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Abstract Triadic interactions are the fundamental
mechanism of energy transfer in fluid flows. This
work introduces bispectral mode decomposition as
a direct means of educing flow structures that are
associated with triadic interactions from experimen-
tal or numerical data. Triadic interactions are char-
acterized by quadratic phase coupling which can be
detected by the bispectrum. The proposedmethodmax-
imizes an integral measure of this third-order statis-
tic to compute modes associated with frequency tri-
ads, as well as a mode bispectrum that identifies
resonant three-wave interactions. Unlike the classi-
cal bispectrum, the decomposition establishes a causal
relationship between the three frequency components
of a triad. This permits the distinction of sum- and
difference-interactions, and the computation of inter-
action maps that indicate regions of nonlinear cou-
pling. Three examples highlight different aspects of the
method. Cascading triads and their regions of inter-
action are educed from direct numerical simulation
data of laminar cylinder flow. It is further demon-
strated that linear instability mechanisms that attain an
appreciable amplitude are revealed indirectly by their
difference-self-interactions. Applicability to turbulent
flows and noise-rejection is demonstrated on particle
image velocimetry data of a massively separated wake.
The generation of sub- and ultra-harmonics in large

O. T. Schmidt (B)
Department of Mechanical and Aerospace Engineering,
University of California San Diego, La Jolla, CA, USA
e-mail: oschmidt@ucsd.edu

eddy simulation data of a transitional jet is explained
by extending the method to cross-bispectral informa-
tion.
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1 Introduction

Triadic interactions result from the quadratic nonlinear-
ity of the Navier–Stokes equations. They are the funda-
mental mechanism of energy transfer in fluid flows and
manifest, inFourier space, as triplets of threewavenum-
ber vectors, {k j ,kk,kl}, or frequencies, { f j , fk, fl},
that sum to zero:

k j ± kk ± kl = 0, (1a)

f j ± fk ± fl = 0. (1b)

For clarity, we denote by {·} multiplets of frequency or
wavenumber, and by (·) index multiplets.

The zero-sum condition implies that triads form tri-
angles in wavenumber- and frequency-space. A way to
conceptually visualize these three-wave interactions is
presented in Fig. 1. Since the earlywork of Phillips [43]
on weak resonant interactions of gravity waves on the
surface of deep water, interaction theory has vastly
improved our understanding of nonlinear wave phe-
nomena. The turbulent cascade, which describes the
transfer of energy from large to small scales of motion,
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(a) (b)

(c) (d)

Fig. 1 Illustration of typical frequency triads: a generic sum-
interaction; b generic difference-interaction; cmean-flow defor-
mation generated by difference-self-interaction;d harmonic gen-
erated by sum-self-interaction. Directions of f1 and f2 indicate
sum (−�−•−�−) and difference (−�−•−�−) interactions

is probably the most prominent consequence of triadic
interactions.

Following the seminal work by Kraichnan [32,33],
the role of triad interactions and triad truncation in
homogenous turbulence has been studied by numer-
ous authors including Waleffe [59], Moffatt [39].
Using direct numerical simulation data Domaradzki
and Rogallo [14] investigated the energy transfer
between scales through triad interaction in homoge-
neous and isotropic turbulence. Later, Domaradzki [13]
proposed a self-similar relation that predicts the k−5/3

scaling of the energy spectrum in the inertial range
and the k−2e−ak scaling in the far dissipation range.
By encoding the condition for triadic resonance into
a combination matrix, Cheung and Zaki [5] were
able to recover the energy scaling of the inertial
range directly from the Navier–Stokes equations. Tri-
ads play a similarly important role in the laminar-
turbulent transition process. This was demonstrated
by Craik [10], who showed that resonant triads of
Tollmien–Schlichtingwaves provide an efficientmech-
anism for rapid transition in wall-bounded shear flows.
Recently, Rigas et al. [46] demonstrated that this tran-
sition process can be modeled by a limited number of
harmonics and their triadic interactions.

Another phenomenon that is intimately linked to
resonant triad or higher-order interactions is extreme
events that are amplified by nonlinearity [49]. Rogue
waves, for example, are characterized by their abnor-

mal height and were linked to triad interactions both in
deep [15] and shallowwater [55]. Similarly, Farazmand
andSapsis [16] linked extremedissipation events in tur-
bulent Kolmogorov flow to a particular triad interaction
that triggers fast energy transfer from large scales to the
mean flow.

Because of their ubiquitous role turbulent and tran-
sitional flows, it comes as no surprise that triad interac-
tion play an important role in reduced-order modeling.
The class of models with dynamics that are restricted
to triadic interactions that involve the mean flow, for
example, is referred to as quasilinear models. Recent
examples that use this specific type of triad trunca-
tion include the statistical state dynamics model by
Farrell and Ioannou [18] and the restricted nonlinear
approximation by Thomas et al. [19,57]. Rather than
formally decomposing the flow into mean and fluctu-
ations, the generalized quasilinear approximation by
Marston et al. [37] uses a spectral filter to separate dif-
ferent scales of motion. Amodeling approach based on
linear input–output dynamics is summarized in McK-
eon [38]. The latter reference contains a comprehen-
sive overview of scale interactions in wall turbulence
with emphasis on triad interactions. In the context of
computational fluid mechanics, triad truncation can be
understood as the wave-space manifestation of the tur-
bulence closure problem. Large eddy simulation, for
example, refers to the solution of the low-pass filtered
Navier–Stokes equations and requires closure of the
subgrid scale stress tensor. If large eddy simulation is
conducted in wavenumber space, the closure problem
explicitly becomes that of modeling the effect of triads
that are effected by wavenumber cutoff on the resolved
larger scales (see, e.g., [44]).

Higher-order statistical analysis refers to signal pro-
cessing of time-series using higher-order spectra, or
polyspectra. Of primary interest in the context of triadic
interactions in self-excited and forced fluid flows is the
bispectrum. Just like the power spectrum, the bispec-
trum can be estimated by ensemble-averaging products
of realizations of the Fourier transform [30]. Unlike
the power spectrum, which is real-valued by construc-
tion and carries no phase information, the bispectrum is
capable of detecting quadratic phase-coupling by cor-
relating different wave components. In early experi-
mental work by Lii et al. [34], the bispectrum was used
to determine contributions of wavenumber triads to the
energy transfer between different scales in atmospheric
boundary-layer turbulence. The theoretical form of
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the bispectrum for Kraichnan’s statistical models of
homogenous turbulence, see above, has been devised
and validated byHerring [25], Herring andMétais [26].
Using the bispectrum, Corke and Mangano [8] exper-
imentally investigated the triadic interaction of phase-
coupled input disturbances to a laminar boundary layer.
Later, Corke et al. [7] studied the mode selection pro-
cess and resonant phase locking in forced axisymmet-
ric jets using the bispectrum. Other experimental stud-
ies that leverage the bispectrum to investigate triadic
interactions and other nonlinear phenomena include the
works of Gee et al. [20] on the propagation of noise
from a supersonic jet, by Craig et al. [9] on second-
mode instability in a hypersonic boundary layer, and
by Yamada et al. [63] on turbulence in plasmas. Also
plasma physics, bispectral analysis earlier provided the
first experimental evidence of an inverse energy cas-
cade in drift-wave turbulence [36]. At somewhat larger
scales, bispectral information significantly improved
the accuracy of cosmological models that predict the
spatial distribution of galaxies [53].

As large flow data of high temporal and spatial reso-
lution have become ubiquitous, modal decomposition
techniques are often applied as the primary means of
flow analysis and data reduction. In fluid mechanics,
the eigendecomposition of the covariance matrix is
referred to as proper orthogonal decomposition (POD,
[35]). The resulting modes are orthonormal and opti-
mally represent the data in terms of its variance. Clas-
sical space-only POD based on the spatial covari-
ance matrix [54] is particularly well suited for low-
order modeling [1,12,42], whereas frequency-domain,
or spectral proper orthogonal decomposition (SPOD)
is ideally suited to analyze statistically stationary data
[52,58]. Dynamic mode decomposition (DMD, [51])
permits analysis and modeling of flows in terms of the
approximate eigendecomposition of the hypothetical
evolution operator that maps the flow state from one
snapshots to the next (see also [48]).

Both POD and DMD are generally applicable to lin-
ear and nonlinear flow data, but neither method explic-
itly accounts for nonlinear interactions. The bispec-
trum, on the other hand, detects quadratic nonlinear
interactions, but is only applicable to one-dimensional
signals. To overcome these limitations in the context
of stochastic estimation, Baars and Tinney [2] pro-
posed a sequential approach in which SPOD of spatio-
temporal data is followed by cross-bispectral analy-
sis of the SPOD expansion coefficients. These coeffi-

cients, in turn, represent the dynamics of the structures
that best represent the second-order statistics (variance
or energy) of the data. In contrast to this sequential
approach, the proposed framework directly computes
structures that best represent the third-order statistics
(skewness) of time- and space-resolved data.

