
Guide to Spectral Proper Orthogonal Decomposition

Oliver T. Schmidt∗

University of California San Diego, La Jolla, California 92093

and

Tim Colonius†

California Institute of Technology, Pasadena, California 91125

https://doi.org/10.2514/1.J058809

This paper discusses the spectral proper orthogonal decomposition and its use in identifying modes, or structures,

in flow data. A specific algorithm based on estimating the cross-spectral density tensor with Welch’s method is

presented, and guidance is provided on selecting data sampling parameters andunderstanding tradeoffs among them

in terms of bias, variability, aliasing, and leakage. Practical implementation issues, including dealing with large

datasets, are discussed and illustrated with examples involving experimental and computational turbulent flow data.

Nomenclature

a = expansion coefficient, correction factor
C, C = covariance tensor, discrete sample covariance matrix
D = diameter
E = expectation operator
f = frequency
k = turbulence kinetic energy
M = total number of degrees of freedom, Mach number
m = azimuthal wavenumber
N = ensemble size
q, q = vector function, discrete state vector
Re = Reynolds number
r = radial coordinate
S, S = cross-spectral density tensor, sample cross-spectral

density matrix
T = temperature, period
t = time
U = data matrix, characteristic velocity
u, v, w = Cartesian velocity vector components
V = volume
W,W = weighting tensor, discrete weight matrix
x = spatial coordinates, first Cartesian coordinate
x, y, z = Cartesian coordinates
z = independent variables
Δ = delta operator or difference
δ = Dirac delta function
θ = azimuthal coordinate
Λ = eigenvalue matrix
λ = eigenvalue
ξ = parameterization of probability space
ρ = density
τ = time shift
Φ = eigenvector matrix
ϕ, ϕ = vector eigenfunction, discrete eigenvector
χ = chi distribution
Ψ = expansion coefficient matrix
Ω = spatial domain

Subscripts

blk = block
FFT = number of snapshots or frequencies
i, j, k = indices
max = maximum
ovlp = number of overlapping snapshots
s = sampling
w = window
∞ = far-field conditions

Superscripts

H = Hermitian transpose �k� is equal to kth realization
⋅̂ = Fourier transform
�⋅ = expected value or mean
⋅ 0 = fluctuating, offset

I. Introduction

S PECTRAL proper orthogonal decomposition (spectral POD, or
SPOD) is an empirical method to extract coherent structures, or

modes, from flow data. Alongside other operator- and data-driven
decompositions employed in fluid mechanics [1], the resulting
modes can be used for a variety of purposes, from classification to
reduced-order modeling to control. Like other variants of POD, the
SPOD finds an optimal orthogonal basis for the data in the sense that a
subset of the modes captures a larger fraction of the total energy
(variance) in the data than any other orthogonal basis. What distin-
guishes SPOD from “standard” POD is that the modes vary in both
space and time and are orthogonal under a space–time inner product,
rather than only space. As a consequence, they are optimal at ex-
pressing spatiotemporal coherence in the data. SPOD is a special case
of amore general space–time decomposition under the assumption of
statistically stationary data (meaning that the mean and variance do
not change in time), and the resulting modes are harmonic in time,
and computed one frequency at a time from the data.Mathematically,
SPOD modes are the eigenvectors of a cross-spectral density (CSD)
tensor at each frequency.
Spectral POD is hardly new: much of the original literature on

POD stemming from Lumley [2,3] is agnostic as to the choice of
domain and inner product, and the frequency-based version we
discuss in this paper has beenwidely applied in the intervening years.
On the other hand, since at least the late 1980s, the space-only version
has become dominant to the point that the space–time and frequency–
space versions are sometimes neglected in favor of the dynamicmode
decomposition (DMD) [4], Cronos–Koopman analysis [5], and other
techniques. In a recent paper [6], we reviewed the properties of SPOD
and determined the relationships between SPOD and DMD. For the
case of stationary data from stochastic processes, SPOD combines
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the advantages of DMD in terms of expressing temporal correlation
among the resulting structures, with the optimality associated with
POD itself. In addition, there are useful connections between SPOD
modes and a resolvent analysis of a forced, linear operator that
provide for additional ways to interpret (and model) turbulent flows
[6]. We caution that the term “SPOD” has been applied to a different
technique proposed by Sieber et al. [7], whichwe do not discuss here.
Our terminology here stems fromearlier usage [8] and the fact that the
kernel is the CSD.
Although the “PODpart” of SPOD is conceptually and algorithmi-

cally straightforward (eigenvectors of a matrix), the “spectral” part of
SPOD is less so. The key algorithm behind SPOD isWelch’smethod,
an averaging technique that consistently and accurately estimates the
CSD from a time series. Thus the purpose of this paper is to expose
the SPOD–Welch algorithm in detail and provide examples of apply-
ing it to both computational and experimental data. We hope that,
by doing so, we facilitate its understanding and use by the broader
fluids community.We begin in Sec. II by briefly reviewing the theory
behind POD and contrasting the standard and spectral versions of it.
In Sec. III,we detail the SPODalgorithm anddiscuss tradeoffs related
to the choice of spectral estimation parameters. Example analyses
computed using the open-source implementation spod are intro-
duced both to illustrate the choice of estimation parameters and to
provide guidance regarding the interpretation of results.

II. Background: Standard POD and SPOD

A. Theory

An aim of this paper is to make SPOD accessible to practitioners,
but a thorough understanding and disambiguation between variants
of the approach requires some theoretical background. We refer the
reader to several sources [3,6,9,10] and briefly summarize the
results here.
POD seeks a deterministic function,ϕ�z�, or a set of such functions

that, on average, best approximate a zero-mean stochastic process,
fq�z; ξ�g, based on a finite ensemble of samples.Hereu represents the
random variable, and z ∈ Ω represents the independent variables and
their domain, which in general can include both spatial dimensions
and time. ξ parameterizes the probability space, which is, in turn,

equipped with an expectation operator, Ef⋅g, so that q�z� �
Efq�z�g � 0. We drop the explicit reference to ξ in what follows. If
the process is not zero-mean, then it must first be centered; that is, we
work with fluctuations, q 0 � q − �q. In what follows, we assume that
this step has been taken and drop the prime.
By assuming that each realization of the process belongs to a

Hilbert space with an inner product, typically

hq1; q2i �
Z
Ω
q�1�z�W�z�q2�z� dz (1)

where W�z� is a positive definite weighting tensor. The Karhunen–
Loéve (KL) theorem states that there is a set of functions ϕk�z�,
k � 1; : : : ;∞, that are mutually orthogonal (hϕk�z�;ϕj�z�i � δkj)
and form a complete basis in which any realization can be expanded:

q�z� �
X∞
j�1

ajϕk�z� (2)

The ϕk�z� are eigenfunctions, with associated eigenvalues λ1 ≥
λ2 ≥ · · ·≥ 0 of a Fredholm integral equation whose kernel is the
covariance tensor

C�z; z 0� � Efq�z�q��z 0�g (3)

where the asterisk represents the Hermitian, or conjugate transpose,
for complex-valued vector or tensor variables (or simply the trans-
pose for real variables, or the conjugate for scalars). A technicality,
which becomes important when we deal with flows defined on
infinite or semi-infinite domains (in space–time), is that the covari-
ance must be of compact support.

