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Abstract

The use of multitaper estimates for spectral proper orthogonal decomposi-

tion (SPOD) is explored. Multitaper and multitaper-Welch estimators that use

discrete prolate spheroidal sequences (DPSS) as orthogonal data windows are

compared to the standard SPOD algorithm that exclusively relies on weighted

overlapped segment averaging, or Welch’s method, to estimate the cross-spectral

density matrix. Two sets of turbulent flow data, one experimental and the other

numerical, are used to discuss the choice of resolution bandwidth and the bias-

variance tradeoff. Multitaper-Welch estimators that combine both approaches

by applying orthogonal tapers to overlapping segments allow for flexible con-

trol of resolution, variance, and bias. At additional computational cost but for

the same data, Multitaper-Welch estimators provide lower variance estimates

at fixed frequency resolution or higher frequency resolution at similar variance

compared to the standard algorithm.

Keywords:

1. Introduction

SPOD is the specialization of the most general form of proper orthogonal de-

composition (POD, [1]) to statistically stationary data and is best computed in

the frequency domain. An early application of the method can be found in the
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experimental work of Glauser et al. [2]. The method has recently gained pop-5

ularity as theoretical connections to dynamic mode decomposition (DMD,[3])

and resolvent analysis of turbulent mean flows [4] were established by Towne

et al. [5]. Another factor is its application to large numerical data that were

specifically generated for this purpose [6]. SPOD has been applied to a broad

range of canonical [7, 8, 9, 10, 11, 12, 13] and technical [14, 15, 16, 17] turbulent10

flows, weather and climate data [18], and found diverse applications in aeroa-

coustics [19, 20], stochastic estimation [21], frequency-time analysis [22], flow

field reconstruction [23, 22], and reduced-order modeling [24, 25].

The SPOD modes and their mode energies are, respectively, the eigenvectors

and eigenvalues of the weighted cross-spectral density (CSD) matrix. The CSD15

matrix is estimated from an ensemble of realizations of the temporal discrete

Fourier transform (DFT). In contrast to classical Fourier analysis (see, e.g., Pain

et al. [26] for a recent application to large data), SPOD modes are, in an inner

product norm of choice, optimal linear combinations of many Fourier modes.

The standard approach to estimate the CSD matrix for SPOD is weighted over-20

lapped segment averaging (WOSA), or Welch’s method [27, 28]. A different

approach that is routinely used for the estimation of power spectra from time

signals is the multitaper (MT), or Thomson’s multitaper method [29]. The mul-

titaper method corresponds to weighted averaging of independent spectral esti-

mates that are obtained from multiple orthogonal data windows. Most notably,25

it has been demonstrated by Bronez [30] that the multitaper power spectrum

estimator outperforms the Welch estimator in terms of leakage, variance, and

resolution if two of these three quantities are fixed to determine the third. In

the context of spectral analysis of turbulent flow data, a frequency–wavenumber

analysis technique that uses multitaper estimates was proposed by Geoga et al.30

[31].

The remainder of the paper is organized as follows. The technical back-

ground is discussed in §2 and includes a brief summary of the discrete SPOD

problem (§2.1) and DPSS (§2.2), as well as a recapitulation of Welch’s method,

and the introduction of multitaper estimates for SPOD (§2.3). The two example35
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data sets are presented in §2.4. In §3, SPOD analyses conducted using the basic

Welch and single-block multitaper estimates (§3.1) are compared and discussed

in the light of parameter selection, frequency resolution, bandwidth, and the

variance-bias tradeoff. Next, multitaper-Welch estimates that combine the ad-

vantages of both methods are computed for the two examples and discussed in40

§3.2. The additional computational cost associated with multitaper estimates

is addressed in §4. Finally, implications and future applications of this work are

discussed in §5.

2. Background and Methodology

2.1. Spectral proper orthogonal decomposition (SPOD)45

The discrete SPOD of an ensemble of Nt snapshots of spatio-temporal mul-

tivariate data with zero mean,

qi = q(ti), i = 1, · · · , Nt, q ∈ RNdof×1 (1)

here written as a sequence of column vectors, is obtained from the eigendecom-

positions

CjWΦj = ΦjΛj , j = 1, · · · , Nfft, Cj ∈ RNdof×Ndof , (2)