The paper is organized as follows. We discuss
higher-order spectra of time-series in Sect. 2.1. The the-
ory of resonant triad interaction in laminar and turbu-
lent flows is outlined in Sect. 2.2. In Sect. 3, bispectral
mode decomposition is introduced, and some impor-
tant symmetry properties are discussed in Sect. 3.1. In
Sect. 3.3, we first demonstrate the method on surrogate
data with known phase coupling, before proceeding
to analyze direct numerical simulation data of lami-
nar cylinder flow at Re = 500 in Sect. 4.1, particle
image velocimetry data of turbulent flow over a flat
plate at high angle of attack in Sect. 4.2, and large eddy
simulation data of a transitional jet at Re = 3600 in
Sect. 4.3. Some implications for system identification
and reduced-order modeling, and extension to higher-
order statistics are briefly discussed in Sect. 5. The
main findings are summarized in Sect. 6. Details of the
numerical algorithm and the convergence of the results
are reported in “Appendices A and B”.

The Matlab code used to compute the results is
freely available. Two versions are provided. The first
version solves the BMD based on the auto-bispectral
density Sqqq( f1, f2), as introduced in Sect. 3. The
second variant solves the corresponding problem for
the cross-bispectral density Sqrs( f1, f2) = limT→∞
1
T E[q̂( f1)r̂( f2)ŝ( f1 + f2)∗]. This second variant was
used to investigate azimuthal wavenumber interactions
in Sect. 4.3, but can also be used to analyze interactions
between different flow quantities.

2 Background

2.1 Higher-order spectra

We start by introducing the concept of the bispectrum
for a stationary random signal q(t)with zero mean, for
which

Rq = E[q(t)] = 0, (2)

where E[·] is the expectation operator and

Rq···q = E[q(t)q(t −τ1)q(t −τ2) · · · q(t −τn−1)] (3)
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represents the nth-order moment of a stationary ran-
dom signal. Through the introduction of the Fourier
transform pair,

q̂( f ) =
∫ ∞

−∞
q(t)e−i2π f tdt, (4)

q(t) =
∫ ∞

−∞
q̂( f )ei2π f td f, (5)

we can relate the signal’s power, or variance,

E[q(t)2] =
∫ ∞

−∞
Sqq( f )d f (6)

to the power spectral density, or power spectrum,

Sqq( f ) = lim
T→∞

1

T
E[q̂( f )q̂( f )∗]. (7)

Note that the power spectrum is real, and therefore
phase blind. It is directly related to the second-order
moment, that is the autocorrelation function Rqq(τ ) =
E[q(t), q(t − τ)] via the Fourier transform,

Sqq( f ) =
∫ ∞

−∞
Rqq(τ )e−i2π f τdτ. (8)

This is the well-known Wiener–Khintchine theorem.
Analogously, the bispectrum, or bispectral density, is
defined as the double Fourier transform of the third
moment,

Sqqq( f1, f2)

=
∫ ∞

−∞

∫ ∞

−∞
Rqqq(τ1, τ2)e

−i2π( f1τ1+ f2τ2)dτ1dτ2, (9)

and is a function of two frequencies, f1 and f2. Integra-
tion over the bispectrum recovers the expected value of
the cubed signal, or skewness,

E[q(t)3] =
∫ ∞

−∞

∫ ∞

−∞
Sqqq( f1, f2)d f1d f2. (10)

Hence, the bispectrum decomposes the skewness of
a stationary random signal into its frequency compo-
nents. Since the skewness of symmetric distributions
such as theGaussian distribution is zero, the bispectrum
is a direct measure of non-Gaussianity. Most important
in the context of three-wave interactions, as discussed
in Sect. 2.2 below, is the observation that the bispec-
trumcorrelates two frequency components to their sum.

This can readily be seen from its definition in terms of
the expectation operator,

Sqqq( f1, f2) = lim
T→∞

1

T
E[q̂( f1)

∗q̂( f2)
∗q̂( f1 + f2)],

(11)

or, alternatively,

Sqqq( f1, f2) = lim
T→∞

1

T
E[q̂( f1)q̂( f2)q̂( f1 + f2)

∗].
(12)

Equation (11) is consistent with definition (3) of the
nth-order moment in terms of time delays τ , whereas
Eq. (12) is associated with the interpretation of τ as
time advances.

For further details on bi- and higher-order spectra,
such as the definition of the bicoherence as a common
normalization of the bispectrum, the reader is referred
to the reviews by Collis et al. [6], Brillinger [4], Kim
and Powers [30], Nikias and Raghuveer [41], Nikias
and Mendel [40]. In Sect. 3.1, we will discuss the sym-
metry properties which bispectral mode decomposition
inherits from the bispectrum.

2.2 Triad interaction and resonance conditions

Triad interaction is a specific type of three-wave cou-
pling that results from quadratic nonlinearities in the
governing equations. Assume the dynamics of the state
q = q(x, t) are governed by an evolution equation of
the form

∂q
∂t

= Lq + Q(q,q), (13)

where x = [x, y, z]T is the position vector, L a linear
operator andQ(·, ·) a quadratic (bilinear) nonlinearity.
In the context of fluid flows governed by the incom-
pressible Navier–Stokes equations (NSE), the convec-
tive term (u · ∇)u represents such a quadratic nonlin-
earity. The vector u = [u, v, w]T contains the Carte-
sian velocity components.We further assume that there
exists an an equilibrium solution q0 = q0(x) of equa-
tion (13) such that

Lq0 + Q(q0,q0) = 0, (14)
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i.e., a stable, steady, laminar flow that is a solution of
theNSE.Next, we decompose solutions to Eq. (13) into
small but finite fluctuations around the equilibrium q0
in the form of a series

q(x, t) = q0(x) + εq′(x, t) + ε2q′′(x, t) + · · ·
with 0 < ε � 1, (15)

of powers of ε. InsertingEqs. (14) and (15) intoEq. (13)
yields at leading order O(ε) the equation

∂q′

∂t
= Lq′. (16)

Due to linearity, periodic solutions to Eq. (29) take the
form

q′(x, t) ∝ ei(k·x−2π f t). (17)

Combining Eqs. (17) and (16) yields the dispersion
relation

f = D(k) (18)

for the linear problem which relates frequency and
the wavenumber vector. Suppose Eq. (16) possesses
N periodic solutions

q′
n(x, t) = Ane

i(kn ·x−2π fn t) + c.c., (19)

where A = A(k, f ) is a complex amplitude and
c.c. symbolizes the complex conjugate, A∗e−i(k·x−2π f t).
For brevity, we introduce as

θn ≡ kn · x − 2π fnt (20)

the phase function. Also due to linearity, any sum of
solutionsq′

n also solvesEq. (16).Wemayhence express
the general solution as

q′(x, t) =
N∑

n=1

(Ane
iθn + c.c.). (21)

At O(ε2), we obtain the evolution equation obeyed by
q′′,

∂q′′

∂t
= Lq′′ + Q(q′,q′). (22)

In this equation, the nonlinearity first manifests in the
form of the weakly nonlinear interaction of the linear

solution q′ with itself. Expanding the nonlinear term
yields

Q(q′,q′) =
N∑

n=1

(Ane
iθn + c.c.)

N∑
m=1

(Ame
iθm + c.c.)

= 2A1A
∗
1 + A2

1e
i2θ1 + A∗2

1 e−i2θ1

+A1A2e
i(θ1+θ2)

+A1A
∗
2e

i(θ1−θ2) + A∗
1A2e

i(−θ1+θ2)

+A∗
1A

∗
2e

i(−θ1−θ2) + · · · . (23)

The first three terms of this sum result from the self-
interaction of q′

1. The first term has zero frequency
and therefore contributes to the mean flow deforma-
tion. The second and third terms contribute to the first
harmonic of q′

1 which oscillates at 2 f1. The fourth and
fifth term are the sum- and difference-interactions of
q′
1 and q′

2. Their respective phases are given as the
sums and differences of their individual phases. In a
slight change of notation for the subindices, denote by
θ j ≡ θk ± θl , or equivalently by

k j ≡ kk ± kl , (24a)

f j ≡ fk ± fl , (24b)

the sums and differences of any two wave components,
θk = kk · x − 2π fk t and θl = kl · x − 2π fl t , gen-
erated by quadratic interaction. Equations (24a, 24b)
are equivalent to Eqs. (1a, 1b). Now, assume one of
these newly generated wave components satisfies the
dispersion relation for the linear system (18), that is,

f j = D(k j ). (25)

This has two important implications. First, the { f j ,k j }
component satisfies the linear portion of Eq. (22). Sec-
ond, the linear portion of Eq. (22) is resonantly forced
by the O(ε2) products in Eq. (23) that share the same
frequency and wavenumber. As a result, the corre-
sponding wave component grows linearly in time and
the system is said to be in resonance. Under these cir-
cumstances, Eqs. (24b) and (24a) establish a quadratic
coupling of the phases between the k, l and k + l
wave components. We refer to these frequency triplets
{ fk, fl , fk+l} or frequency index triplets (k, l, k + l)
as resonant (frequency) triads. Conversely, correlation
between two wave components and their sum indicates
the presence of a quadratic nonlinearity. For time sig-
nals, this property is exploited by the bispectrum, as
can be seen from its definition, Eq. (11). The ampli-
tude equations that govern the saturation of resonant
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waves are discussed in standard texts like Craik [11] or
Schmid and Henningson [50].