Aside from the orthogonality of the basis, the expansion gives
several desirable properties:
1) (Parseval) The eigenvalues sum to the total variance,P
k λk � Efhq; qig, which in many flow problems represents a kind

of energy. For example, if q are velocity fluctuations andW � 1, then
the total variance is (twice) the turbulent kinetic energy integrated
over space. Other interpretations are provided below.
2) (Optimality) A truncated expansion with n terms captures more

of the total variance than any other orthogonal expansion of the
same order.
3) The expansion coefficients are uncorrelated:

Efaiajg � λjδij (4)

In other words, the decomposition provides a way to express the
random field in a series of mutually uncorrelated structures that are
optimal for expressing the total variance.
The POD approximates the KL expansion by gathering samples

(realizations) for the random process, q�k�, k � 1; : : : ; N. The result-
ing covariance tensor is then estimated:

C�z; z 0� � 1

N − 1

XN
k�1

q�k��z�q��k��z 0� (5)

To apply POD to flowfields, we need to decide on the random
variables, q, the independent variables, z, their domain, Ω, and of
course the means by which we can obtain a sufficiently large ensem-
ble of realizations of the process. The major variants of POD reflect
different choices and face different constraints regarding obtaining
sufficient data. For example, it is experimentally unrealistic to
demand a large number of realizations of a fully three-dimensional,
time-dependent flowfield. Likewise, numerical simulation data for
the general case may be too voluminous to yield practical computa-
tions. The theory discussed in this section is agnostic as to these
choices, but they are paramount in determining whether the resulting
expansions are able to efficiently represent important flow structures.
A takeawaymessage here is that, regardless of what follows, themost
fundamental requirement of POD is that we have a (possibly large)
number of independent realizations of a random process so that we
hope (and then verify) that N is sufficient so that the resulting
eigenvectors converge to the true ones.

B. Symmetries

An important simplification (both theoretically and computation-
ally) is obtained when we impose at the outset certain symmetries, or
invariances, that we expect in the random process. In fluid flows, the
most relevant spatial invariances are translational (homogeneity),
rotational, and reflectional. It is important to understand that these
symmetries are statistical in nature—turbulence breaks all of the
symmetries that laminar flows enjoy—and yet they reappear in the
statistics. Take translational invariance, say, in x, as an example:
the idea is that a flow structure is as likely to occur at one x as any
other. This suggests that the covariance should depend only on the
relative position, C�x; x 0; : : : � → C�x − x 0; : : : �. Imposing this re-
striction on the KL expansion above then yields a set of decoupled
problems for each wavenumber in a Fourier-series expansion of the
covariance [10,11]. Continuous rotational symmetry behaves sim-
ilarly and can be cast as independent KL expansions for each azimu-
thal Fourier mode. Reflectional symmetry yields two separate KL
expansions for symmetric and antisymmetric modes. M-fold rota-
tional symmetry can be addressedwith a Fourier–Floquet ansatz [12],
and so on.
Needless to say, when symmetries exist, they should be imposed

on the KL ansatz rather than relying on the data to express them for
us. First, we typically obtain a reduction in computational effort
(for example, by being able to consider a limited number of two-
dimensional problems rather than a single, large three-dimensional
one), but, more fundamentally, symmetries will be imperfectly
expressed in any finite set of realizations: we can observe a turbulent
structure at several or many locations in x, but never at an infinite
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number of them. It is a mathematical property of the KL ansatz that
guarantees that the reduced SPOD analysis is still overall optimal for
the global problem.
The fact that homogeneity leads to a Fourier basis is seen by some as

failing of POD in the sense that one might want to describe localized
structures that occur in these flows.Our experience is that the computa-
tional simplification provided by one or more symmetries is an advan-
tage rather than a pitfall, but if localized descriptions are desired,
alternativemultiscale bases such as wavelets [13] can be sought. These
may be suboptimal in terms of variance/energy but better performing
in reduced-order models. Likewise, modifications to the KL ansatz,
particularly the imposition of traveling waves together with re-
construction techniques for the phase speed (e.g., [14]), are also
possible, although toour knowledge theyhavenot beenappliedwidely,
and theymay be difficult to pose for large,multidimensional problems.
Asmentioned in the last section, theKL theorem requires a compact,

bounded covariance tensor, which is contradicted by translational
invariance, because the associated coordinate direction is infinite.
Fortunately, though, the covariance computed one wavenumber at a
time is compact in the remaining, inhomogeneous directions.

C. Stationarity, Standard POD, and SPOD

Stationarity is the temporal analog of translational invariance
(homogeneity). Most turbulent flows are idealized as (weak, or
wide-sense) stationary processes, and the vast majority of POD
algorithms being used across fluid dynamics are based on a stationary
assumption. If a flow is not stationary, we can still perform a space–
time POD as outlined above, but we require an ensemble of realiza-
tions of the process and this is computationally challenging for
three-dimensional flows.
When stationarity is an appropriate assumption, it can be exploited

in two distinct ways. The first approach considers both spatial and
temporal variables in the KL ansatz, that is, z � �x; t�, and the inner
product is

hq1; q2i �
Z

∞

−∞

Z
V
q�1�x; t�W�x; t�q2�x; t� dx dt (6)

Then, following the discussion in the previous section, we recog-
nize that C�x; x 0; t; t 0� → C�x; x 0; t − t 0� and, by an analogously to
homogeneity, we find that we can solve a series of POD problems in
Fourier space, that is, one frequency at a time. Taking the (continu-
ous) Fourier transform of the covariance gives the CSD tensor:

S�x; x 0; f� �
Z

∞

−∞
C�x; x 0; τ�e−i2πfτ dτ (7)

where τ � t − t 0. This is then the kernel of the KL eigenvalue
problem, and we find a set of ϕf�x�, which, when transformed back

to the time domain, aremutually orthogonal under the full space–time
inner product (6).
This ansatz is the basis of spectral POD; all that remains is to

determine an appropriate way to estimate the CSD tensor from flow
data—this is discussed beginning in Sec. III.
Before proceeding, we discuss a simpler but more restrictive form

of POD that exploits stationarity in a different way: restricting theKL
basis to only spatial variables, and computing the (space-only)
covariance by sampling spatial fields at specific instances from a
time series. Stationarity and ergodicity then imply that (when the
statistics converge) this will be equivalent to an ensemble average of
spatial fields selected from different realizations. The inner product is
likewise restricted to an integration over space, and, as a result, the
resulting eigenfunctions are not functions of time. Instead, we may
expand the time-dependent field by

q�x; t� �
X∞
j�1

aj�t�ϕk�x� (8)

Because of the ubiquity of this space-only POD problem in the
fluids literature, wewill refer to it inwhat follows as “standard”POD.

Standard POD has, as its kernel, the same covariance tensor defined
above but evaluated at zero time separation, that is, C�x; x 0; 0�. As
such, it is immediately obvious that any notion of temporal correla-
tion among the resulting structures is lost. This criticism lead Schmid
[4] to formulate the DMD, which approximates the eigenmodes of a
linear operator that maps the state of the flow from one instance to the
next. This is more general than SPOD in that these modes can
represent structures that grow and decay in time, but the resulting
modes are neither orthogonal nor optimal in representing the statis-
tics. For the special case when the flow is stationary, Towne et al. [6]
show that, in fact, SPOD modes are DMD modes (provided that the
data are centered) and, in fact, represent a kind of optimal averaging
of an ensemble of DMDmodes computed for different realizations of
the same flow. The optimality is precisely the one discussed above:
the SPOD modes optimally represent the second-order space–time
statistics (covariance).

D. Discrete Form of POD

We now consider a stochastic process represented by a discrete set
of M observations rather than a continuously varying field, such as
flow quantities discretized at points in space and/or time, that is,

q ∈ CM, whereM is the total number of spatial points times the total
number of variables times (if desired) the total number of time steps.
We allow the flow quantities to be complex to reflect the fact that they
may have already been Fourier transformed in one or more homo-
geneous spatial dimensions. The Hilbert space becomes a finite-
dimensional vector space with inner product

hq1; q2i � qH1 Wq2 (9)

where the superscript H is the Hermitian. Though not required, it is
useful to construct the discrete weight matrix W so that the inner
product represents a discrete quadrature of the continuous inner
product, Eq. (1).
The covariance matrixC is, as before, estimated from an ensemble

of observations. Denoting q�k� as the kthmember of the ensemble, we
form a data matrix

Q �

2
64

j j j
q�1� q�2� · · · q�N�

j j j

3
75; Q ∈ CM×N (10)

so that the sample covariance is estimated as (recall that the data need
to be centered)

C � 1

N − 1
QQH (11)

and the POD eigenvalues and eigenvectors (λk,ϕ
�k�, k � 1;2; : : : ; N)

are then given by the solution of

CWΦ � ΦΛ (12)

where

Φ �

2
64

j j j
ϕ�1� ϕ�2� · · · ϕ�N�

j j j

3
75; Φ ∈ CM×N (13)

and

Λ �

2
6664
λ1

λ2
. .
.

λN

3
7775 (14)

Regardless of which of the several forms of POD (standard or
spectral) discussed above is being computed, the maximum number
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of nonzero eigenvalues of Eq. (12) is min�M;N�. If the number of
observations is much smaller than the ensemble size,M < N, then it
is most efficient to solve thisM ×M directly. More typically in fluid
dynamics, however, we haveM ≫ N, and it is not practical to build
the matrix C, let alone find its eigendecomposition. However, a
reduction in cost is possible. The range of C is contained within the
span of Q, and so we can construct the eigenvectors as a linear
combination of the data vectors:

Φ � QΨ (15)

where each column ofΨ ∈ CM×N contains the coefficients by which
each data vector is to be multiplied to build a corresponding column
of Φ. Notice then that Eq. (12) may be written

1

N − 1
QQHWQΨ � QΨΛ (16)

so that it suffices to solve

1

N − 1
QHWQΨ � ΨΛnz (17)

where Λnz are the (potentially) nonzero eigenvalues of C and we can
build its eigenvectors from Eq. (15). This is now an N × N eigen-
vector problem.
In the literature, solving the (typically) smaller eigenvalue problem

(17) is often called the method of snapshots [15], owing to its use in the
traditional space-only PODwhere the ensemble of data is taken (under
stationarity) as a set of observations at different times, and we then
build the POD eigenvectors from these “snapshots.” Although we
retain this jargon, we note that the algebra discussed in this section is
completely generic: all that is required is an ensemble (however
defined) of discrete data vectors and an appropriately defined inner
product (through specification ofW). Then we solvewhichever eigen-
value problem, (12) or (17), is smaller. Finally, it should be obvious

that ϕ�k�, ψ �k�, and λk are the (generalized) right singular vectors, left
singular vectors, and singular values (squared) of the data matrix.

III. Spectral Estimation and the Discrete Form of SPOD

A. Welch’s Method

As discussed above, the SPOD modes are eigenvectors of the
sample CSD matrix S, which must be estimated from the data.
Although there are in principle a number of ways in which this can
be done, we focus here on estimation via the Welch periodogram
method, which constructs an ensemble of realizations of the temporal
Fourier transform of the data from a single time series consisting of
Nt snapshots by breaking it into Nblk blocks, or segments. Each
segment consists of NFFT snapshots and overlaps with the next seg-
ment by Novlp snapshots. The process is the same as that used to

compute the power spectral density (PSD) of a single time series. An
advantage of using thismethod is that it iswell studied [16,17] andwe
can exploit the existing theory for selecting the several parameters
needed to process the data, and we can estimate the uncertainty in the
estimate based on the length and noisiness of the data record.
In what follows, we represent discrete flow data in a slightly

different notation then used in the previous section. Namely, we
separate the time dependence of the data and denote q�k��tj� as the
kth realization of the vector of observations at discrete times tj. We

assume that each realization is available over a period of time, T, at
regular time intervals, tj � t0 � jT∕NFFT, j � 1;2; : : : ; NFFT, where

t0, the starting time, is arbitrary because the process is assumed
stationary. The discrete Fourier transform in time of each realization
and its inverse are

