δ, and a unit density is assumed. Here, we choose δ ≡ δ∗(x0), where δ∗ =∫∞

0 (1 − U/u∞)dy is the displacement thickness of the one-dimensional far-field
velocity profile which coincides with the classical Blasius boundary layer solution for
the streamwise and wall-normal velocity components. Here x0 refers to the start of
the computational domain. The Navier–Stokes equations (2.1) can be linearized
by Reynolds decomposing the velocity and pressure fields into a steady base
flow {U(x), P(x)}, which is a solution to (2.1) itself, and a small perturbation
ε{u′(x, t), p′(x, t)}, i.e. u = U + εu′, and p = P + εp′. The linearized Navier–Stokes
equations

∂u′

∂t
=−(U · ∇)u′ − (u′ · ∇)U−∇p′ + 1

Re
∇2u′, ∇ · u′ = 0 in D (2.2)

are obtained by keeping only terms that are linear in the bookkeeping variable ε or,
equivalently, by neglecting products of small quantities. Problem-dependant boundary
conditions are enforced on the boundaries ∂D .

2.2. Local linear stability theory
In classical local linear stability theory, wave-like (normal-mode) solutions of the form
q′(y, z, t) = q̂(y, z) ei(αx−ωt) upon a parallel laminar base-state Q(y, z) are considered,
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where q′ and Q represent the solution vector of perturbation flow quantities and the
corresponding base-state, respectively. Inserting the normal-mode ansatz in (2.2) gives
an EVP for the amplitude function q̂ with the complex streamwise wavenumber α ∈C
as the corresponding eigenvalue. Here, we let ω∈R as we are interested in the spatial
evolution of a harmonic wave at a given forcing frequency ω, i.e. in spatial stability.
Spatial amplification is found for Im{α}< 0. The resulting spatial linear stability EVP
can be written in matrix (discretized) form as (L0+αL1+α2L2)q̂= 0, and is of second
order in the eigenvalue α. Most commonly, the second-order EVP is reduced to an
extended linear EVP (

L̃0 + αL̃1
)

q̃= 0 (2.3)

through the introduction of a set of auxiliary variables q̃ = [q̂ αq̂]T. The reader is
referred to the reviews by Mack (1984) and Theofilis (2003) for details on the subject.

The classical eigenvalue-based analysis outlined above describes the long-time
response by considering the dominant eigenvalue of the linear system. For non-normal
operators, however, significant (short-time) transient growth can occur as a result of
the non-orthogonality of the solution space spanned by the eigenvectors (Reddy,
Schmid & Henningson 1993; Trefethen et al. 1993). The sensitivity of the spectrum
to generally random perturbations to the governing linear operator can be quantified
in terms of ε-pseudospectra as shown by Trefethen (1991). The reader is referred to
the latter three references for details. By definition, a complex number α ∈C is said
to be in the ε-pseudospectrum if

‖(αL̃1 − L̃0)
−1‖E >

1
ε
, (2.4)

where (αL̃1 − L̃0)
−1 is the resolvent and ‖ · ‖E some appropriate energy norm. For

incompressible flows, the perturbation kinetic energy in form of the standard Euclidean
2-norm ‖û‖2 is chosen. The contours of the resolvent for some value ε can be
interpreted as the upper bound for the eigenvalues of a randomly perturbed operator
L̃0 + E , where E is a random matrix of norm ‖E‖E 6 ε.

2.3. Global optimal disturbances
Within the framework of optimal initial conditions we are interested in finding a
solution to (2.2), possibly subject to other constraints, that maximizes some measure
of energy while evolving over a finite time span t∈ [0, τ ]. To do so, we first introduce
the concept of a linear evolution operator A (t) that maps an initial perturbation u′(t0)
to u′(t + t0) at some other time instant, i.e. u′(t + t0) = A (t)u′(t0). Further, we use
the standard L2 inner product 〈u, v〉 = ∫

D
u · vdD , which conveniently defines the

norm associated with the kinetic energy of the perturbation ‖u′‖2 = 〈u′, u′〉. As we
are interested in the transient development of an initial perturbation, we first have to
define a suitable measure of such, i.e. transient growth. The term refers to the ratio
of the perturbation kinetic energy normalized by its initial condition at t= 0 (Reddy
& Henningson 1993; Trefethen et al. 1993), and can be recast in terms of the linear
evolution operator as follows:

G(t)≡ E(t)
E(0)
= ‖u

′(t)‖2

‖u′(0)‖2
= 〈A (t)u′(0),A (t)u′(0)〉

〈u′(0), u′(0)〉 =
〈
u′(0),A †(t)A (t)u′(0)

〉
〈u′(0), u′(0)〉 . (2.5)

Here, the action of the adjoint operator A † is given by〈
A u′, u†

〉= 〈u′,A †u†
〉
. (2.6)
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By looking for the solution that maximizes the transient growth over some finite time
τ we define the maximum growth Gmax(τ ) as

Gmax(τ )≡ max
‖u′(0)‖6=0

E(τ )
E(0)

= max
‖u′(0)‖6=0

〈
u′(0),A †(τ )A (τ )u′(0)

〉
〈u′(0), u′(0)〉 . (2.7)

From (2.7), note that the last term in the equality corresponds to the induced matrix
norm of A †(τ )A (τ ). Hence, the dominant eigenvalue of A †(τ )A (τ ) (or singular
value of A (τ ), respectively) is the solution to the optimization problem (2.7).

The linear evolution operator A (τ ) and its adjoint counterpart cannot be formulated
directly without the assumption of local eigenfunctions (Luchini 2000). However, the
action of the evolution operator on an initial perturbation can be obtained from
integrating the underlying initial value problem. From that perspective, the linear
operator defined by (2.2) acts as the infinitesimal generator of the evolution operator
A (τ ) (Edwards et al. 1994). The action of the adjoint evolution operator A †(τ )
can be approximated in the same manner by integration of the adjoint equations
corresponding to the linearized Navier–Stokes equations (2.2)

−∂u†

∂t
=−(U · ∇)u† + (∇U)T · u† −∇p† + 1

Re
∇2u†, ∇ · u† = 0 in D . (2.8)

Equations (2.8) are derived by substituting the linear operator defined by (2.2) into the
left-hand side of (2.6), then integrating by parts the individual terms and subsequently
recasting the equation in form of the inner product on the right-hand side of (2.6).
Now note that applying A †(τ ) to A (τ )u′(0) in (2.7) corresponds to taking u′(τ )
as the initial condition for integrating the adjoint linearized Navier–Stokes equations
(2.8). Together with the observation that (2.8) features a negative sign in front of the
time derivative term, we see that the action of A †(τ ) evolves the initial perturbation
backwards in time. A detailed derivation of the adjoint evolution operator and the
adjoint Navier–Stokes equations can be found in Bagheri, Brandt & Henningson
(2009).