For turbulent flows, Eq. (13), in general, does not
possess a stable equilibrium solution q0. In this case,
instead of fluctuations about an equilibrium, we may
consider fluctuations q′ around the mean flow

q̄(x) = 1

T

∫ ∞

0
q(x, t)dt. (26)

Inserting the (Reynolds) decomposition

q(x, t) = q̄(x) + q′(x, t) (27)

into Eq. (13) and averaging over time yields the mean
flow equation,

0 = Lq̄ + Q(q̄, q̄) + Q(q′,q′), (28)

where we used the property ∂q̄
∂t = ∂q′

∂t = 0. These are
the Reynolds-averaged Navier–Stokes (RANS) equa-
tions, andQ(q′,q′) are theReynolds stresses. Lineariz-
ing about the mean flow and using Eq. (28) yields the
equations obeyed by the fluctuations,

∂q′

∂t
= Lq̄q′ − Q(q′,q′), (29)

where

Lq̄ ≡ L + Q(·, q̄) + Q(q̄, ·) (30)

defines the linearized Navier–Stokes operator with
respect to linearization about the mean flow. The
Reynolds stresses Q(q′,q′) in Eqs. (28) and (29) hin-
der the application of the resonant interaction theory
presented above. To show that similar kinematic argu-
ments apply to turbulent flows nevertheless, suppose
that the fluctuating component q′(x, y, z, t) can be rep-
resented as a Fourier series,

q′(x, y, z, t) =
∞∑

m,n=−∞
q̂mn(x, y)e

i(km z−2π fn t), (31)

of periods T in time and L in the z-direction, where
fn = n/T is frequency and km = 2πm/L wavenum-
ber. The example of a flow with one homogeneous
direction, z, and two inhomogeneous directions, x
and y, is chosen without loss of generality. Inserting

Eq. (31) into (27) yields the Reynolds decomposition
of this flow,

q(x, t) = q̄(x, y) +
∑
m,n

q̂mn(x, y)e
iθmn , (32)

where themean is takenover timeand in the z-direction.
For brevity, we denote as

θmn ≡ kmz − 2π fnt (33)

the phase function and omit the limits of summation in
Eq. (32) and in the following. Due to the prior removal
of the mean, the (m, n) = (0, 0)wave component does
not contribute to the Fourier sum in Eq. (34) since
q̂00(x, y) = 0. Inserting the Reynolds decomposition
(32) into the governing nonlinear Eq. (13) yields

−2π i
∑
m,n

fn q̂mne
iθmn = Lq̄ + Q(q̄, q̄)

+
∑
m,n

Lq̂mne
iθmn

+
∑
m,n

[Q(q̄, q̂mn) + Q(q̂mn, q̄)]eiθmn

+
∑

m,n,p,q

Q(q̂mn, q̂pq)e
iθm+p n+q . (34)

The generation of a (m + p, n + q) wave component
is apparent from the last term. This quadratic interac-
tion process is analogous to the process described by
Eq. (23) and triads also take the form of Eqs. (24b
and (24a). The equations for the different Fourier com-
ponents can be separated by exploiting the orthogo-
nality of the complex exponential. Integration over T
and L , for example, isolates the zero-frequency and
-wavenumber component,

0 = Lq̄ + Q(q̄, q̄) +
∑
m,n

Q(q̂mn, q̂−m−n). (35)

The sum in Eq. (35) comprises the zero-frequency and
-wavenumber contributions of the quadruple sum in
(34). These contributions result from the interaction of
fluctuating wave components, (m, n), with their con-
jugate counterparts, (−m,−n). Comparing Eqs. (35)
and (28) shows that this contribution corresponds to
the Reynolds stresses. The equation for the (m, n)-th
frequency-wavenumber component is isolated by mul-
tiplying by eiθmn and integrating over T and L to obtain
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− 2π i fn q̂mn = Lq̂mn + Q(q̄, q̂mn) + Q(q̂mn, q̄)

+
∑
p,q

Q(q̂pq , q̂m−p n−q). (36)

In terms of the linear operator defined in Eq. (30), this
equation reads

−2π i fn q̂mn = Lq̄q̂mn +
∑
p,q

Q(q̂pq , q̂m−p n−q). (37)

This form is similar to (28) and similar arguments
regarding the occurrence of resonances can be made.
Equation (36) illustrates how different wave compo-
nents may contribute to the power spectral density at
any given frequency, and also how contributions from
different wave components to any given frequency can
be identified by triple correlations of frequency com-
ponents, i.e., by the bispectrum.

3 Bispectral mode decomposition (BMD)

The goal of this work is to devise a modal decomposi-
tion that reveals the presence of triadic nonlinear inter-
actions from multidimensional data. As discussed in
Sects. 2.1 and 2.2, quadratic phase coupling is charac-
teristic of these interactions and can be detected by the
bispectrum. To compute modes that exhibit quadratic
phase coupling over extended portions of the flow field,
we require the decomposition to optimally represent the
data in terms of an integral measure of the bispectral
density. BMD may be understood as the extension of
the analysis of time signals using higher-order spec-
tra to multidimensional datasets, or vice versa, as an
extension of spectral proper orthogonal decomposition
to higher-order spectra. In particular, consider data that
are given as a series of Nt consecutive flow fields

q(x, t j ) ∈ C
M×1, j = 1, 2, . . . , Nt , (38)

that are evenly spaced in time. Let M = NvarsNx NyNz

be the number of spatial degrees of freedom per time
instant, with Nvars as the number of variables in the
state vector, and Nx , Ny, Nz the numbers of grid
points in the Cartesian directions, respectively. The bis-
pectal density is defined in Eq. (11) as the expected
value of the product of two frequency components with
their sum. As an estimator for the bispectrum, we adapt
Welch’s method [61], which is an asymptotically con-
sistent spectral estimator for the power spectral density.

Welch’s method is based on the ergodicity hypothesis.
It assumes that the time average in Eq. (7) can be esti-
mated by an ensemble average over a number of Nblk

realizations of the Fourier transform. The underlying
assumption is that the time series q(x, t j ) is statistically
stationary. Each realization is obtained as the discrete-
time Fourier transform of one of Nblk segments con-
sisting of NFFT snapshots. To decrease the variance
of the estimate, the number of segments is inflated by
allowing consecutive segments to overlap by Novlp ele-
ments. Given a total number of Nt snapshots, we obtain
a number of

Nblk = floor

(
Nt − Novlp

NFFT − Novlp

)
(39)

realizations of the Fourier transform, q̂[1]
(x, f ), q̂[2]

(x, f ), . . . q̂[Nblk](x, f ). The discrete Fourier transform
and its inverse are defined as

q̂(x, fk) =
NFFT−1∑
j=0

q(x, t j+1)e
−i2π jk/NFFT ,

k = 0, . . . , NFFT − 1, and (40)

q(x, t j+1) = 1

NFFT

NFFT−1∑
k=0

q̂(x, fk)e
i2π jk/NFFT ,

j = 0, . . . , NFFT − 1. (41)

The time step�t between consecutive snapshots deter-
mines the sampling frequency fs = 1/�t and thereby
the Nyquist frequency fN = fs/2. Computation of
the bispectrum further requires the product of two fre-
quency components. To compute products of Fourier
coefficients ofmultidimensional data, we use the entry-
wise, or Hadamard product defined as (A ◦ B) jk =
A jkB jk . It applies to two matricesA and B of the same
dimensions. For brevity, we introduce the shorthands

q̂k ≡ q̂(x, fk), and (42)

q̂k◦l ≡ q̂(x, fk) ◦ q̂(x, fl), (43)

for the k-th frequency component of the discrete-time
Fourier transform and the spatial entry-wise product of
two realizations of the Fourier transform at frequencies
fk and fl , respectively. At the heart of bispectral mode,
decomposition is the definition of an integral measure

b( fk, fl) ≡ E

[∫
�

q̂∗
k ◦ q̂∗

l ◦ q̂k+l dx
]

= E[q̂H
k◦lWq̂k+l ] = E[〈q̂k◦l , q̂k+l〉], (44)
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of the point-wise bispectral density. By (·)∗, (·)T , and
(·)H , we distinguish the scalar complex conjugate,
transpose, and complex transpose, respectively. W is
the diagonal matrix of spatial quadrature weights and
� the spatial domain over which the flow is defined.
The weighted inner product,

〈q1,q2〉 = qH
1 Wq2, (45)

is introduced as the discrete analogue to spatial integra-
tion. In Eq. (44), the combination of the l-th and k-th
frequency components into q̂H

k◦l ≡ q̂∗
k ◦ q̂∗

l is merely
notational.