of the cross-spectral density (CSD) matrices, Cj . The rank M of the CSD

matrices corresponds to the number of independent realizations of the Fourier

transform that are used for their construction, and their size is determined by

the number of degrees of freedom (number of variables times number of points

in space), Ndof . The number of eigenvalue problems to be solved corresponds

to the number of discrete frequencies, Nfft, of the discrete Fourier transform

in the permissible frequency band between zero and the Nyquist frequency,

fNyq = fs
2 , where fs = 1/∆t is the sampling frequency. The columns of Φj =[

φ
(1)
j ,φ

(2)
j , . . . ,φ

(M)
j

]
, i.e., the eigenvectors of the weighted CSD matrices CjW,

are the SPOD modes and the diagonal entries of Λj , i.e., the corresponding

eigenvalues λ
(1)
f ≥ λ

(2)
f ≥ · · · ≥ λ

(M)
f , the mode energies. The weight matrix W
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accommodates spatial integration and, for multivariate data, variable-dependent

weights. The discrete (sample) spatial CSD matrix is given as

Cj =
1

M

M∑
k=1

q̂
(k)
j

(
q̂

(k)
j

)∗
(3a)

=
1

M
Q̂jQ̂

∗
j , (3b)

where q̂
(k)
j is the k-th out of M realizations of the discrete Fourier transform

at the j-th frequency. The matrix representation, equation (3b), uses the data

matrix Q̂j =
[
q̂

(1)
j , q̂

(2)
j , . . . , q̂

(M)
j

]
. The denominator is either M or M − 1,

depending on whether the true mean, if available, or the sample mean is sub-

tracted from the data, respectively. In the common case where M < Ndof , the

smaller size M ×M eigenvalue problem,

C′jΨj = ΨjΛ
′
j , Φj = Q̂jΨj , j = 1, · · · , Nfft, (4a)

where C′j =
1

M
Q̂∗jWQ̂j , C′j ∈ RM×M , (4b)

is the weighted temporal CSD matrix and Λ′j ∈ RM×M the reduced matrix

of non-zero eigenvalues, can be solved for the SPOD expansion coefficients,

Ψj , instead of using equation (2) to obtain the SPOD modes directly. The50

desirable mathematical properties of the SPOD, its continuous formulation, and

algorithmic implementations are discussed in detail elsewhere [5, 28].

2.2. Discrete Prolate Spheroidal Sequences (DPSS)

Figure 1: Leading seven DPSS for N = 4096 and bwin = 4 compared to a standard Hamming

window. The DPSS are normalized by the maximum value of s1 for clarity.
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Discrete prolate spheroidal sequences (DPSS), or Slepians, are the discrete-

time equivalent of prolate spheroidal wave functions [32, 33]. They are the

optimal solutions to the spectral concentration problem that seeks orthogonal

time sequences whose discrete Fourier transform is maximally localized in a

frequency band [−δf, δf ], defined by the resolution half-bandwidth, δf . Given

the window length, N , and resolution half-bandwidth, δf , a common way to

find the DPSS is the eigendecomposition

Hs = γs, (5)

where the entries of the Hermitian matrix H = H(δf,N) are given by

hij =
sin (2πδf(j − i))

π(j − i)
, i, j = 0, . . . , N − 1. (6)

The eigenvalues 1 > γ0 > γ1 > · · · > γN−1 > 0 correspond to the spectral con-

centrations of energy of the respective tapers, s0, s1, . . . , sN−1, in the frequency

band [−δf, δf ]. Since H is Hermitian, the DPSS are mutually orthogonal. It can

be shown that only 2δfN (Shannon number) of the spectral concentrations are

close to unity. It is hence customary to use only the firstNwin = 2δfN−1 Slepian

tapers as windows. In terms of the time-halfbandwidth product, bwin = δfN ,

this statement becomes

Nwin = b2bwinc − 1, (7)

and guarantees that the Fourier transforms of all windows are well-concentrated

in [−δf, δf ] to minimize spectral leakage to neighboring frequencies. The leading55

seven DPSS for N = 4096 and bwin = 4 are compared to a standard Hamming

window in figure 1.

2.3. Welch and multitaper estimates of the SPOD

The N independent realizations of the discrete Fourier transform that form

the columns of the sample CSD matrix in equation (3a) are obtained in one of

two ways. The first option is to obtain well-separated sequences, or blocks, q
(k)
j

with j = 1, . . . , Nfft and k = 1, . . . , Nblk, one at a time. Denote by Nblk the

total number of blocks, each consisting of Nfft consecutive snapshots, equally
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spaced in time by ∆t. This scenario occurs when data acquisition at a high

sampling rate is the bottleneck, as is the case in many experimental settings.