3. Numerical methods
In the following, the numerical methods used for the calculation of the laminar base-

states, the spatial local stability and sensitivity analysis and the global optimization are
described in §§ 3.1–3.3, respectively.

3.1. Self-similar base-state calculation
Two laminar base states are considered in this study: the canonical self-similar
solution as first obtained by Rubin (1966) and used throughout literature, and an
altered base-flow that better imitates experimental results. The canonical state is
henceforth referred to as non-modified or zero pressure gradient (ZPG), and the
second referred to as the modified base flow. The latter mimics the bulge-shaped
deformation in the near-corner region as observed in experimental studies. Here,
measurement data taken from the study by Zamir & Young (1970) serves as a
reference. The exact form of the deformation depends on the leading-edge geometry
and is a function of the position along the plates. Therefore, it renders the base-state
non-self-similar and cannot be modelled accurately without taking into account the
fully three-dimensional nature of the leading-edge flow, which is beyond the scope
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of this study. However, given the experimental reference, a body force term (or,
equivalently, streamwise pressure gradient term) can be constructed that deforms the
self-similar base-state in the desired manner. Both laminar base states are obtained
as solutions to the parabolized Navier–Stokes (PNS) equations. Under the assumption
of a steady laminar flow with negligible upstream effects, the fundamental equations
can be simplified significantly, and be solved by a downstream space-marching
procedure (see e.g. Tannehill, Anderson & Pletcher 1997). We employ the same
code as used and validated in Schmidt & Rist (2011). The procedure used to
converge self-similar base states employed in the present work is also described
therein, as well as the computation strategy for the one-dimensional far-field solution
required for the far-field boundary condition. The latter is based on the solution
of a designated equation for the asymptotic secondary cross-flow profile (Ghia &
Davis 1974) as described in more detail in Schmidt & Rist (2014). The so-obtained
profile corresponds to the lower branch (Blasius-like) of the dual solution in the work
of Ridha (1992), who showed that two solutions to the incompressible corner-flow
equations exist, even for a zero streamwise pressure gradient. It is the only solution
permitted by our framework, and almost exclusively used throughout literature. The
code shares the same Chebyshev-collocation-based spatial differentiation scheme with
the linear stability code, and utilizes a first-order accurate implicit Euler method to
advance the solution in the streamwise direction. The code is used as is for the
calculation of the canonical ZPG solution.

For the calculation of the modified base state which mimics the bulge-shaped
deformation, however, a code modification is required. We aim at reproducing
the general effect of the deformation on stability by taking a reverse-engineering
approach. First, a two-dimensional streamwise velocity field featuring the bulge
deformation is reconstructed by interpolation and extrapolation of published hot-wire
measurement data. Second, the latter field data is transformed into self-similar
(Levy–Lees) coordinates and the difference to the self-similar solution, here termed
1U, is sought. Third, 1U is used within a body forcing term (or, equivalently, a
localized streamwise pressure gradient) to obtain a self-similar base state featuring
the same deformation. Self-similarity of the result is achieved by assuming a force
term that is compatible with the well-known Falkner–Skan similarity transformation,
i.e. to a viscous boundary-layer-type flow with a potential far-field solution that
satisfies U(x) = u∞xm. The sign of the exponent m determines whether the flow is
accelerated (m > 0) or retarded (m < 0). For the flat-plate solution, boundary-layer
separation occurs for m 6 −0.091. Note that unlike for Falkner–Skan flow, 1U has
compact support in our procedure as the interpolated experimental solution approaches
the self-similar base state at some distance away from the close-corner region. In
addition, we assume that the asymptotic corner-flow solution enforced on the far-field
boundaries is valid for the forced model as well, i.e. that the outer boundaries are
sufficiently far away from the region of influence of the forcing. In operator notation,
the PNS system can be written compactly as

PQ(i+1) = r+ c1Qmx2m−1. (3.1)

Here, P is the discretized PNS operator, and the self-similar forcing term is
added to the right-hand side r of the equation. For self-similarity, the forcing
term must be of the same form as the streamwise pressure gradient equivalent
to the above-mentioned potential flow distribution. A factor c is introduced for the
adjustment of the amplitude. The solution vector and the body force distribution
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Base-state nRe nω Ny Nz ω0 ω1 Rex,0 Rex,1 y1 z1

ZPG 45 15 45 45 0.03 0.15 85× 103 5× 105 35 35
Modified 60 15 45 45 0.03 0.15 5× 103 5× 105 35 35

TABLE 1. Parameters of the spatial local stability calculation. Here nRe and nω are the
number of data points along the Reynolds number and frequency axis, respectively. Here
Ny and Nz are the number of Gauss–Lobatto points in the spanwise directions.

vector are given by Q = [ρ U V W T]T and 1Q = [0 1U 0 0 0]T, respectively. The
density ρ and temperature T are part of the solution as the solver is written for a
general compressible fluid. Incompressible limit solutions are obtained by considering
the low-Mach-number regime, i.e. by setting Ma = 0.1 for the case at hand. The
temperature and density solution are omitted henceforth. The validity of the procedure
is confirmed a posteriori: fully converged self-similar solutions were obtained for a
range of amplitude factors c and exponents m. A satisfactory fit to the reference
solution as presented later in § 4.1 was obtained for m=−0.05 and c= 2. The results
presented in § 4.1 are obtained on a 50 × 50 collocation point grid to resolve a
domain of size y, z∈ [0, 0] × [50, 50]. The large domain extent guarantees the validity
of the asymptotic far-field solution, even for the modified base-state calculation. As in
Schmidt & Rist (2011), a fast convergence towards a self-similar state was observed.

3.2. Spatial local stability calculation
The spatial local stability EVP (2.3) is solved by a shift-and-invert Arnoldi algorithm
on a transformed Chebyshev-collocation grid as in Schmidt & Rist (2011). A spatial
resolution of 45 × 45 collocation points is used to resolve a domain of size y, z ∈
[0, 0] × [35, 35], where the walls are situated at y = 0 and z = 0, respectively. The
spanwise coordinates are normalized by the local displacement thickness of the far-
field solution. An algebraic grid stretching is applied to cluster half of the points in
the wall-near 20 % of the domain along both walls. The 15 leading (usually 14 viscous
Tollmien–Schlichting-type modes and the inviscid corner mode) modes are converged
to a tolerance of σ = 10−6 for each (Rex, ω) combination. For the construction of the
stability diagrams in § 4.1, the frequency domain is resolved by 15 equally spaced
points. Along the abscissa a resolution of 45 and 60 points is chosen for the ZPG
and the modified base state, respectively. Table 1 summarizes the parameters used for
the linear stability calculations presented in § 4.2. The efficient routines of the EigTool
library (Wright 2002) are employed to calculate the resolvent in (2.4) in the context
of eigenvalue sensitivity.