In the following, however, we explicitly take into
account the causal relation between the sum-frequency
component q̂k+l (effect), and the product of the l-th and
k-th frequency components,Q(q̂k, q̂l) ∝ q̂k q̂l (cause),
that form a resonant triad and define two linear expan-
sions

φ
[i]
k◦l(x, fk, fl) =

Nblk∑
j=1

ai j ( fk+l)q̂
[ j]
k◦l

(cross-frequency field), (46)

φ
[i]
k+l(x, fk+l) =

Nblk∑
j=1

ai j ( fk+l)q̂
[ j]
k+l

(bispectral modes), (47)

that share a common set of expansion coefficients ai j .
In light of Eq. (13), this corresponds to discriminat-
ing between the resonantly forced wave component at
O(ε2) and the product of the two interacting compo-
nents ofO(ε). Equations (46) and (47) describe expan-
sions into the spaces spanned by the ensembles of real-
izations of q̂k◦l and q̂k+l , respectively. We will refer to
φk+l as bispectral modes. Bispectral modes are linear
combinations of Fourier modes and can be interpreted
as observable physical structures. The multiplicative
cross-frequencyfieldsφk◦l , on the contrary, aremaps of
phase-alignment between two frequency components
that may not directly be observed. A more compact
form of Eqs. (46) and (47) is

φ
[i]
k◦l = Q̂k◦lai , (48)

φ
[i]
k+l = Q̂k+lai , (49)

where ai = [ai1( fk+l), ai2( fk+l), . . . , aiNblk ( fk+l)]T
denotes the i-th vector of expansion coefficients for the
(k, l) frequency doublet, and Q̂k◦l , Q̂k+l ∈ C

M×Nblk

are the data matrices

Q̂k◦l ≡
⎡
⎢⎣ q̂[1]

k◦l q̂
[2]
k◦l · · · q̂[Nblk]

k◦l

⎤
⎥⎦ ,

Q̂k+l ≡
⎡
⎢⎣ q̂[1]

k+l q̂
[2]
k+l · · · q̂[Nblk]

k+l

⎤
⎥⎦ . (50)

The goal of bispectral mode decomposition is to com-
putemodes that optimally represent the data in terms of
the integral bispectral density. That is, we seek the set of
expansion coefficients a1 that maximizes the absolute
value of b( fk, fl) as defined in Eq. (44). To guarantee
boundedness of the expansion, we require the coeffi-
cient vector to be a unit vector with ‖a1‖ = 1. The
optimal a1 hence has to satisfy

a1 = arg max
‖a‖=1

∣∣∣E
[
φ

[1]H
k◦l Wφ

[1]
k+l

]∣∣∣
= arg max

‖a‖=1

∣∣∣E
[
aH Q̂

H
k◦lWQ̂k+la

]∣∣∣

= arg max

∣∣∣∣∣∣
aH E

[
Q̂

H
k◦lWQ̂k+l

]
a

aHa

∣∣∣∣∣∣
= arg max

∣∣∣∣a
HBa
aHa

∣∣∣∣ , (51)

where we introduced

B = B(x, x′, fk, fl) ≡ 1

Nblk
Q̂

H
k◦lWQ̂k+l (52)

as the weighted (auto-) bispectral density matrix. Here,
‘auto’ implies that three frequency components of the
same state q are involved. Consistent with the nomen-
clature for higher-order statistics of time-signals, we
reserve the term cross-bispectrum for third-order statis-
tics such as Sqqr ( f1, f2) or Sqrs( f1, f2) that involve
two or three different fields. In the context of mul-
tidimensional data, spatial cross-correlation between
any two locations x and x′ is always implied. The final
expression in Eq. (51) corresponds to finding the com-
plex vector a ∈ C

Nblk×1 that maximizes the absolute
value of the Rayleigh quotient of the complex, non-
Hermitian, square matrix B ∈ C

Nblk×Nblk . This prob-
lem is directly related to the numerical range, or field
of values, which is defined as the set of all Rayleigh
quotients of a matrix,

F(B) = aHBa
aHa

: a ∈ C
Nblk×1, a �= 0. (53)
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The largest absolute value the numerical range can
attain defines the numerical radius

r(B) = max |λ| : λ ∈ F(B). (54)

Therefore, themaximization problem (51) is equivalent
to finding the vector a1 associated with the numerical
radius of B,

r(B) = max

∣∣∣∣∣
aH1 Ba1
aH1 a1

∣∣∣∣∣ .
Geometrically, the numerical radius can be interpreted
as the radius of the smallest circle about the origin that
contains the field of values. It can be shown (see, e.g.,
[27,60]) that the numerical radius corresponds to the
largest eigenvalue λmax that the Hermitian matrix

H(θ) = 1

2
(eiθB + e−iθBH ) (55)

can attain for some angle 0 ≤ θ < 2π , i.e.,

r(B) = max
0≤θ<2π

λmax(H(θ)). (56)

Denote by θ1 the angle for which expression (56)
assumes its maximum value and by a1 the leading
eigenvector such that

H(θ1)a1 = λ1a1.

Then, λ1 = λmax(H(θ1)) is the numerical radius and a1
maximizes the absolute value of the Rayleigh quotient
of B, i.e.,

r(B) = λ1 =
∣∣∣∣∣
aH1 Ba1
aH1 a1

∣∣∣∣∣ .
To distinguish λ1 from the traditional definition of the
bispectrum for time-series, we will refer to

λ1( fk, fl) (complex mode bispectrum) (57)

as the complex mode bispectrum. It is tempting to
approximate the eigenpair (λ1, a1) by solving Eq. (56)
over a discretized interval θ ∈ (0, 2π ] to find θ1.
Instead of this brute-force approach, we employ the
much more elegant and efficient algorithm by He and
Watson [24]. The algorithm is reproduced, with minor
modifications, in “Appendix A”.

Fig. 2 Symmetry regions of the bispectrum and mode bispec-
trum. The dark-shaded triangle indicates the principal region of
non-redundant information of the classical bispectrum. White
regions inside the hexagon contain the same information as the
principal region. Light gray shading indicates complex conju-
gation. The principal region of the bispectrum corresponds to
sum-interactions with f3 = f1 + f2. The hatched segment cor-
responds to difference-interactionswith f3 = f1− f2. Both sum-
and difference-interactions can be analyzed using BMD

3.1 Symmetries and regions of the bispectrum

3.1.1 Temporal homogeneity

The Nyquist frequency limit restricts the discrete bis-
pectrum to the hexagonal region outlined in Fig. 2.
For the (auto-) bispectrum of a time signal, defined
by Eq. (11), it suffices to compute the principal region
0 ≤ f2 ≤ fN/2 and f2 ≤ f1 ≤ fN − f2. The remain-
ing 11 regions then carry the same information as the
principal region and its complex conjugate. This sym-
metry of the bispectrum results from the symmetry of
the discrete-time Fourier transform for time station-
ary signals, which translates into, among others, the
following symmetries for the bispectrum for signals:
Sqqq( f1, f2) = Sqqq( f2, f1) = S∗

qqq(− f1, f2) =
S∗
qqq(− f2, f1 + f2) = S∗

qqq(− f1, f1 + f2). In partic-
ular, this implies that sum- and difference-interactions
in Eq. (24b) do not have to be considered separately.