The second possibility is that the data is acquired as a single, long time series

of Nt snapshots, qj = q(tj), with j = 1, · · · , Nt. This is often the case in

numerical settings, where the overall runtime is the bottleneck. In this case,

the long time series is segmented into Nblk blocks, q
(k)
j = qj+(k−1)(Nfft−Novlp)+1

with j = 1, . . . , Nfft and k = 1, . . . , Nblk, under the ergodicity hypothesis. Ad-

jacent blocks are allowed to overlap by Novlp snapshots, which results in a total

number of Nblk =
⌊
Nt−Novlp

Nfft−Novlp

⌋
blocks. This segmentation is the idea behind the

method of Welch [27], that was originally devised for the estimation of power

spectra of time signals. In the same work, Welch established from theoretical

considerations the best practice of using an overlap of 50%. We follow this best

practice but note that the optimal overlap depends on the window function,

see Heinzel et al. [34] for a comprehensive discussion. After segmenting the

data, Nblk realizations of the Fourier transform are obtained from the weighted

temporal discrete Fourier transform of each block,

q̂
(k)
j =

Nfft−1∑
i=0

w[i]q
(k)
i e

i2π
Nfft

ij
, k = 1, . . . , Nblk, (8)

where q̂
(k)
j is the k-th realization of the Fourier transform at the j-th discrete

frequency. It is common practice to use a data window, w, to prevent spectral

leakage due to the non-periodicity of the samples. A popular choice is the

symmetric Hamming window,

w[i] = 0.54− 0.46 cos

(
2πi

Nfft − 1

)
, i = 0, · · · , Nfft − 1. (9)

Given the ensemble of realizations, equation (8), the CSD matrix is formed

according to equation (3a), and its eigendecomposition, equation (2), concludes60

the standard SPOD algorithm.

Inspired by the method of Thomson [29], also originally intended for the es-

timation of power spectra, we propose to use a set of Nwin orthogonal DPSS (see

§2.2) as data windows for the SPOD. We restrict this set to the first 2bwin − 1
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sequences (equation (7)) to ensure that all data windows are well-concentrated

in [−δf, δf ]. Since the DPSS are orthogonal, the different realizations are inde-

pendent. By combining segmenting and orthogonal windowing, a total number

of NblkNwin realizations,

q̂
(k,l)
j =

Nfft−1∑
i=0

sl[i]q
(k)
i e

i2π
Nfft

ij
, k = 1, . . . , Nblk, l = 0, . . . , Nwin − 1, (10)

is obtained. Here, sl[i] is the i-th element of the l-th DPSS, sl, computed

from equation (5). The first seven DPSS for Nfft = 4096 and bwin = 4 are

shown in figure 1 and compared to the Hamming window, equation (9). The

corresponding sample CSD matrix is

Cj =
1

NblkNwin

Nblk∑
k=1

Nwin∑
l=1

q̂
(k,l)
j

(
q̂

(k,l)
j

)∗
. (11)

Its matrix representation is also given by equation (3b), but for M = NblkNwin

and Q̂j = [q̂
(1,1)
j , q̂

(1,2)
j , . . . , q̂

(Nblk−1,Nwin)
j , q̂

(Nblk,Nwin)
j ].

The standard Welch SPOD algorithm is recovered if a single data window is

applied to multiple blocks, (Nwin = 1, Nblk > 1); a multitaper SPOD algorithm65

if multiple orthogonal windows are applied to a single segment (Nwin > 1,

Nblk = 1); and a hybrid multitaper-Welch SPOD algorithm if blocking and

orthogonal windowing are combined (Nwin > 1, Nblk > 1).

2.4. Data

Example Variables Nx Ny,r Nt ∆t

Jet LES[35] p 261 58 10000 0.2

Cavity PIV[36] u, v 78 28 16000 6.24 · 10−5

Table 1: Database and spectral estimation parameters. All quantities are non-

dimensionalized as described in the text.

Two sets of data are taken as examples. The first data set consists of 1000070

snapshots of the pressure field from the wall-modeled large-eddy simulation

(LES) of a turbulent M = 0.9 jet by Brès et al. [35]. This data has been studied
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in detail using SPOD by Schmidt et al. [6]. The second data set consists of

16000 snapshots of the streamwise and wall-normal velocity fields of the tur-

bulent M = 0.6 flow over an open cavity acquired using time-resolved particle75

image velocimetry (TR-PIV) by Zhang et al. [36]. The open cavity has a length-

to-depth ratio of L/D = 6 and a width-to-depth ratio of W/D = 3.85. More

details on the experimental setup can be found in Zhang et al. [37], and an anal-

ysis of the data, including using SPOD, in Zhang et al. [36]. All quantities are

non-dimensionalized. For the jet LES data, the pressure is non-dimensionalized80

by twice the dynamic pressure, ρjU
2
j , where Uj and ρj are the jet exit velocity