3.3. Global optimal disturbances with Nek5000

The actions of the linear evolution operator A and its adjoint A † are calculated
by time integration of the linear direct and linear adjoint Navier–Stokes equations,
(2.1) and (2.8), respectively. Both sets of equations are solved with the spectral
element code Nek5000 (Fischer, Lottes & Kerkemeier 2008) that was also used in
the reference study by Monokrousos et al. (2010). It uses semi-implicit time-stepping
combined with a weighted residual spectral element method (Patera 1984) for the
spatial discretization. For this study, we choose to combine second-order-accurate
time-stepping with spectral elements of a polynomial order of 7, and solve the
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FIGURE 2. Isometric view of the Nek5000 computational grid for the low-Reynolds-
number case. The domain height corresponds to 45δ∗(x). Only every second grid line is
shown for clarity.

Case name N nx ny nz Re0 Re1 Rex,0 Rex,1 y1
δ∗(x0)

δ∗(x) z1
δ∗(x0)

δ∗(x)

low-Re 7 150 41 41 121.7 544.2 5× 103 100× 103 45 45
high-Re 7 150 41 41 632.3 825.3 135× 103 230× 103 45 45

TABLE 2. Computational domains for the direct and adjoint Navier–Stokes simulations.
Here N is the polynomial order for the velocity field approximation and nx, ny, and nz the
number of grid points in the Cartesian directions.

governing equations in the PN–PN−2 formulation. The notation suggests that the
velocity field is approximated by Nth-order Lagrangian interpolants on Gauss–
Lobatto–Legendre points, and the pressure field by (N − 2)th-order interpolants on
interior Gauss–Legendre nodes. Two computational grids are constructed, one for the
low-Reynolds-number case, and one for the high-Reynolds-number case, respectively.
Both share the same spatial resolution of 150 × 41 × 41 grid blocks, and the same
size in self-similar coordinates, i.e. a domain height corresponding to 45δ∗(x) and the
same (dimensional) length. The grid for the low-Reynolds-number case is shown in
figure 2. It can be seen that clustering towards the near-wall region has been applied
for a proper resolution of the boundary layer. In the streamwise direction, the grid
is uniform. At the given polynomial order of N = 7, the grid amounts to a total of
≈87× 106 degrees of freedom per velocity variable and ≈33× 106 for the pressure.
Details on the two computational domains are provided in table 2.

In § 2.3, we noted that the initial perturbation that maximizes transient growth
corresponds to the dominant eigenvector of A †(τ )A (τ ). Therefore, the optimal
initial perturbation is most easily obtained by means of power iterations of the form
u′(0)k+1 = A †(τ )A (τ )u′(0)k, as in the pioneering works by Andersson, Berggren
& Henningson (1999), Corbett & Bottaro (2000) and Luchini (2000). We define a
convergence criterion through the residual of two consecutive iteration steps in terms
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FIGURE 3. Windowing functions over the streamwise coordinate for the low-Re
computational domain: short (——), intermediate (- - - -) and long (· · · · · ·). The
intermediate case is our standard, while the other two cases are used for comparison in
§ 4.3.1.

of the energy norm ‖u′(0)k − u′(0)k−1‖2 6 ε, where ε is the convergence tolerance
and superscript k denotes the iteration level. Upon convergence, u′(0)k approximates
the optimal initial condition sought after. We are interested in an optimal initial
perturbation that is restricted to some streamwise area Λ ⊂ D of the computational
domain. This adds an additional constraint to the optimization problem (2.7). In
practice, the localization is realized by multiplying the adjoint solution at t= 0 with
a windowing function σΛ(x) that is zero everywhere except within some streamwise
region as depicted in figure 3. In order to prevent a discontinuity in the initial
perturbation, the windowing function is smoothly ramped following a fifth-order
polynomial distribution over a streamwise distance of 1x= 5 on both sides. Note that
no artificial localization is applied in the spanwise directions. As initial perturbation
u′(0)1, we chose a wavepacket generated by a spherical volume force acting on
the streamwise momentum component in the time interval t ∈ [0, 30], centred in
the middle of the confinement region in the streamwise direction and on the corner
bisector in the transversal plane. The resulting initial perturbation is symmetric and
hence greatly facilitates the convergence of a symmetric optimal perturbation. A
random and an antisymmetric initial perturbation were also tested. Both resulted
in a much slower convergence rate, but towards the same symmetric optimal. It is
important to stress that not even an antisymmetric initialization gave an antisymmetric
optimal result. As it seems, even the smallest numerical error is picked up by the
power iteration procedure to produce the dominant symmetric optimal as final result.

The overall optimal initial perturbation algorithm looks as follows. Starting from
some initial perturbation u′(0)1, the kth iteration reads:

(a) integrate the forward Navier–Stokes system (2.2) with u′(0)k−1 as the initial
condition to obtain u′(τ )k;

(b) integrate the adjoint Navier–Stokes system (2.8) with u′(τ )k as the initial
condition to obtain u′(0)k;

(c) localize the perturbation to the subspace Λ by applying a windowing function σΛ
and normalize solution to ‖u′(0)k‖2 = 1;

(d) check the convergence criterion and go back to (a) with k→ k + 1 if it is not
met.

Successive initial velocity field iterates can be scaled to unity perturbation kinetic
energy as done in (c) without loss of generality within the linear framework. A
detailed derivation of the constrained optimization problem using Lagrange multipliers
can be found in the article by Monokrousos et al. (2010).

As examples of the convergence of the direct-adjoint looping, two cases sharing
the same Reynolds number and optimization time but with different localization
widths are considered in figure 4. Convergence is judged in terms of the transient
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FIGURE 4. Convergence of the direct-adjoint looping for the ZPG base state in the low-Re
regime and τ = 200: (a,b) short windowing width; (c,d) no windowing. Here G is the
transient energy growth as defined in (2.5) and k the iteration count. The relative error is
calculated as the difference between two successive iterations normalized by the value at
the final iteration K, e.g. (G(τ )k −G(τ )k−1)/G(τ )K for the direct sweep and G=G(τ ).

energy evolution and the relative error of the latter between successive iterations.
In figure 4(a,b) the short windowing extent is considered. It can be seen how the
growth curves rapidly converge towards the final optimal solution. An exponential
decrease of the relative error can be seen for both, the direct and the adjoint sweeps.
No windowing, i.e. σΛ = 1, is applied in the second case depicted in figure 4(c,d).
This example clearly demonstrates why the localization is a numerical necessity in
the present setup. The relative error between iterations does not drop monotonically
and no convergence is to be expected as the perturbation is limited only by the
computational domain extent. This is supported by the observation that the optimal
structure grows from step to step. For all optimal solutions presented in the following
work, a monotonic decrease of the error below 2 % in all four quantities, and
the convergence of the optimal structures is ensured. As expected, an even faster
convergence as in the example shown in figure 4(a,b) above is observed for unstable
flows, i.e. high-Re and modified base-state cases.