The mode bispectrum defined by Eq. (57), on the
other hand, distinguishes between sum- and difference-
interactions. Take as examples two triads involving
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the same two frequencies, f1 and f2. Let the first
triad be the sum-interaction { f1, f2, f1 + f2}, and the
second the difference-interaction { f1 + f2,− f1, f2}.
By exploiting the symmetry of the Fourier transform,
which implies that q̂(− f1) = q̂( f1), and the com-
mutativity of the three factors in bispectrum, we may
readily show that Sqqq( f1, f2) = S∗

qqq( f1 + f2,− f1).
The computation of the complex mode bispectrum, on
the contrary, is based on the bispectral density matrix,
B, which differentiates between sum- and difference-
interactions. In particular, we have

Q̂
H
k◦lWQ̂k+l �= (Q̂

H
k+l◦−kWQ̂l)

∗, and hence

B(x, x′, fk, fl) �= B∗(x, x′, fk+l , f−k),

in general. This loss of commutativity results from the
causal relationship established by Eqs. (46) and (47).
It is also apparent that the bispectral modes associ-
ated with the higher frequency of the sum-interaction,
f1 + f2, and the lower frequency of the difference-
interaction, f2, must be a linear combinations of the
corresponding Fourier modes, q̂[ j]

k+l and q̂[ j]
l , respec-

tively. The symmetry relations of the bispectrum and
mode bispectrum are summarized schematically in
Fig. 2.

3.1.2 Spatial homogeneity

Taking spatial homogeneity into account is beneficial
not only in terms of computational efficiency, but also
for convergence of the spectral estimate and inter-
pretability. Spatial symmetries, such as periodicity, are
accounted for through discrete-space Fourier transfor-
mation in the corresponding directions. The transfor-
mation to wavenumber space permits the identification
of the phase coupling between different spatial scales
in the same way as the temporal transform for time
scales. Take as an example data that are invariant under
translation in the x direction. Analogous to the treat-
ment of time for a stationary random signal, we may
assume that the spatial bicorrelation in x only depends
on the relative distances x − ξ1 and x − ξ2. We may
hence define the spatio-temporal bicorrelation as

Rqqq(ξ1, ξ2, τ1, τ2)

= E[q(x, t), q(x − ξ1, t − τ1), q(x − ξ1, t − τ2)].
(58)

The spatio-temporal Fourier transform of Rqqq(ξ1, ξ2,

τ1, τ2) yields the spatio-temporal bispectrum

Sqqq(k1, k2, f1, f2)

= lim
T→∞

1

T
E[q̂(k1, f1)

∗q̂(k2, f2)
∗

q̂(k1 + k2, f1 + f2)], (59)

wherewedenote as k the x-component of thewavenum-
ber vector. Equation (59) is analogous to
Yamada et al. [63]’s definition of the two-dimensional
bispectrum. Equation (59) implies that the bispec-
trum is to be computed for each wavenumber doublet
{k1, k2} individually. Triadically consistent wavenum-
ber triplets {k1, k2, k1 + k2} are referred to as spatial
triads. For the example of three-dimensional data that
are translationally invariant in the x-direction, theBMD
is therefore computed from the discrete-space discrete-
time transformed data q̂(z, k, f ), where by z = [y, z]T
we denote the position vector of the remaining inhomo-
geneous directions. Accordingly, the bispectral density
matrix specializes to

B(x, x′, fk, fl) → B(z, z′, ki , k j , fk, fl), (60)

and is computed from q̂(z, ki , fk), q̂(z, k j , fl), and
q̂(z, ki+ j , fk+l). The resulting BMD modes are two-
dimensional, and the spatio-temporal mode bispec-
trum is defined in the four-dimensional wavenumber–
wavenumber–frequency–frequencydomain. For doubly-
homogeneous flows such as pipe or Couette flows, the
BMD is computed for all combinations between two
wavenumbers and frequency and the resulting modes
are one-dimensional.

3.1.3 Regions of the bispectrum

Figure 3 shows a schematic of the sum and difference
regions of the mode bispectrum. All other regions con-
tain redundant information or lie outside of the Nyquist
limit. It hence suffices to plot this region. For brevity,we
will often use integer frequency index doublets (k, l),
or triplets (k, l, k + l), instead of frequency doublets
{ fk, fl}, or triplets { fk, fl , fk+l}, to represent triads.
Figure 3b illustrates the generation of new wave com-
ponents through triad interactions. In the examples dis-
cussed in Sect. 4, we will observe that this mechanism,
starting from the self-interaction of a self-excited or
forced fundamental mode, often leads to a distinct grid
pattern of the bispectrum.
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(a)

(b)

Fig. 3 Frequency triads in the mode bispectrum: a a local max-
imum at λ1( fk , fl ) indicates phase-coupling between the com-
ponents of the triad { fk , fl , fk+l } due to quadratic nonlinearity;
b the sum components generated by two triads, { fk , fl , fk+l }
and { fm , fn, fm+n}, can interact to generate a new wave compo-
nent { fk+m , fl+n}. Harmonics and the mean flow distortion are
generated by sum and difference self-interactions of the forms
{ fk , fk , f2k} and { fk , f−k , 0}, respectively

3.2 Derived quantities

3.2.1 Summed mode bispectrum

Since the mode bispectrum is complex, we visual-
ize its modulus, the (magnitude) mode bispectrum
|λ1( fk, fl)|, and argument, the phase mode bispectrum

arg(λ1( fk, fl)), separately. A detailed discussion of the
properties of phase of the classical bispectrumwas pro-
vided by Kim et al. [31]. Analogous to the common
definition of a summed bispectrum for time signals,
we furthermore define the summed mode spectrum as

�1( f ) ≡ 1

N ( f )

∑
f= f1+ f2

|λ1( f1, f2)|

(summed mode spectrum), (61)

where N ( f ) is the number of frequency doublets
{ f1, f2} that contribute to any frequency f = f1 + f2,
that is, the number of terms in the sum.Graphically, this
corresponds to summing λ1 along diagonals of slope
−1, i.e., lines of constant frequency in the mode bis-
pectrum. Take as an example the red line of constant
frequency f3 in Fig. 3. Peaks in the summedmode spec-
trum indicate that the corresponding frequencies are
involved in quadratic nonlinear interactions, but with-
out discriminating between the contributing triads.

3.2.2 Interaction maps

Equation (51) implies that themode bispectrum derives
from the spatial integration of the Hadamard product

ψk,l(x, fk, fl) ≡ |φk◦l ◦ φk+l | (interaction map).

(62)

We hence may interpret the field ψk,l as an interac-
tion map that quantifies the average local bicorrelation
between the three frequency components fl , fk , and
fk + fl involved in a triad. The interaction map aug-
ments the bispectral modes in that it indicates regions
of activity of triadic interaction.

3.3 Hypothesis testing

Recall that the goal of BMD is to identify flow struc-
tures associated with frequency triads for which the
zero-sum condition, Eq. (1b), holds and that the indi-
cator for this condition is a maximum in the mode bis-
pectrum, |λ1( f1, f2)|. For the outcomes of BMD to
be interpretable, we furthermore require the method
to reject (ideally also in the presence of noise) arbi-
trary non-resonant frequency triplets and higher-order
wave interactions. The hypothesis that summarizes
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Table 1 Parameters of the example databases and spectral estimation parameters

Case Variables Nx Ny,r Nz,θ Nt �t NFFT Novlp Nblk tol

Test data q 100 – – 1280 1 128 0 10 10−8

Cylinder DNS u, v 250 125 1 4096 0.06 1024 512 7 10−8

Plate PIV u, v 120 69 1 2.5 × 104 0.002 s 5000 0 50 10−8

Jet LES p 219 42 128 1 × 104 0.2 256 128 77 10−15

The DNS and LES data are non-dimensionalized by the cylinder diameter and freestream velocity, and the jet diameter and jet velocity,
respectively. The PIV data are given in SI units. tol is the tolerance used by the algorithm presented in “Appendix A”. A standard Hann
window is used in all cases to reduce spectral leakage

these requirements is that the mode bispectrum, (i),
indicates triadically interacting wave components with
f1 ± f2 ± f3 = 0, while, (ii), rejecting triplets with
f1 ± f2 ± f3 �= 0 and, (iii), other N -wave interactions
with f1 ± f2 ± f3 ± · · · ± fN = 0. Since the nonlin-
earities in most physical systems are limited to cubic
order at most, we restrict this test to N = 4. To isolate
and test these three aspects, we generate surrogate data
consisting of a superposition of a certain number of
Npeaks waves with specified phase-coupling. The i-the
realization of the data is generated as

q[i](x, t) =
Npeaks∑
j=1

A j cos
(
k j x − 2π f j t + θ

[i]
0

)
, (63)

where A j are thewave amplitudes, k j thewavenumbers

in x , and θ
[i]
0 a phase offset that is used to randomize

the phase between realizations. We consider waves of
unit amplitude and random wavenumbers k ∈ [0, 5]
that evolve in a 1D spatial domain x ∈ [0, 2π ], which
is discretized by 100 equidistant points. A total number
of 1280 snapshots, separated in time by �t = 1, are
segmented onto 10 blocks of length NFFT = 128 each.
Refer to Table 1 for a summary of the spectral esti-
mation parameters. Neither frequencies nor wavenum-
bers can, in general, be expected to be harmonic multi-
ples of their respective domains. We therefore deliber-
ately select frequencies that do not have this property
and randomize the wavenumbers. Following best prac-
tices in spectral estimation, a standard Hann window is
applied to each block to reduce spectral leakage.