and density, respectively. Time is non-dimensionalized by D/c∞, where c∞ is

the far-field speed of sound and D the jet diameter. The dimensionless fre-

quency can therefore be interpreted as the Strouhal number. The radial and

streamwise coordinates are likewise given as multiples of D. The sampling time85

step ∆t corresponds to 200 time steps of the original LES. The 16000 snapshots

of the cavity PIV data were recorded over a period of T = 1 s. Using this period

to non-dimensionalize time conveniently yields ∆f = 1 and the non-dimensional

frequency corresponds to the frequency in Hz. To facilitate the large parameter

sweeps conducted for demonstration purposes in this study, the spatial resolu-90

tions of both databases were reduced by skipping every other grid point in the

streamwise and normal directions. This reduction is accounted for in table 1

and enables, in particular, the memory intensive computation of estimates that

use a large number of tapers. We will later demonstrate how the combination of

multitapering and segmenting can be used to reduce this computational burden95

for large data.
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Figure 2: Instantaneous flow field visualizations: (a) fluctuating pressure of the turbulent jet

LES; (b) streamwise fluctuating velocity of the open cavity PIV data.

Instantaneous flow field visualizations of both data sets are shown in figure

2, and relevant parameters are reported in table 1. The turbulent jet data

are representative of turbulent flows with broadband turbulence spectra [35].

The open cavity data are representative of turbulent flows with tonal peaks100

and an underlying broadband spectrum [36]. The two sets also differ in that

measurement noise is present only in the experimental cavity flow data.

3. Results

For the remainder of this paper, we follow best spectral estimation practices

[27], and set Novlp to 50% of Nfft for all Welch estimates. To compare multiple105

spectra for different parameters, we first focus on the leading eigenvalues, λ
(1)
f .

The variance of the remaining eigenvalues is similar to that of the leading eigen-

value. We do, however, inspect the statistical convergence of the leading two

SPOD modes, φ
(1)
j and φ

(2)
j , and note that the convergence of the second mode

is indicative of the convergence of the remaining modes. The leading SPOD110

modes play a special role in that they often capture physical mechanisms like

resonances or hydrodynamic instabilities that dominate the dynamics at a given
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frequency. The presence of such mechanisms leads to a rapid convergence of the

leading mode and separation of the leading two eigenvalues that represent the

mode energies. The latter phenomenon is often referred to as ‘low-rank behav-115

ior’, which should be understood in a physical rather than strictly mathematical

sense (Cj ∈ RN×N is positive semi-definite in general and has full rank only

if constructed from M = N independent realizations q̂
(k)
j , k = 1, . . . , N). We

begin by comparing the basic Welch and multitaper estimates of the SPOD

for the open cavity data in §3.1. In this context, we discuss the bias-variance120

tradeoff and some subtleties of the estimation process that are best explained by

example. A comparative study of both test databases using multitaper-Welch

estimates is presented in §3.2.

3.1. Standard Welch and single-block multitaper estimates of the SPOD

Figure 3: Leading SPOD mode spectra of the open cavity PIV data using different estimators:

(a) Welch; (b) multitaper. The leading SPOD modes at f = 421.9 and f = 938.5 are shown

in figure 4 below. Dashed lines in (a) indicate the lowest non-zero frequency for each Nfft.

Figure 3 compares SPOD eigenvalue spectra for the open cavity flow PIV125

data obtained using standard Welch and single-segment multitaper estimates.

The free parameter that is varied for the Welch estimates in figure 3(a) is the
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number of samples per block, Nfft. For a fixed overlap of 50%, this also fixes

the number of blocks, Nblk. For consistency, the Welch estimates are computed

with the zeroth DPSS as the data window, and it was confirmed that the Welch130

estimates of the SPOD using s0 and a standard Hamming window, both shown

in figure 1, are fundamentally similar. The multitaper estimates in figure

3(b) are obtained for the entire dataset of Nfft = Nt = 16000 snapshots, and

the time-halfbandwidth product, bwin, was varied. The number of tapers used

for each estimate, Nwin, then directly follows from equation (7). The modes135

corresponding to two particular frequencies of f = 938.5 and f = 421.9 that

are labeled on the frequency axis will be discussed later. The higher frequency

corresponds to the highest peak in the spectrum and is associated with the first

Rossiter mode [38], a resonant hydrodynamic instability. The lower frequency

corresponds to the much broader peak in the region of high variance that appears140

close to the Rossiter frequency on the logarithmic scale.

