
Computer Physics Communications 302 (2024) 109246

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

Unlocking massively parallel spectral proper orthogonal decompositions in

the PySPOD package ✩,✩✩

Marcin Rogowski a,∗, Brandon C.Y. Yeung b, Oliver T. Schmidt b, Romit Maulik f ,
Lisandro Dalcin a,∗∗, Matteo Parsani a,c, Gianmarco Mengaldo d,e,∗∗∗

a King Abdullah University of Science and Technology (KAUST), Computer Electrical and Mathematical Science and Engineering Division (CEMSE), Extreme Computing
Research Center (ECRC), Thuwal, Saudi Arabia
b Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
c King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal, Saudi Arabia
d Department of Mechanical Engineering, National University of Singapore, Singapore, SG
e Honorary Research Fellow, Department of Aeronautics, Imperial College London, London, UK
f Information Science and Technology Department, Pennsylvania State University, State College, PA, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Spectral proper orthogonal decomposition

SPOD

Parallel

Distributed

MPI

Modal decomposition

Dynamical systems

We propose a parallel (distributed) version of the spectral proper orthogonal decomposition (SPOD) technique.
The parallel SPOD algorithm distributes the spatial dimension of the dataset preserving time. This approach
is adopted to preserve the non-distributed fast Fourier transform of the data in time, thereby avoiding the
associated bottlenecks. The parallel SPOD algorithm is implemented in the PySPOD library and makes use
of the standard message passing interface (MPI) library, implemented in Python via mpi4py. An extensive
performance evaluation of the parallel package is provided, including strong and weak scalability analyses.
The open-source library allows the analysis of large datasets of interest across the scientific community. Here,
we present applications in fluid dynamics and geophysics, that are extremely difficult (if not impossible) to
achieve without a parallel algorithm. This work opens the path toward modal analyses of big quasi-stationary
data, helping to uncover new unexplored spatio-temporal patterns.

Program summary

Program Title: PySPOD

CPC Library link to program files: https://doi .org /10 .17632 /jf5bf26jcj .1
Developer’s repository link: https://github .com /MathEXLab /PySPOD

Licensing provisions: MIT License

Programming language: Python

Nature of problem: Large spatio-temporal datasets may contain coherent patterns that can be leveraged to
better understand, model, and possibly predict the behavior of complex dynamical systems. To this end, modal
decomposition methods, such as the proper orthogonal decomposition (POD) and its spectral counterpart (SPOD),
constitute powerful tools. The SPOD algorithm allows the systematic identification of space-time coherent
patterns. This can be used to understand better the physics of the process of interest, and provide a path
for mathematical modeling, including reduced order modeling. The SPOD algorithm has been successfully
applied to fluid dynamics, geophysics and other domains. However, the existing open-source implementations
are serial, and they prevent running on the increasingly large datasets that are becoming available, especially
in computational physics. The inability to analyze via SPOD large dataset in turn prevents unlocking novel
mechanisms and dynamical behaviors in complex systems.

✩ The review of this paper was arranged by Prof. W. Jong.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .sciencedirect .
com /science /journal /00104655).

* Corresponding author.

** Corresponding author.

*** Corresponding author at: Department of Mechanical Engineering, National University of Singapore, Singapore, SG.
Available online 16 May 2024
0010-4655/© 2024 Elsevier B.V. All rights are reserved, including those for text and

E-mail addresses: marcin.rogowski@kaust.edu.sa (M. Rogowski), dalcinl@gmail.c

https://doi.org/10.1016/j.cpc.2024.109246

Received 8 August 2023; Received in revised form 7 May 2024; Accepted 10 May 20
data mining, AI training, and similar technologies.

om (L. Dalcin), mpegim@nus.edu.sg (G. Mengaldo).