Three test cases are considered in Fig. 4. For each
case, the amplitude spectrum of the time signal at the
first point, A = 2|q̂(x = 0, f )|, is compared side-
by-side to the mode bispectrum of the full data. The
amplitude spectrum is computed using the same spec-

tral estimation parameters as the BMD. The first test
shown in Fig. 4a and b demonstrates the rejection
of the non-resonant frequency triplet ( f1, f2, f3) =
(0.05, 0.2, 0.35) with f1 + f2 < f3. The true neg-
ative outcome of the test is apparent from the flat
mode bispectrum in Fig. 4b. The presence of spec-
tral leakage can be inferred from the amplitude spec-
trum, where it affects both a broadening of the spectral
peaks and a reduction in their amplitudes. For the sec-
ond test, f3 is altered such that f3 = f1 + f2. The
triplet ( f1, f2, f3) now forms a triad, and the peak in
the mode bispectrum in Fig. 4d clearly indicates its
presence. Lastly, we consider the frequency quadruple
( f1, f2, f3, f4) = (0.05, 0.15, 0.25, 0.45) in Fig. 4e
and f. By letting f4 = f1 + f2 + f3, these four fre-
quencies meet the condition for four-wave resonance,
but do not form a triad in any pemutation. As antici-
pated, the mode bispectrum in Fig. 4f is flat; only small
elevations resulting from spectral leakage are observed.
The maximum value of |λ1( f1, f2)|, however, remains
an order of magnitude below the peak observed for
the true positive test outcome in the presence of a triad
interaction in Fig. 4d.We hence conclude that themode
bispectrum correctly signals the absence of triads in the
data.

Next, we test the performance of BMD in the pres-
ence of noise. As an example, we revisit the case of
a single frequency triad shown in Fig. 4c and d with
additive Gaussian white noise. The noise is randomly
generated and scaled such that the signal-to-noise ratio
is equal to one. This implies that the variance of the
noise is the same as the variance of the signal. Sig-
nals with a signal-to-noise ratio below this threshold
are typically deemed unusable. The presence of noise
in the new test data is apparent from the elevation of
the amplitude spectrum shown in Fig. 5a. It is at this
point instructive to also consider the classical bispec-
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Fig. 4 Amplitude spectra
of q(x = 0, t) and mode
bispectra of the surrogate
data: a, b non-resonant
frequency triplet with
( f1, f2, f3) =
(0.05, 0.2, 0.35); c, d
resonant triad with
( f1, f2, f1 + f2) =
(0.05, 0.2, 0.25); e, f
resonant four-wave quartet
with
( f1, f2, f3, f1 + f2 + f3) =
(0.05, 0.15, 0.25, 0.45)

(a) (b)

(d)(c)

(e) (f)

trum defined in Eq. (11), which we compute from the
same time series as the amplitude spectrum (the clas-
sical bispectrum performs the same as the mode bis-
pectrum for the non-noisy data analyzed in Fig. 4).
The susceptibility of the classical bispectrum to noise
becomes apparent in Fig. 5b. The bispectrum correctly
identifies the triad at (0.05, 0.2), but also exhibits a
number of lower peaks. These other peaks are attested
to the variance of the bispectrum. Themode bispectrum
reported in Fig. 5c clearly indicates the presence of a
single triad at the correct frequencies. No significant
side peaks are observed. We speculate that this ability
towidely reject noise results from the use of spatial cor-
relation information and the optimality property of the
decomposition. It is, however, observed that the pres-
ence of noise leads to the formation of low-amplitude
bands along lines of constant frequencies f1, f2, and
f3 (recall that f3 = f1 + f2 is constant along diag-
onal lines of slope -1). This phenomenon is equally

present in Fig. 5b, where it is mostly overshadowed by
the larger variance of the classical bispectrum. Similar
to spectral leakage in conventional Fourier analysis,
these bands are a well-known and commonly ignored
phenomenon in bispectral analysis. After establishing
that the basic premise of BMD holds for the test data,
we proceed by applying BMD to nonlinear flow data
in Sect. 4 and refer to “Appendix B” for an assessment
of the convergence of the method.

4 Examples

In what follows, we conduct BMD analyses of the three
representative nonlinear flows summarized in Table 1.
The goal of this section is to demonstrate different
aspects of BMD using different data—an exhaustive
discussion of the nonlinear flowphysics of each of these
flows is beyond the scope of this work. The dimension-
less frequency used in the presentation of the results
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(a)

(b)

(c)

Fig. 5 BMD of surrogate data in the presence of noise with unit
signal-to-noise ratio: a amplitude spectrum for q(x = 0, t); b
classical bispectrum for q(x = 0, t); c mode bispectrum

corresponds to a Stouhal number, but we retain the
symbol f for readability. The trade-offs involved in
choosing the spectral estimation parameters NFFT and
Novlp and the windowing function are similar to those
for SPOD. The reader is referred to Schmidt and Colo-
nius [52] for best practices that in large parts translate
to BMD. “Appendix B” demonstrates the convergence
of the results in terms of the summed mode spectra for
all three cases.

4.1 Cylinder flow

The flow over a cylinder at a Reynolds number, based
on the cylinder diameter and the free-stream velocity,
of Re = 500 is a canonical laminar, planar flow that

(a)

(b)

Fig. 6 Instantaneous fluctuating flow field behind a cylinder at
Re = 500: a streamwise velocity; b transverse velocity. Col-
ormap is saturated at ±75% of the free-stream velocity

exhibits well-understood nonlinear dynamics [62]. The
immersed-boundary solver by Goza [22] was used to
solve the incompressible Navier–Stokes equations for
the state vector q = [u, v]T , consisting of the stream-
wise and transverse velocity components. Prior to sav-
ing the data, the simulation was run for multiple flow-
through times to guarantee that the database reported in
Table 1 represents the limit-cycle solution. The instan-
taneous flow field is visualized in Fig. 6.

Figure 7a shows the mode bispectrum and Fig. 7b a
magnification of the low-frequency portion. The most
striking feature is a distinct grid pattern with local max-
ima at its nodes. These local maxima are the footprint
of a cascade of triads that is generated through the
mechanism illustrated in Fig. 3b. As briefly discussed
in Sect. 3.3, the horizontal, vertical, and diagonal bands
observed in the mode bispectrum results from spectral
leakage. This phenomenon is inherent to the discrete
Fourier transform of non-periodic data. It is not spe-
cific to BMD and should not be physically interpreted.
A closer inspection of Fig. 7b reveals that the global
maximum of the mode bispectrum occurs for the index
doublet (k, l) = (12, 12), that is, the triad (k, l, k+l) =
(12, 12, 24) (or { f1, f2, f1 + f2} = {0.21, 0.21, 0.42}
in terms of frequency). This maximum corresponds
to the sum-interaction of the fundamental instability
with itself, { f0, f0, 2 f0}, which generates the first har-
monic at twice that frequency, that is, 2 f0 = 0.42.
The difference-interaction of the fundamental instabil-
ity with itself, { f0,− f0, 0}, on the other hand, leads to
a mean flow deformation that is indicated by the max-
imum at (12, 0) on the f1-axis. Sum- and difference-
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Fig. 7 (Magnitude) mode
bispectrum for cylinder flow
at Re = 500: a mode
bispectrum for
NFFT = 1024 in the sum
and difference regions; b
magnification of the low
frequency region. A cascade
of triads (◦) that originates
from the fundamental
instability and the constant
frequency f0 = 0.21 (- - -)
of the fundamental
instability are marked in b

(a) (b)

self-interactions are illustrated in Fig. 1c and d, respec-
tively. The detection of the fundamental difference-
self-interaction, { f0,− f0, 0}, has an important impli-
cation for the interpretation of the mode bispectrum: in
addition to triad interactions, it indirectly detects intrin-
sic instabilitymechanisms that, after attaining an appre-
ciable amplitude, nonlinearly self-interact to generate a
mean flow distortion. Here, this instability mechanism
is the bluff-body vortex shedding behind the cylinder.

The spatial structures of the bispectral modes asso-
ciated with the cascade of triads previously marked by
circles in Fig. 7b are shown in Fig. 8. The solid and
dotted arrows indicate the sum-interactions of the k-
th and l-th frequency components, respectively, that
generate the k + l-th component. The cascade starts
with the fundamental mode φ12+0. Its self-interaction
generates mode φ12+12, which in turn partakes in the
generation of modes φ24+12 and φ24+24, and so on.
The spatial structures of the modes reveal that each
interaction yields new wavenumber components in the
streamwise and/or transverse directions.