q̂�k��fm��
XNFFT−1

j�0

q�k��tj�1�e−i2πjm∕NFFT ; k�−NFFT∕2�1;:::;NFFT∕2

(18)

q�k��tj�1��
1

NFFT

XNFFT∕2

m�−NFFT∕2�1

q̂�k��fm�ei2πjm∕NFFT ; j�0;: : : ;NFFT−1

(19)

respectively. Once transformed, the data are represented at discrete
frequencies, fm � mNFFT∕T, m � −NFFT∕2; : : : ; NFFT.
If the original data are real, then transformed data at negative

frequencies in the above expression are redundant: they are conju-
gates of the corresponding positive frequencies, and only positive
frequencies need be considered. However, the data are often com-
plex, as is the case when the data have already been Fourier trans-
formed in one or more homogeneous spatial directions. In this case
there is a subtlety. In sampled data the negative frequencieswill not be
redundant. However, the true (as opposed to sample) statistics of the
positive and negative frequencies should be identical; for every POD
mode of positive frequency there should exist an identical one (with
identical eigenvalue) for negative frequency. Therefore, it is advis-
able to average together positive/negative frequencies.
After transforming the ensemble of data, the remaining analysis is

performed one frequency at a time. We construct the data matrix

Q̂ �

2
64

j j j
q̂�1� q̂�2� · · · q̂�N�

j j j

3
75; Q̂ ∈ CM×N (20)

where, as before, M is the total number of degrees of freedom
(number of variables multiplied by number of spatial points), and
N is the number of realizations. To simplify the notation, we have
dropped the explicit dependence on frequency, but note that there is

one Q̂ per frequency, and all steps that follow are repeated for each
frequency. The sample CSD, at each frequency, is then simply

Ĉ � 1

N − 1
Q̂Q̂H

(21)

whereupon, following the discussion in the previous section, the
SPOD modes and eigenvalues are computed either by solving

ĈWΦ̂ � Φ̂ Λ̂ (22)

or (as is more typical) via the method of snapshots,

Q̂HWQ̂ Ψ̂ � Ψ̂ Λ̂ Φ̂ � Q̂ Ψ̂ (23)

whichever requires less computation. By construction, the different
modes at a given frequency are spatially orthonormal, that is,

Φ̂HWΦ̂ � I. Modes at different frequencies are not spatially ortho-
gonal to each other, but of course they are orthogonal in the sense of
the original space—time inner product, that is, when also integrated
in time.
The crux of Welch’s method is that we can exploit stationarity to

construct the ensemble of realizations from a single, longer time

series. In essence, different choices of t0 are equivalent to different
realizations of the process provided that T is long enough and the
overall length of the signal is long enough that we can obtain a large
number, N, of independent realizations from it. A schematic that
outlines the SPOD algorithm based on Welch’s method is shown in
Fig. 1. A difficulty, discussed in more detail below, is determining
when one has a sufficient number of realizations, but the algorithm is
insensitive to inflating the ensemble with dependent ones—these are
simply reflected by zero or very small eigenvalues at the end of the
SPOD spectrum.

B. Choice of Norm

The choice of inner product, expressed through the weight matrix
W, plays a central role in SPOD analysis as it determines the
optimality and orthogonality properties of the modes. The weight
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matrix can also be used to apply SPOD to subdomains or a subset of

the variables that comprise the solution vector. This is done by

assigning zero weight to the portions of the domain or variables that

are to be excluded. Alternatively, these parts can be removed from the

data before computing the SPOD. The advantage of retaining them

with zero weight is that they remain part of the spatially coherent

SPODmodes. This permits their physical interpretation, but does not

change the SPOD spectrum. In the following, we discuss the four

most common choices of norms for (single-phase) flowfields.

1. Variance

W � I

The simplest possible choice for W is the identity. It allows us to

directly measure the variance of the data and is the natural choice of

norm if all data at different spatial locations are regarded as individual

equally important signals, or in general, whenever the definition of an

integral energy is not adequate. Examples are hot wire or pressure

probe field measurement data.

2. Weighted 2-Norm

W �
Z
V
dV

By taking into account the individual area or volume of each cell

of the spatially discretized data, the weighted 2-norm serves as a

numerical quadrature of the inner product in a continuous Hilbert

space. For a sufficiently fine discretization, we can expect that the

corresponding modes are independent of details of the mesh. Con-

versely, highly resolved areas of the data do not disproportionately

contribute to the mode energy, as their cell volumes are comparably

small. For grids with constant cell size, the weighted 2-norm differs

from the variance only by a constant factor equal to the volume of the

domain. This constant factor results in a constant shift of the SPOD

spectrum but has no influence on the SPOD modes. In practice, a

second-order-accurate trapezoidal rule approximation appears to be

sufficient for most applications.

3. Turbulence Kinetic Energy

q �
"
u
v
w

#
; W �

Z
V

2
4 1

1

1

3
5 dV

If we denote by u, v, w the fluctuating velocity components of a

three-dimensional flowfield, then (for incompressible flow) the

turbulence kinetic energy (TKE) per unit mass is given by k �
�1∕2��u2 � v2 � w2�. The integral of the TKE over the entire flow-

field is hence proportional to the inner product defined by the choices

for q and W above. The TKE plays a key role in the study of

turbulence. In particular, the TKE is governed by a transport equa-

tion, often referred to as the k-equation, that permits studying and

modeling of its production and dissipation.

4. Compressible Energy Norm

q �

2
6664

ρ
u
v
w
T

3
7775; W �

Z
V

2
666664

�T
γ �ρM2

�ρ
�ρ

�ρ
�ρ

γ�γ−1� �TM2

3
777775 dV

For compressible flows, we follow the original derivation by [19]

and define an energy norm that, in addition to the velocity fluctua-

tions, takes into account the fluctuating density ρ and fluctuating

temperatureT. In the definition ofW, γ is the specific heat ratio andM
the Mach number.

C. Choice of Spectral Estimation Parameters

Obtaining an accurate estimate of the CSD matrix S from data

depends on appropriately choosing the data sampling parameters,Δt
and Nt, and the spectral estimation parameters, NFFT and Novlp.

Fortunately, there is a substantial literature available on how to do

this; we summarize the main results here in order to provide a self-

contained reference on using SPOD. Further details on these topics

can be found in any signal processing textbook, such as Bendat and

Piersol [17] and Manolakis et al. [20].