24

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://github.com/mathe-lab/PySPOD
https://mpi4py.readthedocs.io/en/stable/
https://doi.org/10.17632/jf5bf26jcj.1
https://github.com/MathEXLab/PySPOD
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:marcin.rogowski@kaust.edu.sa
mailto:dalcinl@gmail.com
mailto:mpegim@nus.edu.sg
https://doi.org/10.1016/j.cpc.2024.109246
https://doi.org/10.1016/j.cpc.2024.109246
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109246&domain=pdf

Computer Physics Communications 302 (2024) 109246M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

Solution method: We provide an open-source parallel (MPI distributed) code, namely PySPOD, that is able to
run on large datasets (the ones considered in the present paper reach about 200 Terabytes). The code is built on
the previous serial open-source code PySPOD that was published in https://joss .theoj .org /papers /10 .21105 /joss .
02862 .pdf. The new parallel implementation is able to scale on several nodes (we show both weak and strong
scalability) and solve some of the bottlenecks that are commonly found at the I/O stage. The current parallel
code allows running on datasets that was not easy or possible to analyze with serial SPOD algorithms, hence
providing a path towards unlocking novel findings in computational physics.

Additional comments including restrictions and unusual features: The code comes with a set of built-in postprocessing
tools, for visualizing the results. It also comes with extensive continuous integration, documentation, and
tutorials, as well as a dedicated website in addition to the associated GiHub repository. Within the package
we also provide a parallel implementation of the proper orthogonal decomposition (POD), that leverages the I/O
parallel capabilities of the SPOD algorithm.
1. Introduction

Data that depends on both space and time, also referred to as spatio-

temporal data, is ubiquitous. It can represent the Earth’s atmosphere,
the flow past an aircraft, and the ocean’s dynamics, among many
other phenomena and processes. Usually, spatio-temporal data is high-

dimensional and its interpretation non obvious. Yet, spatio-temporal
data, especially the one related to physical processes, contain coherent
patterns. These, if uncovered, may provide a better understanding of
critical aspects of the underlying physical processes of interest. Hence,
tools to analyze and make sense of this type of data are of paramount
importance.

Over the last several years, many tools have been proposed to
mining information from spatio-temporal data, such as the proper or-

thogonal decomposition (POD) [1,2], the dynamic mode decomposi-

tion (DMD) [3], and the spectral proper orthogonal decomposition
(SPOD) [4–8]. Yet, the majority of these tools comes with limited par-

allel capabilities for handling large datasets.

In this paper, we propose a first parallel (distributed) SPOD al-

gorithm, that allows large-scale modal decomposition analyses. The
algorithm has been tested on both geophysical and fluid mechanics
data, reaching 199 terabytes (TB) of size. Weak and strong scalabil-

ity have been thoroughly assessed for the entire algorithm as well as
for its main constituting steps, including input/output handling, dis-

crete Fourier transform, and eigenvalue computations. The efficiency
of the novel parallel algorithm proposed in this paper allows analysis
of data at unprecedented scales, opening the path towards uncovering
new physics in large datasets, that existing SPOD packages were unable
to tackle [9,10].

This paper is organized as follows. In section 2, we introduce the
SPOD method. In section 3, we detail our parallelization strategy. In
section 4, we present the results obtained on two large datasets, one
related to fluid mechanics and the other to geophysics (in particular
atmospheric physics). In section 5, we present the strong and weak scal-

ability analysis of the parallel SPOD algorithm. In section 6, we provide
some concluding remarks.

2. The spectral proper orthogonal decomposition

2.1. A note on suitable data

The spectral proper orthogonal decomposition, also referred to as
spectral POD or simply SPOD, extracts coherent structures from statisti-

cally stationary data. The data considered have spatial and temporal
dependence, and describe a stochastic (also referred to as random)
process denoted by 𝒒(𝒙, 𝑡), where 𝒙 represents the spatial coordinate,
and 𝑡 the time. Usually, 𝒙 = (𝑥, 𝑦, 𝑧) ∈ ℝ3 for the processes of interest,
where 𝑥, 𝑦, and 𝑧 are Cartesian coordinates. In practice, both two- and
three-dimensional data may be used. We now define in more detail the
concept of stationarity and the assumptions that allow us to use ensem-
2

ble and time averages interchangeably.
The stationarity assumption under which the SPOD operates is typ-

ically intended in the weak sense, also referred to as wide-sense or co-

variance stationarity. This implies that 𝒒(𝒙, 𝑡), where we dropped the
probability parametrization 𝜉, has first- and second-order moments (i.e.,
average and autocovariance) that do not vary with time. The mathemat-

ical formalization of wide-sense stationarity is as follows. Let 𝒒(𝒙, 𝑡) be
a continuous-time stochastic process, 𝐸[⋅] be the expectation operator,
and be the covariance. If