4. Results
First, the two base-states are introduced with a special focus on the differences

between the ZPG and the modified solutions in § 4.1. The two base flows are
subsequently analysed by means of classical local stability theory in § 4.2. In addition,
the sensitivity of the underlying linear operator is considered. Finally, the results of
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FIGURE 5. (Colour online) Streamwise base-flow velocity U: (a) comparison between
the flow-field reconstruction from the measurement data (E) by Zamir & Young (1970,
p. 320, figure 4c) (upper left) and the forced PNS solution (lower right); (b) comparison
between the unforced PNS or classical self-similar ZPG case (upper left) and the forced
or modified solution (lower right). The streamwise momentum forcing distribution 1U is
also indicated by contours (- - -). Solid contour lines (——) correspond to 5 %, 15 %, 25 %,
40 %, 60 % and 80 % of u∞.

the global non-modal computations are presented in § 4.3. We specifically address the
influence of the localization width, the Reynolds number and optimization time.

4.1. Laminar base states
Figure 5 shows a three-way comparison between measurements by Zamir & Young
(1970), and the canonical ZPG with the modified numerical base-states calculated
as described in § 3.1. The forcing distribution 1U used in the source term of the
PNS streamwise momentum equation is calculated as the difference between the
measurement data as depicted in figure 5(a) and the classical self-similar solution
in figure 5(b) (upper left). The two-dimensional flow field depicted in 5(a) (upper
left) is reconstructed from the point-wise hot-wire data points using MATLAB’s
Delaunay-triangulation-based interpolation scheme for scattered data (MATLAB 2013).
As the measurement data is not perfectly symmetric (compare figure 5a), the average
with respect to the corner bisector is taken prior to the interpolation. It can be seen
from the figure that the outward-bulge-shaped deformation is well approximated by
our model, especially when considering the limited experimental source data. Also
note that the exact form of the deformation is highly dependent on the leading-edge
geometry and the local position along the plate. Here, we solely aim at reproducing
this distinct feature in one possible realization for a qualitative comparison with the
canonical solution.

The lower-wall-normal cross-flow velocity field is shown in figure 6 for the ZPG
(6a) and the modified base state (6b). The streamlines illustrate how the displacement
effect of the adjacent walls pushes fluid out of the computational domain along the
bisector while fluid is sucked into the domain close to the walls. By comparing the
cross-flow velocity distribution of the two cases, it can be seen that the flow field
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FIGURE 6. (Colour online) Isocontours of the base-flow velocity component normal to the
lower wall V , and streamlines (red line) of the cross-flow velocity field (contours, black
line V > 0, dashed line V 6 0): (a) ZPG case; (b) modified case.

becomes distorted by the local forcing. However, the difference is subtle compared
with the distinct qualitative deformation of the streamwise velocity field previously
seen in figure 5(b). Note that the velocity fields shown in figures 5 and 6 depict only
a part of the y, z∈ [0, 0] × [50, 50] size domain for clarity. At the given domain size,
both, the modified and the non-modified flow fields smoothly approach the asymptotic
far-field solution without any distortion. For the local stability analyses in § 4.2 and the
numerical simulations in § 4.3, the base states are truncated to y, z ∈ [0, 0] × [35, 35]
and y, z ∈ [0, 0] × [45, 45], respectively.

4.2. Local stability
Finding eigensolutions to the combined Orr–Sommerfeld/Squire system (or the
compressible counterpart) is the classical tool of local linear stability theory. In
the following, the linear stability behaviour of the two base states is studied with
a special focus on the effect of the base-state deformation. In the context of the
global non-modal stability study to follow, the critical parameters obtained from local
theory are crucial to determine where to expect exponential growth, and to choose the
computational domains accordingly. The local linear stability and sensitivity of the
two base states is considered in the following. In particular, the base-flow deformation
is investigated in terms of its effect on modal shapes, neutral stability and eigenvalue
sensitivity. Motivated by the inviscid instability mechanism present in corner flow,
we further investigate the geometric features of the transversal base states in order to
relate them to the Rayleigh–Fjørtoft necessary criterion.

4.2.1. Modal shapes
Owing to the basic symmetry of the base state, the solutions to the linear

stability EVP (2.3) can be either even- (tagged E) or odd-symmetric (tagged O)
with respect to the corner bisector. As we consider two-dimensional eigensolutions,
the spanwise modulation of the viscous (Tollmien–Schlichting-type) modes along the
walls is resolved. However, domain truncation renders the set of resolved spanwise
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FIGURE 7. (Colour online) Selected modes for the ZPG solution (top row, a–c), and the
modified solution (bottom row, d–f ) for Rex = 4 × 104, ω = 0.1: (a,d) IV-E; (b,e) IV-O;
(c,f ) corner mode C. The real part of the streamwise perturbation velocity is visualized
by continuous contours (blue shade for Re(û) > 0, yellow shade for Re(û) < 0), and the
streamwise perturbation velocity amplitude |û| by solid lines (——).

wavenumbers discrete, i.e. the spanwise domain extent enforces a fundamental
wavelength and the viscous modes form a discrete branch of pairs of even- and
odd-symmetric modes in the spectrum. The associated fundamental viscous mode
is named I, the first harmonic II and so on. Apart from the viscous modes, the
corner-flow problem features an inviscid mechanism represented by the corner mode
C. Figure 7 shows the same three modes for the ZPG (a–c) and the modified base
state (d–f ), respectively, as examples. An even-/odd-symmetric pair of modes of
the same spanwise wavenumber is shown in figure 7(a,b and d,e), respectively. For
example, odd-symmetry becomes apparent when comparing the sign of the real part
of the streamwise velocity perturbation in 7(b,e) along the adjacent walls. The reader
is referred to the original article by Parker & Balachandar (1999) for a detailed
discussions of modal shapes and amplification rates, and their dependence on the
computational domain size, far-field boundary conditions as well as their relation
to the two-dimensional Blasius boundary layer. From figure 7(c,f ), it becomes
evident that the corner mode has compact support in the near-corner region and
is even-symmetric with respect to the bisector. By comparing the modal shapes for
the two base states, one recognizes a distortion of the modes in the near-corner region
that follows the bulge-shaped deformation of the modified base state. It can also be
seen that the maximum perturbation amplitude is shifted towards the near-corner
region for the latter base flow.