1. Sampling Biases

The sampling time step Δt determines the sampling frequency,

fs �
1

Δt
(24)

and thereby the maximum resolvable (Nyquist) frequency,

fmax �
fs
2

(25)

The number of time steps used to compute the discrete Fourier

transform (18), NFFT, determines the period of each “block” of data,

(10)

(20)

(2
3)

Q

tim
e

do
m

ai
n

t

t

y

x

Φ̂(x, fNFFT )

Φ̂(x, f2)
Φ̂(x, f1)

Q̂Nblk

Q̂2
Q̂1

QNblk

Q2
Q1

t
t

m

m
m

m

m
m

fr
eq

ue
nc

y
do

m
ai

n

(1
8)

Fig. 1 Schematic of the SPOD algorithm. Each rectangular slice repre-
sents a snapshot, and thenumbers inparentheses denote the equations in the
text. The data consist ofNt snapshots in total. It is first segmented intoNblk

blocks that overlap byNovlp snapshots, then Fourier transformed, and then

reordered by frequency. For each frequency, the CSDmatrix is formed and
its eigenvalue decomposition yields the SPOD (adapted from [18]).
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T � NFFTΔt �
NFFT

fs
(26)

and the frequency resolution, or bin size,

Δf � 1

T
� fs

NFFT

(27)

The latter corresponds to the lowest resolvable frequency that is
not equal to zero. The zero frequency component itself is expected be
close to zero if the block mean is close to the true mean.
Accurate spectral estimation requires that fs and Δf are suffi-

ciently large and small, respectively, such that sampling reproduces
the true underlying spectrum. The error that results from discrepan-
cies between the estimation and the true value is referred to as bias.
Frequencies above the Nyquist frequency cannot be resolved and,
if present in the data, introduce bias in the form of aliasing error.
Their contribution is “folded” back along the Nyquist frequency onto
lower frequencies. Common techniques to mitigate aliasing are anti-
aliasing filters and oversampling. Anti-aliasing filters are low-pass
filters that attenuate frequency content above the Nyquist frequency.
Oversampling, on the other hand, refers to the practice of sampling at
a higher rate than theoretically necessary and to subsequently dis-
regard frequencies that are affected by aliasing.
On the other hand, if the bin size is not sufficiently small, then the

spectrum will be biased as distinct content at nearby frequencies will
be smeared over the frequency bin. This bias may in principle be
made small by choosing a suitably small bin size, or a large NFFT.
However, when Welch’s method is used, there is ultimately a com-
promise between reducing the bias and increasing the uncertainty in
the estimate because all the data come from segmenting a single,
suitably long time series of sizeNt. If we chooseNFFT large, then we
will not have very many segments in the ensemble, and the spectrum
will not be statistically converged. The uncertainty, or variance of the
estimate, can be reduced by segmenting the data into overlapping
segments, thus increasing the number of segments. With an overlap
of Novlp points in each segment, the number of total blocks is

Nblk �
�

Nt − Novlp

NFFT − Novlp

�
(28)

where b⋅c denotes the floor operator.
As an example demonstrating the compromise between bias and

uncertainty, consider planar, two-component PIV data in a single
measurement plane in the wake of the vertical-axis wind turbine
(VAWT). Suppose thatNt � 9000 consecutive (time-resolved) snap-
shots are available. Choosing NFFT � 256‡ and Novlp � NFFT∕2 �
128, corresponding to an overlap of 50%, this segments the data into
Nblk � 69 blocks. The resulting SPOD spectra (eigenvalues) are
plotted versus (nondimensional) frequency in Fig. 2, along with the
99% confidence interval computed as discussed below. Although the
confidence in the estimate for each bin is reasonable, the frequency
bins are large and the peaks, which correspond to the blade-passing
frequency (BPF) and its harmonics, show substantial leakage into
nearby frequency bins. If we increase the block size toNFFT � 2048,
we obtain much finer bins, and the BPF and its harmonics are well
resolved. But the variance in the estimate is nowmuch larger, and the
confidence bounds for the spectral energy in any bin are only certain
to within about a factor of 2.
The practice of taking a 50% overlap, or NFFT∕2, is a commonly

accepted best practice that dates back to Welch’s original work [21].
The author showed that an overlap of 50% reduces the variance of the
estimate of the PSD, and therefore of the SPOD spectrum, by
approximately a factor of 11∕18 for fixed NFFT and Nt. This is
intuitive as we expect to get amore accurate estimatewhen averaging
over more realizations. Overlaps larger than 50% do not yield better
results as the realizations become increasingly dependent, in practice,

but simply result in a larger number of very small eigenvalueswithout
decreasing the variance of the leading eigenvalues any further.
In all of the above, we assumed that the data are given as a single,

long time series and we use the ergodicity assumption to segment the
data into presumably independent realizations. Obviously, this is not
necessary if the data are given in the form of independent realizations
to start with. Take the example of a high-speed camera PIV meas-
urement where internal camera memory restricts the maximum num-
ber of consecutive movie frames that can be recorded. In this case,
each consecutive block of frames constitutes one realization and there
is no need to segment the data in the first place.
The tradeoffs discussed above highlight the importance of balanc-

ing the different estimation parameters, in particular during the initial
data acquisition process. A good starting point to estimate suitable
parameters for an SPOD analysis is to study the PSD of one, or a few,
highly resolved time series at some representative locations in the
flow. Such data are often readily available, for example, in the form of
hot wire or pressure probe measurement data in an experiment, or as
time series data from a single grid point of a high-fidelity numerical
simulation.

2. Windowing

Spectral leakage occurs whenever the discrete Fourier transform
of nonperiodic data is computed. An analogous problem is the
Fourier series expansion of a step function. Just like the step function,
nonperiodicity introduces a discontinuity into the data that cannot be
well represented by a truncated Fourier series. Instead, it is redistrib-
uted over the entire frequency range, thereby distorting the spectrum.
If the true spectrum contains sharp peaks, for example, at resonance

Fig. 2 SPOD spectra for the VAWT PIV window 3 data:NFFT � 2048
(blue, top), NFFT � 256 (orange, middle), and direct comparison of the
leading modes (bottom). An overlap of 50% results in ensemble sizes of 7
and 69 blocks, respectively. A smaller value of NFFT results in a signifi-
cantly smoother spectrum. The reason is twofold. First, the averaging
takes place over a larger number of blocks, and, second, the frequency
bins, Δf , are 8 times larger as compared with the NFFT � 2048 case. At
the same time, the spectrum of the leading mode appears lifted (bottom),
as the total energy has to be captured by onlyNFFT � 256 Fouriermodes
as compared with the NFFT � 2048 Fourier modes. The significantly
thinner 99% confidence interval forNFFT � 256 highlights that averag-
ing over a larger number of samples reduces the variance of the smoother
estimate.