• the expectation operator is independent of 𝑡:

𝐸[𝒒(𝒙, 𝑡)] = 𝜇(𝒙), (1)

• the covariance depends only on the difference between two times,
𝑡 − 𝑡′:

(𝒙,𝒙′, 𝑡, 𝑡′) = (𝒙,𝒙′, 𝜏), where 𝜏 = 𝑡− 𝑡′, (2)

• the average ‘power’ is bounded, and does not go to infinity:

𝐸[|𝒒(𝒙, 𝑡)2|] <∞, (3)

then 𝒒(𝒙, 𝑡) is said to be wide-sense stationary.

Many fields in computational physics, including fluid dynamics and
geophysics, give rise to wide-sense stationary problems. In section 4 we
will apply SPOD to examples of wide-sense stationary problems in these
two disciplines.

As a final yet important note in this section, we add that the stochas-

tic processes considered are also ergodic in addition to being wide-sense
stationary. This means that the expectation, 𝐸[𝒒], coincides with the en-

semble average of different realizations of 𝒒(𝒙, 𝑡), that in turn is equal
to the long-time average, 𝒒(𝒙, 𝑡). Therefore, when we say zero-average
stochastic process, we refer to a process where �̄� = 𝐸[𝒒] has been re-

moved. Removal of the mean facilitates the interpretation of the SPOD
eigenvalues as perturbation energy or variance. In the following, with-

out loss of generality we will always assume that �̄� = 0. In sections 2.2

and 2.3, we will use some of the notions introduced here to derive the
continuous and discrete SPOD approaches.

2.2. Theory

For the sake of reader’s convenience, we report here the theory be-

hind SPOD, closely following [5].

The task of the SPOD is to identify a deterministic function 𝝓(𝒙, 𝑡)
(or a set of functions) that best approximates the weak-sense stationary
and zero-average process 𝒒(𝒙, 𝑡). In mathematical terms, this translates
into finding the function 𝝓(𝒙, 𝑡) that maximizes the expected value of
the normalized projection of the stochastic function 𝒒(𝒙, 𝑡), that is,

𝜆 =
𝐸
[|⟨𝒒(𝒙, 𝑡),𝝓(𝒙, 𝑡)⟩𝒙,𝑡|2]⟨𝝓(𝒙, 𝑡),𝝓(𝒙, 𝑡)⟩𝒙,𝑡 . (4)

In equation (4), we assume that any realization of 𝒒(𝒙, 𝑡) belongs to a

Hilbert space, 𝐻 , with a space-time inner product, ⟨⋅, ⋅⟩𝒙,𝑡, and expec-

https://joss.theoj.org/papers/10.21105/joss.02862.pdf
https://joss.theoj.org/papers/10.21105/joss.02862.pdf

M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

tation operator, 𝐸[⋅], here taken to be the ensemble average. The inner
product in equation (4), ⟨⋅, ⋅⟩𝒙,𝑡, between two generic variables, 𝒖 and
𝒗, is defined as

⟨𝒖,𝒗⟩𝒙,𝑡 =
∞

∫
−∞

∫
Ω

𝒖∗(𝒙, 𝑡)𝑾 (𝒙) 𝒗(𝒙, 𝑡)d𝒙d𝑡, (5)

where Ω denotes the spatial domain, 𝑾 (𝒙) the spatial weighting, and
the asterisk superscript represents the conjugate transpose. By invoking
the Karhunen-Loéve (KL) theorem [11,12], we know that there exists a
set of mutually orthogonal deterministic functions that form a complete
basis in 𝐻 . This can be defined as �̂�(𝒙, 𝑓) =

∑∞
𝑘=1 𝑎𝑘(𝑓)𝝓𝑘(𝒙, 𝑓), where

̂(⋅) denotes the Fourier transform in time. The eigenfunctions, 𝝓𝑘, and
their associated eigenvalues, 𝜆𝑘, are solutions to the eigenvalue problem
in the frequency domain:

∫
Ω

̂(𝒙,𝒙′, 𝑓)𝑾 (𝒙′)𝝓(𝒙′, 𝑓)d𝒙′ = 𝜆(𝑓)𝝓(𝒙, 𝑓), (6)

where ̂(𝒙, 𝒙′, 𝑓) is the cross-spectral density tensor, i.e., the Fourier
transform of :

̂(𝒙,𝒙′, 𝑓) =

∞

∫
−∞

(𝒙,𝒙′, 𝜏)𝑒−i2𝜋𝑓𝜏d𝜏. (7)

In equation (7), the two-point space-time correlation tensor (𝒙, 𝒙′, 𝜏)
is defined as

(𝒙,𝒙′, 𝜏) =𝐸[𝒒(𝒙, 𝑡)𝒒∗(𝒙′, 𝑡′)], (8)

where we used equation (2), under the assumption of wide-sense sta-

tionarity of the stochastic process 𝒒(𝒙, 𝑡) and 𝜏 = 𝑡 − 𝑡′ is the difference
between the two times 𝑡 and 𝑡′. This implies that the covariance depends
only on the difference between two times, 𝑡 and 𝑡′ and, therefore, we
can write, (𝒙, 𝒙′, 𝑡, 𝑡′) → (𝒙, 𝒙′, 𝜏). The last step allows reformulating
the problem in the spectral (also referred to as frequency) domain, as
per equation (6). This significant result was first presented in [4,13] and
revisited in [5]. It provides eigenmodes at each frequency that inherit
the same properties of the more traditional (non-spectral) POD.

The SPOD formulation just summarized leads to monochromatic
SPOD modes that optimally characterize the second-order space-time
moments of the continuous-time stochastic process considered [5].

2.3. Practical implementation

In practice, the continuous-time stochastic process 𝒒(𝒙, 𝑡) introduced
in section 2.1 and used in section 2.2 is provided as discrete data. The
discrete data consist of snapshots of the wide-sense stationary time se-

ries, 𝐪(𝐱, 𝑡𝑖), 𝑡𝑖 = 1, … , 𝑁𝑡, from which we subtract the temporal mean,
�̄�. Each snapshot 𝐪(𝐱, 𝑡𝑖) is sampled at 𝑀space spatial points with coor-

dinates 𝐱 ∈ℝ𝑀space×𝑑 (usually two- or three-dimensional, that is, 𝑑 = 2
or 3, respectively), and records 𝑀vars variables.

To derive the SPOD algorithm, we recast each snapshot of the dis-

crete multidimensional data into a vector of dimension 𝐪(𝐱, 𝑡𝑖) = 𝐪𝑖 ∈
ℝ𝑀 , where 𝑀 = 𝑀space𝑀vars. We can then assemble the data matrix
(also referred to as snapshot matrix),

𝐐 = [𝐪1,𝐪2,… ,𝐪𝑁𝑡
] ∈ℝ𝑀×𝑁𝑡 . (9)

The data described by equation (9) can arise from simulations and ob-

servations of a wide-sense stationary stochastic system. We assumed the
data to be composed exclusively of real numbers. However, this assump-

tion is not strictly necessary, as the data can, in principle, be complex.

The first step to obtaining the discrete analog of the frequency-

domain eigenvalue problem in equation (6) consists of segmenting the
3

data along the time direction into 𝐿 (possibly overlapping) blocks
Computer Physics Communications 302 (2024) 109246

𝐐(𝓁) = [𝐪(𝓁)1 ,… ,𝐪(𝓁)
𝑁𝑓

] ∈ℝ𝑀×𝑁𝑓 ,

𝓁 = 1,… ,𝐿 ⟹

⎧⎪⎪⎨⎪⎪⎩

𝐐(1) = [𝐪(1)1 ,… ,𝐪(1)
𝑁𝑓

] ∈ℝ𝑀×𝑁𝑓 ,

𝐐(2) = [𝐪(2)1 ,… ,𝐪(2)
𝑁𝑓

] ∈ℝ𝑀×𝑁𝑓 ,

…
𝐐(𝐿) = [𝐪(𝐿)1 ,… ,𝐪(𝐿)

𝑁𝑓
] ∈ℝ𝑀×𝑁𝑓 .