For one-dimensional velocity profiles, inviscid instability can be expected if
the Rayleigh–Fjørtoft necessary criterion is met, i.e. if the position of the critical
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FIGURE 8. (Colour online) Geometric features of the ZPG (a–c) and the modified (d–f )
base-state compared with the absolute value of |û| (black line) for selected modes: (a,d)
IV-E; (b,e) IV-O; (c,f ) corner mode. The principal curvatures k1 (red line) and k2 (dashed
red line), the zero contour of the mean curvature (green line), flat umbilic points (u),
∂2U(s)/∂s2= 0 (×) and the critical layer (dashed blue line) are visualized for comparison.
The zero contour of the Gaussian curvature corresponds to (red line ∪ dashed red line).
The same modes as in figure 7 are depicted.

layer coincides with an inflexion point of the base profile (see e.g. Drazin & Reid
2004). Early analyses of the streamwise corner-flow configuration were limited to
the one-dimensional blending or bisector boundary layer due to the computational
restrictions at the time, and the latter argument was used to establish the presence
of an inviscid instability mechanism. No such general criterion exists for two-
or three-dimensional flows, and it is not clear whether the analysis of a local
profile is a valid approach. In figure 8, we compare some geometric features of
the base states with the eigenmodes previously shown in figure 7. For surfaces in the
three-dimensional Euclidean space, the concept of an inflexion point is ambiguous
as more than one definition of curvature is conceivable. Commonly, the Gaussian
curvature K = k1k2, and the mean curvature H = (k1 + k2)/2 are defined through
the principal curvatures k1 and k2, i.e. the maximum and minimum curvatures on
the tangential surface at each point. The inflexion point of the one-dimensional
bisector profile is given as a reference. It can be seen that the shape of the modes
approximately follows the critical layer, as expected. Both base states are found to
possess a zero line in the Gaussian curvature that coincides with the inflexion point
along the bisector. The maximum velocity perturbation along the bisector is found in
the vicinity of the inflexion point for all even-symmetric modes. A zero line in the
mean curvature is only found for the modified base state, creating two flat umbilic
points where K=H= 0. It is conspicuous that the maxima of the perturbation velocity
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FIGURE 9. (Colour online) Eigenvalue spectrum (u), and ε-pseudospectrum (contours)
for Rex = 4 × 104, ω = 0.1: (a) self-similar solution; (b) modified solution. A particular
value of ε= 10−6.3 is highlighted by (——) for direct comparison, and the modes shown
as examples in figures 7–9 are denoted by their names. Note that the eigenvalues of
the leading odd- (I-O) and even-symmetric (I-E) viscous modes almost coincide. cph =
Re(ω)/Re(α) denotes the phase speed.

amplitude coincide with the latter points for the odd-symmetric mode depicted in
figure 8(e). In fact, this is found to be the case for all odd-symmetric modes.
Unfortunately, no criterion analogous to Rayleigh–Fjørtoft’s necessary condition exists
for higher dimensions. Therefore, interpretations in terms of a possible connection
between the geometric features discussed above and hydrodynamic stability remain
speculative. Here, we just note that the modified base state features a much richer
set of geometric features in the near-corner region as compared with the ZPG case,
potentially alternating the flow’s global stability properties, as well.

4.2.2. Eigenvalue spectrum and sensitivity
Eigenvalue spectra for the modified and the ZPG base state obtained for the same

representative parameter combination are compared in figure 9(a,b), respectively.
In both cases, the viscous modes form an arc-shaped branch built of pairs of
even- and odd-symmetric modes, while the corner mode appears isolated in the
spectrum. By comparing the spectra, it can be seen that the viscous branch remains
mostly unaffected from the modification. In contrast, the corner mode is shifted by a
significant amount of 1Im(α)≈−0.01 towards the unstable half-plane. The sensitivity
of the linear operator in terms of the resolvent is addressed in the same figure. It is
observed that the distribution of the resolvent is primarily linked to the course of the
viscous branch. As a general trend, the areas of highest sensitivity (apart from in the
vicinity of an eigenvalue where it becomes singular) are found in the region where the
viscous branch approaches the continuous spectrum, i.e. towards the continuous branch
at c ≈ 1. This observation of highest sensitivity near branch junctions is commonly
made in shear flows (see e.g. Schmid & Henningson 2001). The overall distribution
of the resolvent is very similar between the two base states. This indicates that the
base state modification does not significantly affect the sensitivity. In both cases, no
deformation of the resolvent contours can be seen in the vicinity of the eigenvalue
of mode C. The above observations are found in agreement with the sensitivity study
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FIGURE 10. (Colour online) Neutral stability curves of the five leading modes of the
ZPG (black shade), and the modified (blue shade) base flow. Solid lines (——) mark
even-symmetric, dashed lines (- - - -) odd-symmetric and thick lines the corner mode. The
critical parameters are (Rex,c, ωc)= (4.10× 104, 0.113) and (Rex,c, ωc)= (1.32× 105, 0.110)
for the modified and the self-similar base state, respectively. The parameter combination
(Rex, ω)= (4× 104, 0.1) used in figures 7–9 is marked by (grey shade). The shaded areas
(×) represent the low-Re and the high-Re computational domains investigated in §§ 4.3.2
and 4.3.3, respectively.

by Alizard et al. (2010). The authors used a minimal-defect-theory-based approach to
calculate the sensitivity of the eigensolutions with respect to base-flow modifications
in form of a so-called 1U pseudospectrum, analogous to the ε pseudospectrum. They
demonstrated that small deviations of the base-state located in the near-corner region
can drastically reduce the critical Reynolds number. In accordance with our results,
they were able to associate the effect directly to the inviscid corner mode.

4.2.3. Neutral stability
Figure 10 shows neutral stability curves of the four leading viscous modes and the

corner mode for both base flows. The neutral curves are obtained from the solution
matrices outlined in table 1. Individual modes were tracked through cross-correlation
of the eigenfunctions. It can be seen that the modified base state has a much lower
critical Reynolds number of ≈0.41 × 105 as compared with the ZPG case with
≈1.32 × 105. Also note that the critical value occurs for the viscous mode I-O in
the latter case, whereas the inviscid instability mode C is found critical for the
modified case. A similar critical angular frequency of ≈0.11 is found for both cases.
By comparing the neutral behaviour of the viscous and the inviscid modes between
the two base states, it becomes evident that the modification mainly afflicts the
inviscid mechanism represented by the corner mode. The less-significant effect on the
Tollmien–Schlichting-type instabilities is explained by the fact that the viscous modes
are related to the flat-plate boundary layers along the walls, whereas the corner
mode is predominantly active in the near-corner region that is alternated by the
modification. In the discussion of figure 9, the same observation was made for one
representative choice of parameters. The result is also found in agreement with the
observations previously made in the context of the base-state geometry, as shown in
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FIGURE 11. (Colour online) The transient energy growth factor G is plotted over time.
Curves for the ZPG and modified base state are solid and dashed, respectively. Matching
colours indicate the same Re–τ parameter combination. The grey area illustrates the
difference between the short and a long streamwise localization extent, compare figure 3.