Welch’s method is asymptotically unbiased for stationary data and converges

to the true spectral density as Nblk, Nfft →∞. For limited data, however, care

has to be taken regarding the balance of bias and variance. This becomes clear

in figure 3(a). For Nfft = 212 = 4096 (black line), the data are segmented145

into only six blocks, and the noisy appearance of the SPOD spectrum indicates

the high variance of the estimate. As Nfft is decreased, the number of blocks

increases, and the variance is significantly reduced. Observe, however, that

the distinct spectral peaks at the Rossiter and some higher frequencies vanish

simultaneously. This is evidence of bias due to the decreased frequency resolu-150

tion, ∆fWelch = 1
Nfft∆t

= fs
Nfft

, with decreasing Nfft and the associated spectral

leakage of the under-resolved features. Similar to Welch’s method, multitaper

estimates of the spectral density based on DPSS are asymptotically unbiased

and their mean square error converges to zero as N → ∞ (but at the same

time δf → 0 with bwin → ∞, and Nwin ≤ 2bwin but Nwin → ∞; see [39] for155

details). As bwin is increased in figure 3(b), the same qualitative trends are

observed as for the Welch estimator, i.e., the variance decreases as the bias

increases. The multitaper estimate retains the same frequency resolution, or
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bin size, of ∆f = 1
∆tNt

= 1, whereas for the Welch estimate, it increases from

∆fWelch = 1
∆tNfft

= 3.9 for Nfft = 4096 to ∆fWelch = 250 for Nfft = 64. For the160

multitaper estimator at a fixed N , the time-halfbandwidth product, bwin, deter-

mines the frequency bandwidth, ∆fDPSS = fsδf , over which the DPSS tapers

yield an integrated average. Welch and multitaper estimates may be compared

if they average over a similar frequency band, this is if ∆fWelch ≈ ∆fDPSS.

For the Welch estimate with Nfft = 512, for example, the frequency res-165

olution is reduced by a factor of Nt
Nfft

= 31.25. Because ∆f = 1 (16000

samples recorded at 16 kHz over 1 sec) in the experiment, the same value,

∆fWelch = 31.25, is obtained for the frequency bin size. Since bwin determines

the resolution bandwidth in multiples of ∆f , we consider bwin = 31, and may

confirm that ∆fDPSS = 31 (again, because ∆f = 1). We observe that the Welch170

estimate for Nfft = 512 (blue line in figure 3(a)) and the multitaper estimate for

bwin = 31 (gray line in figure 3(b)), are indeed qualitatively similar in terms of

their variance and resolution of peaks. If the variance is further reduced (cyan

lines in figure 3(a,b)), then the bias is further increased, and spectral peaks are

increasingly under-resolved for the Welch estimator, and flattened and broad-175

ened for the multitaper estimator. An advantage of multitaper SPOD for com-

parable bias and variance is that it resolves lower frequencies down to ∆f . A

disadvantage is that it becomes computationally expensive for large Nwin, as

it requires parallel processing of Nwin realizations of the Fourier transform of

the full data. The computational cost associated with multitaper estimates is180

discussed in more detail in §4.
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Figure 4: Real part of the leading SPOD modes of the open cavity PIV data using different

estimators: (a,b) Welch for varying Nfft, Nblk; (c,d) multitaper for varying bwin, Nwin. The

leading SPOD modes at f = 421.9 and f = 938.5 are shown in the left and right columns,

respectively (labelled in figure 3 above).

Figure 4 shows SPOD modes obtained using the Welch (top) and multi-

taper (bottom) estimators at the two different frequencies, respectively repre-

senting the low-frequency region with high variance (left) and the tonal peak

frequency associated with the first Rossiter mode (right). The phases of the com-185

plex modes have been approximately aligned for comparability. At f = 938.5,

the Rossiter mode in figure 4(b,d) is extracted by both approaches, and well-

converged for all parameters. This is typical for hydrodynamic instabilities and

resonant mechanisms that are both energetic and evolve coherently over large

regions in space and time. At the lower frequency of f = 421.9, no such mech-190

anism is present, and both the Welch estimate for Nblk = 6 and the multitaper
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estimate for Nwin = 3 appear noisy. Well-converged modes are obtained when

Nfft is decreased (and therefore Nblk increased), or bwin (and therefore Nwin)

are increased for the multitaper estimate.

3.2. Multitaper-Welch estimates of the SPOD195

As demonstrated in §3.1 above, the multitaper method can, in principle,

obtain low-variance estimates without segmentation if a large number of data

windows is used. Doing so, however, quickly becomes computationally pro-

hibitive. Furthermore, the estimate at the lowest resolvable frequency relies on

a single realization of the flow process if N = Nt, and is therefore not statisti-200

cally representative. These issues are addressed by applying multiple orthogonal

windows to overlapping segments, that is, the multitaper-Welch estimate given

by equation (11) with Nblk, Nwin > 1. Our results from §3.1 suggest that Welch

and multitaper SPOD yield comparably well-converged modes and spectra for

similar bandwidths, ∆fWelch ≈ ∆fDPSS, leaving computational cost as the only205

advantage of the Welch estimator.