‡The use of powers of 2 forNFFT is advisable for classical implementations
of the fast Fourier transform.
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frequencies, then these peaks get spread out, or “leaked,” into adja-
cent frequency bins, thereby effectively reducing their peak ampli-
tude. To minimize the effect of spectral leakage, it is a common
practice to multiply the data in each block by a temporal window
function that artificially renders the data in each segment periodic.
Although windowing helps reduce leakage, the window itself
changes the spectrum. Because the window and its spectrum are
known functions, however, its effect can partly be corrected through
a correction factor aw that multiplies the Fourier transform of the
windowed data. The default windowing function in spod, for exam-
ple, is the popular Hamming window with optimized coefficients:

w�j� � 0.54 − 0.46 cos

�
2πj

NFFT − 1

�
with j � 0; : : : ; NFFT − 1

(29)

The correction factor used to compensate for the effect of the
window on the amplitude of the spectrum is computed as

aw � NFFTPNFFT−1
j�0 w�j� (30)

This factor is aw � 2.0 for the Hamming window.

3. Confidence Bounds

From an expansion of the Fourier realizations into the SPODbasis,
it can be shown that the SPOD eigenvalues, λi, are the sum of the
mean squared expansions coefficients, ai, where the sum is taken
over the number of realizations. Assuming that q�x; t� and q̂�x; f� are
random and normally distributed, and that theNblk realizations of the
Fourier transform are independent, then the expansion coefficients
will inherit this property. Furthermore, because the sumof the squares
of independent normal random variables is chi-squared distributed,
we can conclude that the SPOD eigenvalues follow a chi-squared
distribution. Analogous to the estimation of the PSD using Welch’s
method [20,21], the upper and lower bounds of the �1 − α� × 100%
confidence interval for λi are hence given by"

2Nblkλi
χ22Nblk

�1 − α∕2� ;
2Nblkλi

χ22Nblk
�α∕2�

#
(31)

where χ22Nblk
is the chi-squared distribution with 2Nblk degrees of

freedom. https://www.mathworks.com/matlabcentral/fileexchange/
65683-spectral-proper-orthogonal-decomposition-spod [L,P,F,
Lc]=spod() implements this capability and returns the upper
and lower bounds of the confidence interval in Lc.

4. Dealing with Large Data

It is not surprising that converging the second-order statistics of two-
or three-dimensional flowfields requires storage of large data. In terms
of SPOD, memory quickly becomes the bottleneck of a naive imple-
mentation of the algorithm outlined in Fig. 1. In particular, the Fourier
transforms of each block have to be stored in memory to form and
decompose the CSDmatrices for each frequency in the last step. If the
blocks overlap, this procedure requires evenmorememory than to load
the entire data at once. A remedy to this problem is to save the Fourier
realizations, and load their individual components into memory at a
later time, frequency-by-frequency, to form the CSD matrix. This
procedure is significantly slower as it requires a large number of
read/write operations, but permits a tradeoff between memory on one
side, and time-to-solution and secondary storage requirements, on the
other. This strategy is optional in spod. Note that the solution of the
central eigenvalue problem, Eq. (23), is independent of the spatial
degrees of freedom as the size of the CSDmatrix isNblk × Nblk, that is,
determined solely by the number of blocks.
For situations where the data become too large to be stored and/or

processed, Schmidt and Towne [18] devised an efficient online
algorithm that computes the SPOD from a continuous, arbitrarily

long stream of data. The algorithm combines two main ideas that
permit the on-the-fly computation of the SPOD with a minimal
memory footprint. At the heart of the algorithm is an incremental
updating strategy of the eigenvalue decomposition of the CSDmatrix
on the one hand and the use of partial Fourier sums on the other.
This combination enables the algorithm to operate one-snapshot-at-
a-time. This implies that the algorithm is capable of converging the
SPOD over arbitrarily long time horizons, for example, during the
runtime of a high-fidelity numerical simulation or a time-resolved
PIV measurement campaign. The implementation sspod of the
streaming algorithm is freely available online.

IV. Examples

We now present two examples of SPOD analysis. The first exam-
ple, presented in Sec. IV.A, is that of a high-fidelity large-eddy
simulation (LES) of an M � 0.4 isothermal turbulent jet that was
computed as an extension of previous work by Brès et al. [22]. The
simulation was conducted using the compressible flow solver
“Charles” for a Reynolds number, based on the mean jet exit velocity

and the nozzle diameter, of Re � 4.5 × 105. The second example,
presented in Sec. IV.B, is that of two-dimensional particle image
velocimetry (PIV) data of the velocity field in the wake of the three-
bladed laboratory-scale model of a vertical-axis wind turbine
(VAWT) by Araya et al. [23]. The experimental Reynolds number
based on the diameter of the rotor and the freestream flow speed

is Re � 0.8 × 105.
Both of our examples involve computing SPODmodes over a range

of frequencies in two spatial dimensions. For the round jet, the rota-
tional symmetry is exploited to first decompose the data into azimuthal
Fourier modes, and, for brevity, we only present results for the axisym-
metric (m � 0) mode—the higher azimuthal modes are computed in
an analogous manner and have been presented in Schmidt et al. [24].
For the VAWT wake, only two components of velocity in a two-
dimensional cross section of the flow are available from the PIV
measurements; the resulting modes should hence be regarded as
approximations of a section of the three-dimensionalmodes thatwould
have been obtained if the full three-dimensional, three-component
velocity field had been available. Nevertheless, they reveal flow struc-
tures that are coherent over the measurement plane.
Another distinction in these datasets is that, while both flows are

fully turbulent and have a broadband spectrum, the jet has no tonal
content, whereas the VAWT, which rotates at a nearly constant
frequency, has tonal structures at the blade passing frequency (BPF)
and its harmonics. As we shall see, SPOD is capable of sorting this
out naturally—no special attention is required beyond paying careful
attention to the spectral estimation parameters that control, for exam-
ple, the frequency bin size and resulting spectral leakage.
For theVAWT, SPODcan be seen as advantageous over traditional

phase-averaging techniques in that it can represent flow structures
that are coherent at frequencies both commensurate and incommen-
surate with the BPF. However, compared with a phase average,
harmonics of the BPF are represented as beingmutually uncorrelated
(over time) in SPOD.
Table 1 summarizes the available data for both cases.