figure 8. The neutral stability behaviour seen from figure 10 motivates our choice of
computational domains (compare table 2): the high-Re domain is supercritical for the
leading viscous modes, while the low-Re domain is subcritical for the viscous modes,
and partly supercritical for the corner mode for the modified base state only. Note
that the critical Reynolds number of ≈0.41× 105 is close to the value of ≈0.6× 105

as found by Parker & Balachandar (1999) in their study of the classical self-similar
corner-flow solution with an adverse pressure gradient. However, the results cannot be
compared directly as our approach mimics a localized pressure gradient, whereas the
above authors assumed a Falkner–Skan-type potential pressure variation along with
the consequential dependence of the freestream velocity on the streamwise position.
The solutions to the resulting non-ZPG corner-layer equations do not possess the
experimentally observed local deformation as mimicked by the modified base state.

4.3. Optimal perturbations
Optimal perturbations are calculated using the procedure outlined in § 3.3 for six
combinations of the parameters base state (ZPG or modified) Reynolds-number regime
(low-Re or high-Re, see figure 10) and optimization time (τ = 200 or τ = 500). Two
additional calculations are conducted for the sole purpose of determining the influence
of the optimal initial condition localization area Λ. Figure 11 gives an overview of
the calculations performed in terms of the global transient growth factor G as defined
in (2.5). In any case, spatial transient growth with potential energy gains between
one and two orders of magnitude is observed. A comparative study of the effect of
the artificial spatial localization is conducted in the following § 4.3.1.

4.3.1. Influence of the streamwise localization width
The spatial confinement of the optimal initial perturbation to a subset Λ ⊂ D

as described in § 3.3 certainly restricts the generality of our results. Therefore, the
effect of the spatial restriction is studied in order to ensure that its influence does
not interfere with physical indications of interest. The optimal initial conditions are
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FIGURE 12. (Colour online) Influence of the streamwise localization width on the optimal
initial condition (upstream wavepackets) and response (downstream wavepackets) for the
ZPG/low-Re/τ = 200 case: (a) short; (b) intermediate; (c) long streamwise localization
extent. The corresponding windowing functions are shown in figure 3. The initial condition
and response are shown in the same plot for comparison. Isosurfaces of the streamwise
perturbation velocity (blue shade for u′ > 0, yellow shade for u′ < 0) are depicted.

Re Low Low Low Low High

τ 200 200 200 500 500
σΛ Short Medium Long Medium Medium
G(τ ) 36.1 59.7 {79.16} 85.1 42.5 {145.0} 122.3 {110.3}
Gmax 38.8 60.2 {79.16} 85.1 49.4 {145.0} 122.3 {110.3}
t(Gmax) 148 181 {200} 200 303 {500} 500 {500}

TABLE 3. Values of the transient energy gain at t = τ , maximum energy gain, and time
at which the maximum gain occurs: ZPG base state and {modified base state}.

artificially localized in the streamwise direction only. In addition, the spanwise
restriction due to the finite computational domain extent has to be addressed.
Figure 12 shows the optimal initial perturbations and responses for the ZPG/low-
Re/τ = 200 case for the three different windowing functions corresponding to the
short, intermediate and long streamwise localization extents. It can be seen that the
initial conditions and responses take the form of wavepackets that are confined in both,
the streamwise and the spanwise directions. The effect of the artificial windowing in
the streamwise direction of the initial perturbations can clearly be seen. In contrast,
the confinement of the structures in the spanwise directions, i.e. to the near-corner
region, is a result of the optimization process. In all three cases, the optimal response
appears in form of an elongated perturbation pattern or streaks, that are slightly
tilted towards the corner. All structures are found to be symmetric with respect to
the corner bisector. With increasing localization width, the optimal response is found
to grow in space without changing its basic characteristics in terms of orientation
or wavenumber in any direction. Similarly, the transient energy growth factor G as
shown in figure 11 (grey area and blue line) increases with increasing localization
width. This cannot be explained by the mere growth of the response wavepacket as
the growth factor directly relates the integral energy norms of the response to the
initial condition. The values of the maximum and final energy gain for all eight
parameter combinations are summarized in table 3.
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FIGURE 13. (Colour online) Streamwise perturbation velocity u′ for the low-Re regime
and τ = 200 upon the ZPG base state: (a) short and (b) long localization width case in
the x–y-plane at z= 1.5δ∗ (optimal initial condition and response are depicted in the same
plot as in figure 12, and the localization width is indicated by dashed lines); optimal initial
condition for the (c) short and (e) long case and optimal response for the (d) short and
(f ) long case in the transversal plane at x= arg maxx u′.

The short and long localization width cases are compared in more detail in figure 13.
By comparing the optimal initial conditions between the cases in figure 13(a,b),
respectively, it can be seen that the maximum of the perturbation velocity for the
long case is found at x≈ 130, i.e. downstream of the confinement region of the short
case. Since the short confinement region is a subset of the long one, the optimal
energy gain, in fact, has to be higher in the latter case. A closer look at the initial
conditions in 13(c,e) and responses in 13(d,f ) shows that both structures are similar
between the cases despite a somewhat increased spanwise extension in the long case.
In the following, the intermediate windowing function is used for all calculations
and we expect no qualitative effect on the optimal solutions caused by the exact
streamwise extent of the windowing for the above reasoning.

4.3.2. Subcritical-Reynolds-number regime (low-Re)
In the subcritical-Reynolds-number regime, non-modal growth is of special interest

as it potentially leads to a bypass of the classical transition scenario caused by
Tollmien–Schlichting waves. As demonstrated by Schmidt & Rist (2014), non-modal
growth plays an important role in streamwise corner flows as it occurs naturally,
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FIGURE 14. (Colour online) Same as figure 12 for the low-Re cases: (a) ZPG base state
with τ = 200; (b) modified base state with τ = 200; (c) ZPG base state with τ = 500;
(d) modified base state with τ = 500.

even if the flow is harmonically forced. The underlying mechanism was traced back
to a resonance between the inviscid corner mode and viscous Tollmien–Schlichting
modes. Here, we examine the non-modal worst-case scenario in particular, and place
a special focus on the effect of the base-flow modification.