(10)

Each data block 𝓁 in equation (10) contains 𝑁𝑓 time snapshots, over-

laps by 𝑁overlap time snapshots with the adjacent block, and is regarded
as equally representative of the whole data by the ergodic assumption.
Indeed, it is a realization of the stochastic process described by the dis-

crete data 𝐐 in equation (9). This approach of partitioning the time se-

ries into overlapping data blocks is the well-known Welch periodogram
method [14,7]. A 50% overlap, i.e., 𝑁overlap =𝑁𝑓∕2, is accepted best
practice. In the following, we will use the terms realization and data
block interchangeably.

The second step consists of applying the discrete Fourier transform
(DFT) in time to each data block or realization in equation (10):

𝐐(𝓁) ⟶
⏟⏟⏟
DFT

�̂�(𝓁) = [�̂�(𝓁)1 , �̂�(𝓁)2 ,… , �̂�(𝓁)
𝑁𝑓

] ∈ℂ𝑀×𝑁𝑓 , 𝓁 = 1,… ,𝐿. (11)

We note that each Fourier-transformed data block �̂�(𝓁) contains 𝑁𝑓 fre-

quencies. Wide-sense stationarity and ergodicity allow us to reorganize
the Fourier-transformed data into 𝑁𝑓 data matrices, one per frequency,
𝑓𝑘. In particular, we collect all realizations of the DFT at the 𝑘-th fre-

quency into

�̂�𝑘 = [�̂�(1)
𝑘
, �̂�(2)

𝑘
,… , �̂�(𝐿)

𝑘
] ∈ℂ𝑀×𝐿, for all frequencies 𝑓𝑘, 𝑘 = 1,… ,𝑁𝑓 .

(12)

For fluid mechanical and geophysical applications, we usually have
𝐿 ≪ 𝑀 . For the parallelization of the SPOD algorithm we will make
use of this notion.

The third step is to construct the cross-spectral density matrix for
each frequency, 𝑓𝑘. This step corresponds to the discrete counterpart of
equation (7), and can be readily achieved by calculating

�̂�𝑘 =
1

𝐿− 1
�̂�𝑘�̂�∗

𝑘
∈ℂ𝑀×𝑀, for all frequencies 𝑓𝑘, 𝑘 = 1,… ,𝑁𝑓 , (13)

where 𝐿 −1 is a normalization factor known as Bessel’s correction, that
is only appropriate if the data is centered about the sample mean rather
than the long-time (i.e., true) mean. The construction of the cross-

spectral density matrix in equation (13) finally allows us to write the
discrete analog of the frequency-domain eigenvalue problem defined in
equation (6):

�̂�𝑘𝐖ΦΦΦ𝑘 =ΦΦΦ𝑘ΛΛΛ𝑘, with

ΦΦΦ𝑘 = [φφφ(1)
𝑘
,φφφ

(2)
𝑘
,… ,φφφ

(𝐿)
𝑘

] ∈ℂ𝑀×𝐿 (SPOD modes),

ΛΛΛ𝑘 = diag(𝜆(1)
𝑘
, 𝜆

(2)
𝑘

⋯ , 𝜆
(𝐿)
𝑘

) ∈ℝ𝐿×𝐿 (modal energies).

(14)

The SPOD modes, ΦΦΦ𝑘, and associated modal energies (or eigenvalues),
ΛΛΛ𝑘, can be computed by solving equation (14) for each frequency, 𝑓𝑘. In
practice, to alleviate the computational burden of this step, one usually
turns to the method of snapshots [15]:

�̂�∗
𝑘
𝐖�̂�𝑘ΨΨΨ𝑘 =ΨΨΨ𝑘ΛΛΛ𝑘, ΦΦΦ𝑘 = �̂�𝑘ΨΨΨ𝑘ΛΛΛ

−1∕2
𝑘

. (15)

By construction, for a given frequency 𝑓𝑘, the modes φφφ𝑘 are orthonor-

mal, i.e., ΦΦΦ∗
𝑘
𝐖ΦΦΦ𝑘 = 𝐈, where 𝐈 is the identity matrix. Modes at different

frequencies are instead not orthonormal, that is, ΦΦΦ∗
𝑘1
𝐖ΦΦΦ𝑘2

≠ 𝐈, where

𝑘1 ≠ 𝑘2, but orthonormal under the full space-time inner product.