The self-interaction of the fundamental is inves-
tigated in more detail in Fig. 9. The u- and v-
components of the corresponding bispectral mode and
cross-frequency field are reported in the upper and
lower row, respectively. Following the definition in
Eq. (62), the entry-wise product of the bispectral mode
and the cross-frequency field yields the interactionmap
shown in Fig. 9b, e. The main observations is that

the interaction is the strongest in the wake region just
downstream of the cylinder. The transverse component
furthermore attains a larger maximum value than the
streamwise component and is less spatially confined. A
connection to the sensitivity regions identified experi-
mentally by Strykowski and Sreenivasan [56] and pre-
dicted based on structural stability analysis by Gian-
netti and Luchini [21], remains speculative.

4.2 Massively separated flow behind flat plate at high
angle of attack

The second example is that of PIV data of massively
separated flow behind flat plate at high angle of attack.
A total of 50 independent measurements consisting of
5000 snapshots each is used. Unlike the cylinder flow
simulation data, these data are subject to measurement
noise and stochasticity and exhibit much richer dynam-
ics. This becomes apparent from the instantaneous flow
field visualization in Fig. 10.

Focusing again on the sum-interaction region, the
magnitude and summed mode bispectra are shown in
Fig. 11. Similar to Fig. 7 for the cylinder flow, themode
bispectrum unveils the signature of bluff-body vortex
shedding with the self-interaction triad of the funda-
mental instability at its center.

As before, we analyze the fundamental self-interac-
tion triad in more detail by inspecting the correspond-
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Fig. 8 Bispectral modes forming a cascade of triads, marked in
Fig. 7, starting from the fundamental instability at f0 (bottom-
left). Arrows indicate the triadic interactions (→: k-component,

���: l-component). The real part of the streamwise velocity com-
ponent is shown

(a) (b) (c)

(d) (e) (f)

Fig. 9 Self-interaction of the fundamental mode: a, d bispectral
mode; b, e cross-frequency field; c, f interaction map. Top and
bottom rows show the u and v components, respectively. False

colors of modes are saturated at maximum absolute value. False
colors of interaction maps are identical to allow for comparison.
The real part of the bispectral modes is shown in a, b, d, e

ing bispectral modes, cross-frequency fields and inter-
action maps. This is done in Fig. 12. The fundamental
vortex sheddingmode shown in Fig. 12a and b becomes
symmetric at a short distance downstream from the
plate. The mode generated by the self-interaction of

the fundamental, mode (10, 10), is shown in Fig. 12g
and h. From inspecting and comparing the interaction
maps shown in Fig. 12k and l, we conclude that the tri-
adic interaction takes place predominantly in the trans-
verse velocity component and in the bottom shear layer.
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Fig. 10 Instantaneous PIV
flow field of massively
separated flow behind a flat
plate: a streamwise
fluctuating velocity; b
transverse fluctuating
velocity (Data courtesy of
K. Mulleners, EPFL)

(a) (b)

(a)

(c)

(b)

Fig. 11 Spectra of PIV data of massively separated flow behind
plate: a mode bispectrum for NFFT = 5000; b magnification of
the bottom-left corner; c summed mode spectrum. The funda-
mental vortex-shedding frequency is f0 = 1.0 Hz (frequency

index 10) is marked by dashed lines (- - -) in a–c. The global
maximum of the mode bispectrum occurs for the self-interaction
triad (10, 10) of the fundamental instability

For both the cylinder flow and the massively separated
plate, we confirmed that the fundamental modes, (12,0)
and (10,0), respectively, correspond to the overall most
energetic large-scale coherent structures as identified
by SPOD. In fact, the fundamental bispectral modes
shown in Figs. 8 (bottom-left) and 12a, b are almost
indistinguishable from themost energetic SPODmodes
(not reported here for brevity). The structures of the
leading modes are clearly identified as symmetric and
anti-symmetric wave trains, despite the stochastic and
nature of the data. Comparing the modes with those
obtained for laminar cylinder flow suggests that the
laminar bluff-body dynamics prevail in the turbulent
regime. It is understood that symmetries that are bro-
ken at low Reynolds numbers, and flow structures that
resemble laminar instability modes in the same regime,
resurface in fully developed turbulent flows at very high
Reynolds numbers. Quantitative empirical evidence for
this phenomenon in the wake of an axisymmetric bluff
body, for example, was provided by Rigas et al. [45].

4.3 Jet at Re = 3600

The example of an initially laminar jet at a moderate
Reynolds number of Re = 3600 is chosen to demon-
strate the treatment of flows with homogeneous direc-
tions, here the azimuthal direction in a cylindrically
symmetric domain. The large eddy simulationwas con-
ducted by Dr. G. A. Brès using the numerical frame-
work discussed in Brès and Lele [3]. The original data
were computed on an unstructured grid. The database
used here was later interpolated onto a cylindrical grid
with coordinates x = [x, r, θ ]T , where r and θ are the
radial and azimuthal coordinates, respectively.Wemay
exploit the cylindrical symmetry of the jet by decom-
posing the flow field into azimuthal Fourier modes

q̃(x, r,m, t) =
Nθ−1∑
j=0

q(x, r, θ j+1, t)e
−im,

m = 0, . . . , Nθ − 1 (64)
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(a) (b) (g) (h)

(c) (d) (i) (j)

(e) (f) (k) (l)

Fig. 12 Streamwise and transverse components ofmodes of PIV
data of massively separated flow behind plate: a–f fundamental
instability; g–l self-interaction of fundamental instability. Top,
middle and bottom rows show bispectral modes, cross-frequency

fields, and interactions maps, respectively. The real part of the
bispectral modes is shown in a–d, g–j. The vertical bar particu-
larly visible in c, g is an artifact of two overlapping PIVwindows

of azimuthal wavenumberm. Following the discussion
in Sect. 3.1.2, we consider azimuthal triads which we
denote by triplets [[m1,m2,m3]], wherem3 = m1+m2.
We denote by [[·]] azimuthal wavenumber multiplets, to
avoid confusion. Since the jet has no preferred sense
of rotation, the azimuthal wavenumber spectrum is
expected to be symmetric and it suffices to consider
positive azimuthal wavenumbers m ≥ 0. In light of
rotational symmetry, Eq. (60) specializes as

B

⎛
⎝

⎡
⎣ x
r
θ

⎤
⎦ ,

⎡
⎣ x ′
r ′
θ ′

⎤
⎦ , fk, fl

⎞
⎠

→ B
([

x
r

]
,

[
x ′
r ′

]
,mi ,m j , fk, fl

)
. (65)

In the following, we will conduct a bispectral mode
analysis on the fluctuating pressure field and restrict our
attention, for brevity, to azimuthal wavenumber com-
binations with m3 ≤ 3.

The instantaneous fluctuating pressure fields of
the first four azimuthal wavenumber components are
shown in Fig. 13. From Fig. 13a, it can be seen that

the annular shear-layer supports a symmetric Kelvin–
Helmholtz instability that breaks down into turbulence
at x ≈ 12. Comparison with Fig. 13b–d suggests that
this breakdown is three-dimensional and leads energy
transfer to higher azimuthal wavenumber components.
It is this interaction across azimuthal wavenumbers that
we study using BMD in the following.

We will not investigate the modes in detail, but
instead focus on the sum-interaction region of themode
bispectra for the six principle triplets with m3 ≤ 3
shown in Fig. 14. Maxima in these mode bispectra evi-
dence the presence of azimuthal triads. Given that the
jet dynamics are in large parts dominated by the sym-
metric Kelvin–Helmholtz shear layer roll-up, it comes
to no surprise that the fundamental self-interaction
occurring for [[0, 0, 0]], { f0, f0, 2 f0}, marked by (◦)
in Fig. 14a, is associated with the global maximum of
the bispectral density. The local maxima observed in
Fig. 14b–f suggest that azimuthal wavenumber triads
at low frequencies cascade energy to higher and higher
azimuthal wavenumbers. For the triplets [[0, 0, 1]] and
[[1, 1, 2]] shown in Fig. 14b and c, respectively, this
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(a) (b)

(d)(c)

Fig. 13 Instantaneous pressure fields of the leading azimuthal
wavenumber components of the transitional round jet: a m = 0;
b m = 1; c m = 2; d m = 3. False colors are saturated at maxi-

mum absolute value of each component. Form > 0, the real part
of the pressure field is shown

(a) (b) (c)

(d) (e) (f)

Fig. 14 Sum-interaction regions of mode bispectra for the inter-
action of different azimuthal wavenumber components of the
transitional jet: a self-interaction of m = 0; b interaction of
m = 1 and 2; c self-interaction ofm = 1; d interaction ofm = 0
and 2; e interaction ofm = 0 and 3; f interaction ofm = 1 and 2.
Azimuthal triads are denoted by triplets [[m1,m2,m3]]. Dashed

lines (- - -) mark the diagonal of constant frequency f0. False
color ranges in b–f are identical and significantly lower than
for [[0, 0, 0]]. The fundamental self-interaction frequency triad
{ f0, f0, 2 f0} is marked by ‘◦’ in a, and the triads { 12 f0,

1
2 f0, f0}

and { f0, 1
2 f0,

3
2 f0} as ‘+’ and ‘×,’ respectively, in b, c

interaction takes place at frequencies { 12 f0,
1
2 f0, f0}

and { f0, 1
2 f0,

3
2 f0}, i.e., it involves subharmonic fre-

quencies like 1
2 f0 and leads to the generation of the

ultraharmonic frequency components like 3
2 f0.