Figure 14 gives an overview of the four calculations conducted in the low-Re
regime. As would be expected, the optimal response for the long optimization time
of τ = 500 (c,d) is more widespread as compared to the τ = 200 (a,b) calculations
in both the streamwise and the spanwise directions. Most importantly, however, the
structure of the response wavepackets qualitatively differs between the ZPG (14a,c)
and the modified (14b,d) base state cases. In the latter case, the response appears
modulated in the streamwise direction while the previously described streaks are
unmistakable for the ZPG base state. Quantitative implications of the two different
response variants in terms of the transient energy gain can be deduced from figure 11.
For both optimization times (blue lines for τ = 200, black lines for τ = 500), the
maximum transient energy level is attained at t = τ for the modified base states
(dashed lines). The ZPG base-state calculations reach their maximum value of G
for some t < τ , i.e. at t ≈ 180 and t ≈ 300 for τ = 200 and τ = 500, respectively.
All curves exhibit a significant initial energy gain that can be traced back to the
non-modal growth mechanisms, as explained later in more detail. After the initial
phase, modal growth in accordance with the neutral stability estimates shown in
figure 10 dominates. This can be seen particularly well for the τ = 500 cases. The
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FIGURE 15. (Colour online) Streamwise perturbation velocity u′ of the optimal initial
condition and response for the low-Re regime and τ = 200: (a,c,d) ZPG; (b,e,f ) modified
(same planes as in figure 13).

ZPG simulation exhibits exponential decay, whereas the modified base state supports
an instability in form of the corner mode for Rex,c > 4.1 × 104. Both effects are
clearly observed after the initial transient amplification phase.

The optimal initial conditions and responses for τ = 200, and τ = 500 are further
detailed in figures 15 and 16, respectively. By comparing the two, we note that the
difference in optimization time does not alter the general structure of neither the
optimal initial condition, nor the corresponding response. The spatial structure of the
initial condition in the region close to the opposing wall at y . 10 is very similar in
all four cases, whereas precursors of the later streaks can be seen for the ZPG cases
in figures 15(a) and 16(a) that are not present for the modified flow in figures 15(b)
and 16(b). The optimal responses for the modified flow as depicted in figures 15( f )
and 16( f ) show a certain resemblance to the corner-mode as seen in figure 7( f ).
For the τ = 500 case, this observation is expected from classical linear theory as
noted above, and further confirmed by the exponential energy growth observed from
figure 11.

The cause of the transient energy growth is further investigated by examining the
optimal structures in the bisector plane in figure 17. The typical footprint of the Orr
mechanism can be seen for both, the ZPG and the modified case, in figure 17(a,b),
respectively: the optimal initial structure is modulated and leans against the mean
shear, while the optimal response is aligned with the mean shear. Therefore, the Orr
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FIGURE 16. (Colour online) Streamwise perturbation velocity u′ of the optimal initial
condition and response for the low-Re regime and τ = 500: (a,c,d) ZPG; (b,e,f ) modified
(same planes as in figure 13).
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FIGURE 17. (Colour online) Streamwise perturbation velocity u′ of the optimal initial
condition and response for the low-Re regime and τ = 200 in the bisector-plane: (a) ZPG
and (b) modified base state. Profiles of the streamwise base-flow velocity U are shown
for comparison (red axes).

mechanism is identified as the origin of the initial energy growth observed in figure 11,
i.e. at least for the modified cases where the optimal response manifests in form of a
streamwise modulated wavepacket.
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FIGURE 18. (Colour online) Temporal evolution of the optimal initial solution of both
base states for the low-Re regime and τ = 500: (a) maximum absolute value of the
streamwise, u′, and crossflow, v′, velocity (note that max(|w′|)=max(|v′|)); (b) normalized
streamwise and transverse perturbation enstrophy components (again, Ω ′y = Ω ′z owing to
symmetry).

For the ZPG base states, the streaky structure of the optimal response suggests the
presence of the lift-up mechanism. The latter conjecture is confirmed by considering
the component-wise perturbation velocity evolution of the optimal as shown in
figure 18(a). During the initial stage at t . 10, the crossflow component is dominant
for the ZPG (blue lines) base state but is rapidly overtaken by the strongly amplified
streamwise component. The underlying evolution of streamwise streaks from vortical
structures in the transverse plane is characteristic of the lift-up mechanism, and was
similarly observed by Monokrousos et al. (2010) for the flat-plate boundary layer.
Alternatively, the perturbation enstrophy and its directional components defined as

Ω ′ =
∫

ω′ ·ω′dD and Ω ′i =
∫
ω′i

2dD for i= x, y, z, (4.1a,b)

respectively, can be investigated. Here, ω′ = [ω′x ω′y ω′z]T = ∇ × u′ is the perturbation
vorticity vector. In the present context, the enstrophy serves as a bulk measure of
the vorticity. The temporal evolutions of the normalized perturbation enstrophy ratios
of the ZPG (blue lines) and modified (red lines) are compared in 18(b). It can be
seen that the initial solution for the ZPG base state at t = 0 predominantly consists
of streamwise vorticity. During the initial stage of transient amplification, vorticity
is transferred from the streamwise to the transverse components until the roles have
almost completely reversed for t & 100. The exact same behaviour was found by
Alizard et al. (2012) in their parallel setup for a fixed streamwise wavenumber of
α = 0, and again attested to the lift-up mechanism. In contrast, the sum of the
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FIGURE 19. (Colour online) Same as figure 12 for the high-Re cases: (a) ZPG base state
with τ = 500; (b) modified base state with τ = 500.

transverse components approximately matches the streamwise component at t = 0 in
the modified (red lines) case. Subsequently, the perturbation undergoes a transient
process similar to the one observed for the ZPG base state, but finally returns to
a more balanced distribution for t & 150. The latter observation is consistent with
the optimal response depicted in figure 16(b) which appears modulated in both the
streamwise and spanwise directions.

4.3.3. Supercritical-Reynolds-number regime (high-Re)
In the supercritical regime, transient effects are expected to coexist with exponential

growth (and will eventually be dominated by the latter for larger times). The
three-dimensional and planar visualizations of the optimals in figures 19 and 20,
respectively, dominantly show the signature of the streamwise modulated wavepacket
associated with the Orr effect and/or modal growth prior to this. However, indications
of streaks are also observed, especially in the near-corner region in 19(a,b). Seemingly,
the optimal perturbation is still in its initial stage for the given computational domain
length and optimization time (note that the dimensional time and confinement width
are the same as in the low-Re simulations). This can more clearly be seen from
the transient energy gain for the high-Re cases when compared with the low-Re
base-state simulations in figure 11, and explains why the maximum gain is higher for
the ZPG case. In the further development of the optimal or for longer optimization
times, it is certainly expected that the modified base state will experience a higher
maximum gain through exponential growth. The combined Orr and lift-up scenario
is also apparent in the low-Re structures in figure 14(b–d), although somewhat less
pronounced.