For the following study of the performance of the multitaper-Welch estima-

tor, we chose the highest Nfft possible that results in the lowest number of blocks

that still gives us confidence in the statistical convergence at low frequencies.

That segment length is Nfft = 4096, resulting in Nblk = 3 and Nblk = 6 for the210

jet and cavity data, respectively.
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Figure 5: SPOD mode spectra of the cavity PIV data using different estimators with com-

parable bandwidth, ∆f : (a) Welch with Nfft = 512; (b) multitaper with bwin = 31; (c)

multitaper-Welch with Nfft = 4096, bwin = 8. Colors correspond to those in figures 3(a), 3(b),

and 6(b) for bwin = 9, respectively. Red lines show the integral power spectral density (sum

of eigenvalues at each frequency) and dotted lines the lowest non-zero frequencies of all three

estimates.

Before systematically assessing the effect of the bandwidth parameter, we

start with a three-way comparison, including the hybrid multitaper-Welch esti-

mator, at comparable variance. Following the discussion in §3.1, a comparable

variance is achieved by adjusting the spectral estimation parameters such that215

∆fWelch ≈ ∆fDPSS ≈ ∆fM−W, where ∆fM−W is the bandwidth of the hybrid

estimator. Figure 5(a) and 5(b) show the full SPOD spectra for the Welch and

multitaper estimators with ∆f ≈ 31, previously shown and discussed in the
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context of figure 3(a) and 3(b). The same colors as in figure 3 are used. Noting

that the sum of all eigenvalues corresponds to the energy density, the spectra220

are multiplied by the number of frequency bins to collapse them on the same

scale. The bandwidth of the multitaper-Welch method, ∆fM−W = 1
Nfft∆t

δf
∆t ,

results from the combined effects of windowing and tapering. For a fixed seg-

ment length of Nfft = 4096, we set ∆fM−W = 31.25 by choosing bwin = 8.

The corresponding SPOD spectrum is shown in green in 5(c) (same color as225

for the closest bandwidth parameter of bwin = 9 in figure 6 below). We may

convince ourselves that the variances of all three estimates in figure 5(a,b,c) are

indeed visually very similar. The computational cost of the different estimators

is discussed in detail in §4 below. Of the three estimates shown here, the Welch

estimate computed that fastest, the Multitaper-Welch estimate took ∼15 times,230

and the Multitaper-only estimate ∼45 times as long. The main advantage of the

multitaper and hybrid estimators is their higher resolution, in particular at the

lower frequencies that contain the largest fraction of the integral energy in most

flows. The lowest resolvable frequency for the Welch estimator is f = 31.25,

whereas it is one for the Multitaper method.235

Next, we vary the bandwidth parameter, bwin, and therefore the number of

Slepian tapers, Nwin, to systematically study the bandwidth effect.
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Figure 6: Leading SPOD mode spectra using the multitaper-Welch estimator: (a) turbulent

jet LES; (b) open cavity PIV data. The leading SPOD modes at f = 0.055 and f = 0.33.

The segment length is Nfft = 4096, resulting in Nblk = 3 and Nblk = 6 for the jet and cavity

data, respectively.

Figure 6 shows the SPOD spectra for the leading modes and both cases.

The bandwidth parameter is varied from bwin = 1 to 25, resulting in a number

of windows between Nwin = 1 (Welch estimator) and 49. The total number of240

realizations, NblkNfft, is between 3 and 147 for the jet data and between 6 and

294 for the cavity data. A similar decrease in variance is observed for both data

as the bandwidth is increased. This decrease is linked to an increase in bias

that leads to the loss of certain features, such as several broader peaks at low

frequencies in the jet data (still resolved for bwin = 9, green line) and several245

double peaks at high frequencies in the cavity data (still clearly visible for bwin =

17, gray line). Under the caveat that the bias cannot be quantified because the

true spectrum is unknown, these observations reflect the usual variance-bias

tradeoff.
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Figure 7: Two leading SPOD modes for the jet LES data using multitaper-Welch estimates

of different bandwidths: (a) first mode for f = 0.055; (b) first mode for f = 0.33; (c) second

mode for f = 0.055; (d) second mode for f = 0.33. The corresponding leading SPOD energy

spectra are reported in figure 6.