A. Numerical Data of a Turbulent Jet

In this example, we restrict our attention to the symmetric compo-
nent of the pressure from the LES data. The reader is referred to
Schmidt et al. [24] for a detailed studyof large-scale coherent structures
in turbulent jets for Mach numbers representative of the subsonic,
transonic, and supersonic regime, and for different azimuthal wave
numbers. We calculate SPOD modes that are optimal with respect to
the compressible energy norm introduced in Sec. III.B. Because the
data are saved on a nonequidistant cylindrical grid, we use trapezoidal
quadrature weights. The instantaneous fluctuating pressure and mean
pressure fields are visualized in Fig. 3. The wide range of spatial and
temporal scales that are active in the jet is apparent from the instanta-
neous pressure contours. The following SPOD analysis will demon-
strate the method’s ability to systematically separate these different
scales. In time, this separation is explicitly enforced through theFourier
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transform, whereas the separation of spatial scales results from the
interdependence with the temporal scales, as manifested, for example,
in the form of an underlying dispersion relation. Figure 4 shows the
SPOD energy spectrum for the spectral estimation parameters listed in
Table 1.We choose this representation of the SPOD eigenvalues for its
compactness and ease of interpretation. It is important to note that the
representation by a continuous line does not imply that the same
physical mechanism is represented by the same mode at neighboring
frequencies.A good indicator for the dominance of onemechanism is a
large separation between the eigenvalues associated with the first and
the secondSPODmodes. In this example,we see such a behavior in the
region around fD∕U ≈ 0.6. To understand this behaviour, we next
inspect the SPODeigenfunctions, ormodes inFig. 5. First,we focus on
the leading SPODmodes for different frequencies (left column). In all
three cases, the leading mode takes the form of a wave train, often
referred to as awavepacket.Wealso observe that thesewavepackets are
localized further upstreamwith increasing frequency. This observation
is the key to understanding the origin of the large difference between
the leading and the second eigenvalue for fD∕U ≈ 0.6 in Fig. 4. For
frequencies fD∕U 0.2, the dominant coherent structure is the well-
knownKelvin–Helmholtz-type (KH) spatial instability of the jet shear
layer, whereas Orr-type waves in the region downstream of the poten-
tial core dominate at lower frequencies [24]. The main difference
between the leading and the second, or subdominant, modes (right
column) is that the latter reveal a multilobe structure in the axial
direction. Even though a physical interpretation of this phenomenon
is not obvious, we can understand this patterning as a mathematical
way of achieving orthogonality.
Another important concept that can be inferred fromSPOD spectra

is referred to as low-rank behavior. Low-rank refers to the property
that the data can be well represented by one, or a small number, of
basis vectors. Mathematically, this corresponds to a large separation
of eigenvalues. Physically, we expect low-rank behavior whenever a
physically dominating mechanism, such as a hydrodynamic insta-
bility, is present in the flow. For the example of the turbulent jet, the
KH instability is such a mechanism and explains the large gap
between λ1 and λ2 in the frequency band around fD∕U ≈ 0.6. If,
on the contrary, all eigenvalues at a given frequencies are similar, as
for very low and very high frequencies in Fig. 4, one might speak of
non-low-rankbehavior. In this case,we cannot expect to observe flow
structures that are well represented by a single SPOD mode and are
better served by taking amathematical point of view and interpret the
SPOD modes as set of basis functions of comparable importance.

B. Experimental Data of a Vertical-Axis Wind Turbine

The instantaneous and mean streamwise velocity fields for the
experimental example are shown in Fig. 6. We choose a weighted

2-norm for the state vector q � �uv�T comprising both velocity

components to obtain a (partial) measure of the turbulent kinetic

energy; see Sec. III.B. As the measurement windows are not

synchronized in time, spatial or temporal correlation between differ-

ent windows is not meaningful, and we analyze each window sepa-

rately. If the statistics are sufficiently converged, however, we find

that it is possible to phase-match SPOD modes from different win-

dows and provide a global view of the dynamics. This technique is

demonstrated later in the context of Fig. 7. The SPOD spectra and the

PSD of all seven PIV windows are presented in Fig. 7. The most

prominent features are a peak at a low frequency of fD∕u∞ � 0.238
that is found in all seven windows, and three distinct peaks at higher

frequencies in the spectrum of PIV window 3, which contains the

VAWT. The dominant peak at fD∕u∞ � 1.59 corresponds to the

BPF, and the following two peaks to its first two harmonics.

The SPOD modes associated with the two dominant peaks

in the spectra are shown in Fig. 8. From the inspection of the leading

SPOD mode, we can conclude that the low-frequency peak at

fD∕u∞ � 0.238 results from a bluff-body-like wake that manifests

downstream of the turbine. This finding is in agreement with the

typical bluff-body wake frequency of fD∕u∞ ≈ 0.2. The asymmetry

of the wake is a result of the rotation of the turbine and can be

Fig. 3 Instantaneous fluctuating pressure (top) and mean pressure field (bottom) of theM � 0.4 isothermal turbulent jet LES.

Fig. 4 SPOD energy spectrum for theM � 0.4 isothermal turbulent jet
LES. The first (or leading, or dominant) eigenvalue λ1 contains most of
the energy, by construction, and the corresponding mode is often indica-
tive of the dominant physical process, in particular if the separation
between the first and the second eigenvalue (red) is large. The blue line

indicates the PSD, which is reconstructed by summing the modal ener-
gies. The first and second SPODmodes for the three frequencies marked
by vertical lines are visualized in Fig. 5. The frequency is nondimension-
alized by the jet exit velocity and the nozzle diameter.

Table 1 Parameters of the two example databases and spectral estimation parameters of the SPOD analysis

Database SPOD

Case Variables Nx Ny, Nr Nt fsD∕U NFFT Novlp Nblk Norm

Jet LES [22,24] ρ; u; v; w; T 228 51 10,000 12.5 256 128 77 Compressible energy

VAWT PIV [23] u, v 49, 49, 48, 38, 48, 38, 48 88 9,000 40.68 512 256 34 Planar TKE

The sampling frequency has been normalized byD, the diameter of the jet (50 mm) or turbine (0.3 m), respectively, andU, the jet velocity (131.43 m∕s) or
turbine freestream velocity (0.253 m∕s), respectively.