4.3.4. Characteristic scales
An overview of the characteristic streamwise and transverse length scales of

the optimal initial conditions and responses is reported in table 4 in terms of
the corresponding wavenumbers. For that purpose, the dominant wavelengths were
manually measured from the one-dimensional streamwise perturbation velocity profiles
in the streamwise and transverse directions as shown in figure 21(a,b), respectively.
Alizard et al. (2012) reported a wavelength corresponding to a transverse wavenumber
of β0 = 0.52 for the symmetric optimal solution at a fixed Reynolds number of
Rex = 0.8 × 105, and a fixed streamwise wavenumber of α = 0. The corresponding
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FIGURE 20. (Colour online) Streamwise perturbation velocity u′ of the optimal initial
condition and response for the high-Re regime and τ = 500: (a,c,d) ZPG; (b,e,f ) modified
(same planes as in figure 13).

Re Low Low Low High

τ 200 200 500 500
σΛ Long Medium Medium Medium
α0 ≈αΛ <αΛ {<αΛ} ≈αΛ {<αΛ} <αΛ {<αΛ}
β0 0.63 0.63 {1.73} 0.47 {1.74} − {−}
ατ ≈0 ≈0 {0.12} ≈0 {0.1} 0.27 {0.29}
βτ 0.96 0.97 {−} 0.90 {−} − {−}

TABLE 4. Characteristic scales of the optimal initial condition and responses: ZPG base
state and {modified base state}. Here α and β denote the dominant streamwise and
transverse wavenumbers, and subscript 0 and τ the optimal initial and response solution,
respectively, α0 is given in relation to the wavenumber corresponding to the localization
width, i.e. αΛ = 0.10 and αΛ = 0.057 for the medium and long windowing function,
respectively (compare figure 3) and ‘−’ denotes a case where a dominant wavenumber
was not clearly identifiable. Transverse wavenumbers β are normalized by the local
displacement thickness for comparability.

value for the Blasius boundary layer is β0 = 0.54. Similarly, we observe a value of
β0 = 0.47 in the subcritical low-Re regime, and a slightly inclined streaky response
pattern with ατ ≈ 0.
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FIGURE 21. (Colour online) Profiles of the absolute value of the normalized streamwise
perturbation velocity |u′| for the low-Re case and τ = 500: (a) along the streamwise
coordinate; (b) in the spanwise direction. Profiles are plotted along the respective axis at
the location of the global maximum within the domain. The normalization is with respect
to the maximum value in D .

5. Summary and conclusions

Streamwise corner flow is known to facilitate non-modal instabilities at low
Reynolds numbers in the near-corner region (Schmidt & Rist 2014). The present
study elaborates on the maximum possible transient growth of spatially restricted
wavepackets calculated within an adjoint-based linear framework. Two base states
are considered: the canonical self-similar corner-flow solution, and a second modified
solution that mimics a characteristic deviation from the first mentioned ZPG case
caused by leading-edge effects. Both base flows are obtained by solving the PNS.
Prior to the global non-modal analysis, a classical local linear stability and eigenvalue
sensitivity study is conducted. As a first important result, it is observed that the mean
flow deformation hardly changes the local non-modal properties in terms of the ε

pseudospectrum, but significantly reduces the critical Reynolds number. This result is
in good agreement with the study by Alizard et al. (2010) who demonstrate that the
self-similar corner-flow solution is highly sensitive with respect to modifications of
the mean flow in the near-corner region, and offers a plausible explanation for the
low transition Reynolds number found in experimental studies. In their study as well
in the present work, the inviscid corner mode is associated with the instability. The
geometry of the laminar base states is analysed to shed some light on the much lower
inviscid instability limit of the modified flow. It is demonstrated that the modification
further aggravates the inflectional nature of the base state.

Based on the findings of the linear stability analysis, a low- and a high-Reynolds-
number regime domain are defined for the calculation of optimal wavepackets.
Subsequently, spatially localized optimal initial perturbation and corresponding
responses are obtained through direct-adjoint looping. The influence of the localization
width, the optimization time, and the Reynolds number on the spatial structure of
the optimals, and their transient energy amplification are studied in detail. For all
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parameter combinations, optimal structures that cause significant transient energy gain
are found. Geometrically, all optimals are compact in the sense that they are restricted
to the corner region, and symmetric with respect to the corner bisector. In the low-Re
case, the Orr and the lift-up mechanism are clearly identified as dominant sources of
transient growth for the ZPG and the modified base state, respectively. In the case
of harmonic forcing, suboptimal transient growth leading to moderate amplification
factors of G. 4 was observed by Schmidt & Rist (2014). In comparison, the present
global optimal solution for τ = 200 and the ZPG base state attains a maximum growth
of G≈ 50 in the subcritical-Reynolds-number regime.

Our results are also found in some contradiction to previous work by Alizard et al.
(2012), who investigated the non-modal growth of the ZPG corner-flow solution
within a parallel, i.e. temporal, framework for fixed streamwise wavenumbers. The
authors found that maximum gain is obtained by antisymmetric optimal structures,
whereas the power iteration-based method used in the present study consistently
converged towards symmetric optimal solutions. The dominance of symmetric
arrangements is supported by the DNS of Schmidt & Rist (2014). In the latter,
the fully three-dimensional flow was forced harmonically by localized wall heating,
and no transient energy amplification was detected downstream of the source in the
case of asymmetric forcing. Symmetric forcing, however, leads to spatial transient
growth caused by a non-modal interaction between the corner mode and the symmetric
Tollmien–Schlichting mode branch. The different results are explained by the different
paths taken to overcome the difficulties of the fully non-homogeneous set-up, i.e. the
parallel flow assumption in the case of Alizard et al. (2012), and the artificial
localization and restriction to certain optimization times in the present study. A
truly global non-modal stability study as conducted by Sipp & Marquet (2013) for
the two-dimensional flat plate flow would be desirable to further address non-parallel
effects. Another key aspect to be considered in future studies is the role of nonlinearity
as linear optimal perturbations do not necessarily provide the most efficient path to
transition. In the closely related case of the flow in a square duct, Biau, Soueid &
Bottaro (2008) found that the key mechanism for rapid transition is the generation of
an unstable mean flow distortion that supports further exponential or algebraic growth.
Along a similar train of thought, it was recently shown by Karp & Cohen (2014)
that non-modal growth can lead to rapid transition in Couette flow through nonlinear
interactions. The authors demonstrated that the key factor to cause a rapid breakdown
is the ability of the transient growth process to induce inflexion points in the base
state. The present results for the modified base state underline the potential of such a
scenario. Therefore, a logical extension of the current work is to consider nonlinear
optimal perturbations as in the work of Cherubini et al. (2010) or Monokrousos et al.
(2011). DNS of a full finite plate-width corner set-up aimed at studying deviations
from the self-similar base state and leading-edge receptivity are work in progress and
show great promise.
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