The first and second SPOD modes of the jet data at the two representative250

frequencies are shown in figure 7. Modes obtained for a single, an intermediate,

and the highest number of tapers are compared. As expected, better-converged

modes are obtained for higher bandwidths. Take as an example the leading

SPOD mode for f = 0.33 shown in 7(b). For bwin = 1 and a single taper, the

mode appears noisy, particularly in the downstream region for x & 10. For255

the two higher bandwidths, the waveform is much more compact and smooth,

and very similar for bwin = 9 and 25. This is indirect evidence of the statistical

convergence of the mode. For the second (first subdominant) SPOD mode shown

in figure 7(d), continual improvement is observed as the bandwidth is increased

and a double-lobed structure emerges for the highest value of bwin = 25.260
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Figure 8: Same as figure 7 but for the cavity PIV data: (a) first mode for f = 421.9; (b) first

mode for f = 938.5; (c) second mode for f = 421.9; (d) second mode for f = 938.5.

Similar observations are made for the SPOD modes of the cavity PIV data

shown in figure 8. The improvement of mode convergence with increasing band-

width is apparent, in particular for the second SPOD modes in figure 8(c,d). A

clear spatial pattern that is physically interpretable and quantifiable in terms

of, for example, streamwise and wall-normal wavenumbers, is only revealed for265

the two higher bandwidths. A notable exception, as discussed earlier in the

context of figure 4, is the Rossiter mode shown in figure 8(b) at a frequency

of f = 938.5. It is associated with the overall largest SPOD eigenvalue and is

so prevalent that it can be spotted in the instantaneous velocity fields in figure

2(b).270
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Figure 9: Multitaper-Welch SPOD spectra for the cavity PIV data. The data are segmented

into Nblk = 6 blocks of length Nfft = 4096 and bwin, Nwin are varied: (a) bwin = 1, Nwin = 1;

(b) bwin = 9, Nwin = 17; (a) bwin = 17, Nwin = 33; (a) bwin = 25, Nwin = 49.

Finally, we investigate in figure 9 the full SPOD spectrum for the cavity PIV

data and the relative energy content of the leading and higher SPOD modes.

Four values of bwin between 1, in figure 9(a), and the maximum of 25, in 9(d),

are considered. It is, as expected, observed that the variance of the higher mode

spectra decreases in a very similar manner to that of the leading mode. The275

normalized cumulative energy, that is, the cumulative sum of the eigenvalues

from the highest to the lowest at each frequency, is indicated by the color. The

number of modes required to capture 90% of the energy at any given frequency

corresponds to the number of all colored (non-gray) lines. For the two highest

peaks and the lowest bandwidth of bwin = 1 shown in 9(a), the first mode280

alone account for more than 90% of the energy. As the bandwidth is increased,
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the peaks flatten, and this number reduces to 60%-80%. At the same time,

the number of modes required to reach 90% stabilizes, and the main effect of

increasing bwin is, apart from the discussed effects on bias and variance, that

more eigenvalues of lower energy are added to the bottom of the spectrum. This,285

again, is an indicator of statistical convergence.

4. Computational performance

The computational cost of the SPOD algorithm [5, 28] implemented in the

open-source Matlab code SPOD, and extended to multitaper estimators in the

present work, is dominated by two main loops (see Schmidt and Towne [40] for a290

detailed description and illustration of the algortihm). The first loop goes over

all Nblk blocks and computes, according to equation (10), the temporal DFT of

each block for each taper. The second loop goes over all Nfft frequencies. For

each frequency, the CSD matrix, as defined in equation (4b), is assembled and

its eigenvalue decomposition (EVD), equation (4a), is computed. Most of the295

compute time is, for most cases, spend in this second loop. The only exceptions

are the multitaper estimates with the two smallest numbers of tapers (Nwin = 3

and 6), for which the DFTs take most of the time. Clearly, any performance

advantage of the multitaper-Welch approach comes at the additional computa-

tional cost associated with processing a factor equal to the number of tapers of300

additional Fourier transforms.
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Figure 10: Computational performance in terms of memory usage (blue) and compute time

(red): (a) Welch; (b) multitaper; (c) multitaper-Welch. Both the jet LES (solid lines) and

cavity PIV (dashed lines) data are considered. Refer to figures 3 and 6 for the corresponding

SPOD spectra. All axes but the abscissa in (a) are on a linear scale.

Figure 10 reports the memory usage and compute times for the Welch and

multitaper estimates from §3.1, and the multitaper-Welch estimates from §3.2.