M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

Finally, the SPOD modes can be grouped per frequency, as follows:

ΦΦΦ= [φφφ1,… ,φφφ𝑁f/2
] = [φ(1)

1 ,… ,φ
(𝐿)
1

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
φφφ1

,φ
(1)
2 ,… ,φ

(𝐿)
2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
φφφ2

,… ,φ
(1)
𝑁f/2

,… ,φ
(𝐿)
𝑁f/2

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
φφφ𝑁f/2

],

(16)

where, for real data, 𝐐 ∈ ℝ𝑀×𝑁𝑡 , the total number of frequencies is
𝑁𝑓∕2 = ⌈𝑁𝑓

2 ⌉ + 1. This is because the transformed data at negative fre-

quencies correspond to the conjugates of the positive frequencies, and
it is therefore redundant. For additional details on the SPOD method,
the interested reader can refer to [5,7].

2.4. SPOD for data compression

As shown in [16], and further explored in [8], it is possible to com-

pute a matrix of expansion coefficients 𝐀. This can be constructed using
a weighted oblique projection of the data onto the modal basis

𝐀 = (𝚽∗𝐖𝚽)−1𝚽∗𝐖𝐐

= [𝑎(1)1 , 𝑎
(2)
1 ,… , 𝑎

(𝐿)
1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐚1

, 𝑎
(1)
2 , 𝑎

(2)
2 ,… , 𝑎

(𝐿)
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐚2

,… , 𝑎
(1)
𝑁𝑓

, 𝑎
(2)
𝑁𝑓

,… , 𝑎
(𝐿)
𝑁𝑓

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐚𝑁𝑓

]. (17)

where 𝐀 ∈ ℂ(𝐿×𝑁𝑓)×𝑁𝑡 is the matrix containing the expansion coef-

ficients and 𝚽 ∈ ℂ𝑀×(𝐿×𝑁𝑓) is a matrix which gathers all the SPOD
modes arranged by frequency as in equation (16). The full matrix of ex-

pansion coefficients, constructed using all modes and frequencies, has
dimensions 𝐿 ×𝑁𝑓 ×𝑁𝑡. In practice, it is common to use only a portion
𝐿𝑟 of the total number of modes, and (eventually) a portion 𝑁𝑓𝑟

of the
total number of frequencies, where we denote with 𝚽𝑟 and 𝐀𝑟, the re-

duced number of SPOD modes and expansion coefficients, respectively.
This reduction recasts the original high-dimensional data into a smaller
SPOD latent space of dimension 𝐿𝑟 ×𝑁𝑓𝑟

.

Once both SPOD modes and expansion coefficients are available, it
is possible to reconstruct the original high-dimensional data as follows

�̃� =𝚽𝑟𝐀𝑟, (18)

where �̃� is an approximation of the original data 𝐐, given the trun-

cation imposed on the number of SPOD modes and frequencies. The
storage of the expansion coefficients and SPOD modes required to re-

construct the high-dimensional data in equation (18), can potentially
lead to significant savings in terms of memory storage. In addition, the
ability to truncate number of SPOD modes and number of frequencies
can be beneficial to just store the frequencies of interest (e.g., removing
high-frequency noise from the data), and capture low-rank behavior of
the process under study [5,6].

For instance, if we consider a problem constituted by 30,000 time
snapshots, 37,000,000 spatial points, and 1 variable, we have: 𝑁𝑡 ×
𝑀space ×𝑀vars = 30, 000 ×37, 000, 000 ×1. To store this dataset in mem-

ory, we require approximately 8.88 TB in double floating-point preci-

sion, and 4.44 TB in single floating-point precision.

However, if we, for instance, store the first 3 SPOD modes and
100 frequencies of interest, the amount of storage memory required
is significantly lowered. To store the SPOD modes, we would need
3 × 100 × 37, 000, 000 × 2, that leads to 0.18 TB of memory in double
floating-point precision, and 0.089 TB in single floating-point precision.
To store the time coefficients, we would need 3 ×100 ×30, 000 ×2, that
leads to 0.00014 TB in double floating-point precision and 0.000072 TB
in single floating-point precision. Hence, if we store 3 SPOD modes and
100 frequencies, the storage memory required is only 2% of the mem-

ory required to store the original dataset, and the data compression is
achieved by having full control on what modes and frequencies are left
4

out (if any).
Computer Physics Communications 302 (2024) 109246

3. Parallelization strategy

The parallelization efforts have been mainly focused on the matrix
operations required by the SPOD algorithm, and on the data Input/Out-

put (I/O). We outline the parallelization of the algorithm first (sec-

tion 3.1), and reserve section 3.2 for I/O, as it is a crucial aspect to
achieve competitive scalability results.