8 Article in Advance / SCHMIDTAND COLONIUS

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 S
A

N
 D

IE
G

O
 o

n 
Fe

br
ua

ry
 4

, 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
88

09
 



explained as follows. On the upper part of the turbine, the rotation
direction coincides with the direction of the incoming flow, whereas
the opposite is true for the lower part. Therefore, a much higher shear
is introduced on the lower side, resulting in a significantly stronger
wake. Because the higher frequency peak at fD∕u∞ � 1.59 coin-
cides with the rotor passing frequency, we expect to observe periodic
blade vortex shedding at this frequency. This conjecture is confirmed
by the SPOD analysis, which isolates this phenomenon in the leading
SPOD mode. The comparison of the modes with the instantaneous

flow visualization depicted in Fig. 6 shows that SPOD also functions
as an efficient filter for measurement noise. The reason is that
most types of measurement noise are largely uncorrelated in space
and/or time. The same reasoning applies in the context of statistical
outliers and rare physical events. Such outliers are associated with
a broad frequency response. For that reason, they are not well
approximated by SPOD modes. A conditional form of POD that is
conducted over a finite time horizon may be applied to extract rare
events [25].
We stress that at both frequencies shown in the figure, the SPOD

modes were computed independently in each PIV window (because
the data were collected in each window in successive experiments).
To produce the figure, we “stitched” together the modes in an ad hoc
way by finding a single (complex) constant that best matched the
phase between the successivewindows. The closematch between the
contours at the boundaries between the PIV windows is strong
evidence of a global structure, to which the individual PIV windows
are mutually converging.

V. Conclusions

This paper gives an overview of SPOD with the goal to make it
accessible to practitioners. Its theoretical background is discussed,
which is rooted in the general formalismdevised byLumley [3], and a
practical account of how to compute the SPOD from snapshot data is
given. Technically, SPOD is a form of POD that is specialized to
statistically stationary data, that is, data whose mean and variance do
not change over time. If these requirements are met, then SPOD will
yield modes that inherit all the desirable properties, such as optimal-
ity and orthogonality, from POD. Because stationarity is a form of
temporal symmetry that is best exploited in the frequency domain,
SPOD relies on Fourier transformations to compute modes that
oscillate at a single frequency. Just like standard POD, it also uses

Fig. 5 First (left column) and second (right column) SPODmodes of the turbulent jet for the three representative frequencies of fD∕U � 0.1 (top row),
0.6 (middle row), and1.5 (bottomrow), asmarkedby the vertical lines inFig. 3.Note that the compressible energynormhas 5 components.Here,weuse the
temperature and density component to obtain the fluctuating pressure from the linearized equation of state.

Fig. 6 Instantaneous (top) andmean (bottom) streamwise velocity of the
VAWT PIV data. The database consists of 7 windows that were inde-
pendently recorded; that is, different windows are recorded at different
times but over the same total length; see Table 1.

Fig. 7 SPOD energy spectrum for the VAWT PIV data. Solid lines

indicate the PSD and dashed lines the SPOD energy of the first mode.
The PSD is reconstructed by summing the energy of all modes, and both
the PSDand the contribution of the firstmode are normalized by the area
of the PIV windows to accommodate for the different window dimen-
sions; see Table 1. The dashed line indicates the −5∕3 power law of the
energy spectrum. PIV window 3 corresponds to the leftmost window

shown in Fig. 6, window 4 to the second one, and so on, as in [23]. The
vertical lines correspond to the two representative frequencies for which
SPOD modes are presented in Fig. 8.

Fig. 8 Dominant SPOD modes at the low-frequency peak with
fD∕u∞ � 0.238 (top) and at the blade-passing frequency, fD∕u∞ �
1.58 (bottom). The phases of the leading modes are synchronized across
windows to give a global representation of the flowfield by successively
matching the phases of neighboring windows at the location of their

maximum absolute value.
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spatial correlation information to ensure that the computedmodes are
coherent in space and optimally represent the data in terms of energy.
Unlike standard POD modes, whose expansion coefficients are not
necessarily correlated in time, SPODmodes are also coherent in time
as their temporal behavior is described by a single frequency; that is,
they are coherent in both space and time.Another advantage of SPOD
is that it uses spectral estimation to converge the decomposition. This
convergence is directly reflected in the variance of the estimate that is
inversely proportional to the amount of data that is used. The con-
vergence of the second-order statistics, and in particular those of the
subdominant modes, often requires long time series to obtain well-
converged modes and spectra.
The estimation of the CSD tensor can be done in different ways.

Here, this paper focused onWelch’smethod and discussed the choice
of norm and spectral estimation parameters in detail. The relevant
aspects of spectral estimation such as sampling biases, windowing,
confidence bounds, and how to deal with very large data were
discussed.
The physical interpretation of SPOD modes is greatly facilitated

by their spatial and temporal coherence, and by their direct relation
with forced, linear systems [18]. A visual inspection of the mode
structure often directly reveals the underlying flow physics, for
example, the presence of vortex shedding, flow instabilities, acoustic
resonances, and so on. The spectrum, on the other hand, is invaluable
in determiningwhich of the structures identified by themodes play an
important role in the flowfield. This useful property of the spectrum
derives itself from the optimality property. In practice, a quick first
scan of the spectrum allows to understand many of the important
aspects of the flow. The global peak of the spectrum, individual
spikes, and large gaps between the first and the second eigenvalue
are of particular interest. The frequencies containing most of the
energy are readily identified by the global peak of the spectrum,
whereas spikes indicate the presence of oscillations and their har-
monics. A large gap between the two leading eigenvalues indicates
that the decomposition is low rank or, in more physical terms, that
the mechanism associated with the leading mode dominates the
flowfield. For experimental data, a flattening of the spectrum
at high frequencies indicates that the signal-to-noise ratio is of
order unity. This demonstrates that the two outcomes of SPOD,
modes and spectrum, should always be interpreted in conjunction
with each other for maximum insight into the underlying flow
physics.
This paper demonstrates how to choose spectral estimation param-

eters and how to interpret the results of SPOD using two examples.
The first is a high-fidelity numerical simulation of a turbulent jet. Its
SPOD spectrum falls off monotonically, but a gap between the
leading eigenvalues over a specific frequency range suggests low-
rank behavior. The inspection of the modes confirms that the flow in
this particular frequency band is, indeed, dominated by a single
physical mechanism, namely, the KH instability of the annular shear
layer. Our second example is an experimental study of aVAWTusing
PIV. The SPOD analysis shows the expected periodic blade vortex
shedding at the rotor-passing frequency, but also reveals a bluff-
body-like wake that manifests itself downstream of the turbine and
that contains most of the energy of the flow.
All results shown in this paper are computed using the open-

source, freely available MATLAB implementation spod (https://
www.mathworks.com/matlabcentral/fileexchange/65683-spectral-
proper-orthogonal-decomposition-spod).
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