The summed mode spectra for the same azimuthal
wavenumber triplets are compared in Fig. 15. The
summed mode spectrum for the (0, 0, 0) interaction
has a significantly higher base-level that the other spec-
tra and shows peaks at the fundamental frequency
and three higher harmonics. The most prominent peak
is observed for the first harmonic at f = 2 f0. For
[[0, 1, 1]], peaks on right and left side of the fundamen-
tal frequency indicate the presence of the ultraharmonic
and the subharmonic frequency components, 3

2 f0 and

1
2 f0, respectively. Using BMD, we were able to show
that these fractional frequencies are generated by triad
interactions between different azimuthal wavenumber
components.

5 Discussion

Bispectral mode decomposition was introduced as a
means of educing coherent structures associated with
triad wave interactions from flow data. The method
is based on the maximization problem (51) for the
spatio-temporal bispectral density. It was shown that
this problem is directly related to the numerical radius
of the bispectral density matrix, defined in Eq. (52).
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Fig. 15 Summed mode
spectra for the interaction of
different azimuthal
wavenumber components of
the transitional jet. Triplets
[[m1,m2,m3]] denote
azimuthal triads. As in
Fig. 14 above, the
sum-interaction region is
considered

Unlike the classical bispectrum, the devised multidi-
mensional decomposition establishes a causal relation-
ship between the three frequency components that com-
prise a triad. As a result, the method is capable of educ-
ing coherent structures involved in sum- anddifference-
interactions.

Possible extensions of the framework include the
analysis of four-wave resonances, a common phe-
nomenon in water waves [23,28], based on the trispec-
trum. Such a trispectral mode decomposition could
be based on either the fourth-order moment or the
fourth-order cumulant. We speculate that the cumulant
is preferable as it excludes contributions from lower-
order moments. This distinction was not necessary in
the present work since the third-order moment and
cumulant are identical.

Potential future applications include the estima-
tion of nonlinear transfer functions based on the
mode (cross-) bispectrum. Starting from the Navier–
Stokes equations in spectral form, Domaradzki and
Rogallo [14] computed the nonlinear energy transfer
term in the energy amplitude equation directly from
data. A statistical method that does not require knowl-
edge of the governing equations, but instead uses bis-
pectral information to identify the linear and quadratic
transfer functions of a single-input and single-output
system, was proposed by Ritz and Powers [47]. In a
similar manner, Kim and Powers [29] informed from
data the transfer functions in the second-order Volterra
series of a nonlinear time-invariant system. BMD can
potentially be leveraged to extend such nonlinear sys-
tem identification approaches from single-input and
single-output to entire flow fields. Another direction
of future research is reduced-order models based on
modal expansions that only include the dynamically

most relevant modes, as identified by the mode bispec-
trum, and their quadratic interactions. In the context of
flowcontrol, the interactionmaps defined byEq. (3.2.2)
can potentially be used to localize, and selectively
mitigate, certain triad interactions. A control strategy
for mitigating extreme dissipation events triggered by
triad interactions in turbulent flows, for example, was
recently proposed by Farazmand and Sapsis [17]. Com-
bined with BMD-based system identification, as pro-
posed above, this goal can potentially be achievedwith-
out knowledge of the governing equations. The effect
of actuation on the flow field can further be studied
by means of a cross-bispectral mode decomposition
between actuation and the flow field, see below.

6 Conclusions

The decomposition was applied to three experimental
and numerical flow databases that represent the lami-
nar, transitional, and turbulent regimes. Quadratically
interacting frequency components were identified as
maxima in the mode bispectrum and the corresponding
bispectral modes reveal the flow structures that are gen-
erated through the interactions. Two additional quanti-
ties were used to aid the analysis and physical interpre-
tation: interaction maps that identify regions of activity
of triadic interaction, and the summedmodebispectrum
as a compact representation of the mode bispectrum.

For laminar cylinder flow at Re = 500, cascading
triads and their regions of interactionwere educed and it
was demonstrated that difference-self-interactions that
entail distortions of the mean flow indirectly reveal
the intrinsic vortex-shedding mechanism of this flow.
Applicability to turbulent flows and in the presence
of measurement noise was demonstrated on particle
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image velocimetry data of massively separated flow
behind a flat plate at high angle of attack. In large
eddy simulation data of a transitional round jet at
Re = 3600, the generation of sub- and ultraharmon-
ics was explained by extending the method to incor-
porate cross-bispectral information between different
azimuthal wavenumber components.
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Appendix A: Computation of a1 =
arg max‖a‖=1|a∗Ba|

A slightly modified version of the algorithm for the
computation of the numerical radius by He and Wat-
son [24] is used. He and Watson’s algorithm requires
two nested iterations. The first, or so-called simple iter-
ation [60], converges to a local solution of Eq. (56).
A tolerance of tol = 10−8 was found to be a good
compromise between accuracy and compute time for
both iterations. The number of iterations was limited to
k = 300.

Algorithm 1 (Watson’s Simple Iteration)

Data: B, tol and a0, a complex vector as initial guess.
Result: a and w, a local solution of equation (56).
for k = 1, 2, . . . do

Set wk−1 = aHk−1Bak−1.
Define ak by

ak = wk−1BHak−1 + wH
k−1Bak−1.

Normalize ak ← ak‖ak‖ .
Return a = ak and w = aHk Bak if
|wk−1 − wk−2| < tol.

end

Building on the simple iteration to find local solu-
tions, the purpose of the main algorithm is to find

the global solution. Double precision arithmetic with
machine precision ε = 2−52 was used to compute the
results in Sect. 4. If the algorithm did not converge
within 500 iterations, it was restarted up to five times
with a new random initial guess for a0. This proce-
dure was necessary to ensure that all results are fully
converged.

Algorithm 2 (He and Watson’s Algorithm)

Data: B and tol.
Result: a ≈ a1, lb ≈ r(B), ub. lb and ub are a lower

bound and an upper bound of r(B), such that
ub − lb ≤ tol.

Set a0 to a random complex vector.
Set lb = 0 and ub = ‖B‖1, the matrix 1-norm of B.
while ub − lb > tol do

Use Algorithm 1 with starting vector a0 to obtain an
updated vector a.
Set lb = max(lb, |aHBa|).
Set α = lb + tol and solve generalized eigenvalue
problem

R(α)v = λSv,

where

R(α) =
[
2αI −BH

I 0

]
, S =

[
B 0
0 I

]
,

and I is the Nblk × Nblk identity matrix.
if |λ − 1| <

√
ε‖B‖1 for any λ then

(i.e., there is no eigenvalue on the unit circle)
Set ub = lb + tol and return a, lb, and ub.

else
Set a equal to the last Nblk components of an
eigenvector v corresponding to an eigenvalue
on the unit circle.

end
end

Appendix B: Convergence

Figure 16 demonstrates the convergence of all three
cases discussed in Sect. 4 in terms of summed mode
spectra. The convergence of the results is tested by
recomputing the BMD for smaller subsets of the avail-
able data. In particular, Fig. 16a shows that the summed
mode spectrum obtained for the first 3 and 5 blocks of
the cylinder flow DNS data is very similar to the one
obtained for all 7 block. Similarly, the full data of the
flat plate PIV and the jet LES are compared to the spec-
tra obtained for approximately one-third and two-thirds
of the full data in Fig. 16b and c, respectively. It can
be seen that the summed mode spectra for the latter
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(a)

(b)

(c)

Fig. 16 Convergence of summed mode spectra for different
Nblk: a cylinder DNS; b flat plate PIV; c [[0, 0, 0]] azimuthal
triplet of the transitional jet LES. Solid lines correspond to the
full data

cases, too, remain largely unaltered by the data reduc-
tion. The summed mode spectrum was chosen as the
most compact representation of the results. A compar-
ison of the bispectral modes and mode bispectra (not
shown) obtained from the full and reduced data sets
confirmed that the results are also well-converged with
respect to mode spectra and mode shapes.
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