The computations were conducted on a workstation with 20 Intel Xeon cores

and 512 GB of memory. The memory consumption and compute times of the305

Welch estimates shown in figure 10(a) vary non-monotonically with the segment

length, and do not significantly change as Nfft is varied from 64 to 4096. This

can be explained by the balance between the number of segments and their

size that is inherent to the algorithm. If Nfft is large, then a small number

of NblkNdof DFTs of length Nfft have to be computed in the first loop, and a310

large number of Nfft small EVDs of size Nblk × Nblk have to be solved in the

second. These trends are reversed for small Nfft, which results in large Nblk,

and the overall computational cost is comparable. A very different behavior

is observed for the multitaper and multitaper-Welch estimates in figure 10(b)

and 10(c), respectively. The use of multiple tapers proportionally inflates the315

number of DFTs that have to be stored in memory and processed from Nblk

to NblkNwin (Nblk = 1 for multitaper-only), independent of their length. This

proportional increase of the the problem size with increasing Nwin is directly

reflected in the near-linear scaling of memory and compute time for estimates
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that use multiple tapers. Note, in particular, that the multitaper-only estimates320

with the largest values of Nwin require almost 300 GB of memory for both data

sets. The data reduction described in §2.4 was largely motivated by the desire

to include these extreme examples in this study for demonstration purposes.

As demonstrated in §3.1, very large values of Nwin lead to a large bias, and

are therefore not recommended in any case. The multitaper-Welch estimates325

shown and discussed in the context of figure 6 provide more balanced results

at significantly lower computational cost. The lower computational cost of the

hybrid approach becomes apparent from comparing the memory and compute

times of the multitaper estimates in panel 10(b) to those of the multitaper-

Welch algorithm in panel 10(c). This assessment of computational performance330

is taken into account for the best practice recommendations presented next as

part of the discussion in §5.

5. Discussion

In the light of the above comparative study, we start by assessing the per-

formance of multitaper and multitaper-Welch estimates of the SPOD compared335

to the standard Welch approach. By comparing SPOD spectra obtained us-

ing Welch-only and multitaper-only estimators in figure 3, we have established

that both algorithms are comparable in terms of variance, bias, and mode con-

vergence if the frequency resolution of the Welch estimate is similar to the

bandwidth of the multitaper estimate. This leaves the multitaper estimate with340

the advantage of a higher resolution and the associated ability to resolve lower

frequencies. Hybrid multitaper-Welch estimates offer the flexibility to control to

a large degree the resolution, bias, and variance. In the limit of unit bandwidth

and a single taper, the classical Welch estimator is recovered. This allows us

to assess the performance advantage of multitaper-Welch estimates over Welch345

estimates directly from figures 6-9, that all contain this limiting case. All com-

parisons show that additional tapers reduce the variance of the basic Welch

estimate and lead to better-converged modes. Similar to the findings of Bronez
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[30] on the estimation of power spectra from time signals, our results show that

the multitaper-Welch approach generally outperforms the Welch-only approach350

in terms of variance at fixed resolution, and in terms of resolution if the variance

is comparable. This performance advantage comes at the additional computa-

tional cost associated with processing a factor equal to the number of tapers of

additional Fourier transforms.

We hence recommend using the multitaper-Welch estimator to compute the355

SPOD and the following best practice: for given data consisting of Nt snap-

shots, first select Nfft to obtain the smallest small number of blocks that still

ensures that the dynamics at the lowest frequencies are statistically adequately

represented. Then choose either the minimum bandwidth necessary to reduce

the variance (or increase the mode convergence) to the desired level, or select360

the maximum bandwidth acceptable in terms of bias (or any value in between

the two). In settings where well-separated blocks of data are obtained individ-

ually, for example, in carefully designed experiments like those by Citriniti and

George [41], multitaper estimates from each block can be leveraged to reduce

the number of required blocks, or reduce the variance and improve the mode365

convergence for an existing set of data.

While SPOD computes modes that optimally represent the data in terms

of its second-order statistics, i.e., variance or energy, multitaper estimates are

equally applicable to estimate higher-order statistics. They can hence be lever-

aged to improve estimates of the bispectral mode decomposition [42]. SPOD can370

quickly become computationally intractable for very large data. This problem

can be addressed by updating algorithms that converge the SPOD from stream-

ing data that become available one snapshot at a time. While impossible for the

multitaper-only estimator, the algorithm proposed by Schmidt and Towne [40]

can readily be extended to accommodate multiple data windows and compute375

multitaper-Welch estimates on the fly.

The multitaper-Welch estimator using DPSS was implemented in the exist-

ing open-source Matlab code SPOD [5]. The second argument of the function

can be used to specify Nfft (NFFT) and bwin (BW) using the syntax [L,P,F] =
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SPOD(X,[NFFT BW],...). The number of DPSS tapers is then determined by380

equation (7).
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