3.1. SPOD algorithm

The parallelization strategy for the SPOD algorithm uses a single-

program multiple-data (SPMD) approach (the interested reader can also
refer to other parallelized modal decompositions, such as [17], that is
specialized to boundary-layer flows). It allows maintaining the structure
of the code similar to that of the serial one, only introducing parallel
communication and synchronization in a limited number of places. For
the SPOD algorithm, this consists of decomposing the spatial dimen-

sions 𝑀space (conveniently flattened) of the data matrix in equation (9).
This is a practical and advantageous choice as it allows preserving all
operations in time – in particular, the DFT – without needing expensive
all-to-all communication patterns. Additionally, the number of spatial
points 𝑀space is usually much larger than the number of variables 𝑀vars,
thus allowing for considerably higher parallelism. The decomposition of
the space dimension allows a straightforward parallel implementation
that only requires one single MPI collective reduction operation. Most
of the MPI operations are implemented in an auxiliary utility module.
This allows using MPI routines off-the-shelf, requiring minor modifica-

tions to the original (serial) code.

Entering into more detail, and assuming that the data distribution is
achieved right after I/O, the parallelization of the algorithm becomes
trivial. Indeed, it consists of a simple parallel reduction operation for the
inner product derived from the method of snapshots in equation (15).
The MPI-based implementation uses the mpi4py package [18,19]. In
Fig. 1, we depict the parallel SPOD algorithm. In red, we represent the
parallel operations required, while in blue are operations that remain
unchanged compared to the serial code. The six steps reported in Fig. 1

are described in the following.

• Step 1) Distribute data: it consists of distributing the spatial di-

mension of each of the data blocks 𝐐𝓁 , 𝓁 = 1, … , 𝐿 across the MPI
ranks available.

• Step 2) DFT (see equation (11)): it consists of performing the DFT
along the time dimension. This operation remains unchanged as
time has not been distributed.

• Steps 3, 4) Inner product and reduction (see equation (15)): the
inner product operation involves contracting the spatial dimension,
hence it requires a parallel reduction operation.

• Step 5) Eigen-decomposition (see equation (15)): this operation
does not require any parallel handling as there is no manipulation
of the distributed spatial dimension. Since the size of the blocks is
typically small, eigen-decompositions are cheap to compute. There-

fore, we perform this step redundantly in all MPI ranks. If this
task ever becomes a computational bottleneck, it would be straight-

forward to replace with a distributed-memory implementation ex-

ploiting the already available CPU resources, or alternatively, GPU
off-loading for acceleration.

• Step 6) Parallel I/O: This operation involves writing the SPOD
modes to disk. The I/O handling is described in the next section
3.2, and is key to the scalability and overall performance of our
implementation.

3.2. I/O handling

We dedicate a separate section to the I/O aspect of PySPOD as, in

most practical scenarios, it plays a critical role in the performance of

Computer Physics Communications 302 (2024) 109246M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

Fig. 1. Schematic of the parallel SPOD algorithm. The key aspect is to obtain an appropriate data decomposition layout that allows preserving all time operations as
done in serial (i.e., the DFT), and decompose only the spatial dimensions of the data. Once the data is in the required parallel layout, the parallelization of the SPOD
algorithm becomes trivial and consists only of a parallel reduction (step 4) of the inner product (step 3). (For interpretation of the colors in the figure(s), the reader

is referred to the web version of this article.)

PySPOD overall. This is especially prominent in a strong scaling sce-

nario such as that presented in section 5.2. We divide this section into
background and related work (section 3.2.1), and the PySPOD I/O im-

plementation (section 3.2.2).

3.2.1. Background and related work

Since the early 1990s, I/O has been acknowledged as a significant
contributor to parallel application performance [20]. However, rela-

tively little attention was given to I/O compared to the compute and
communication subsystems during that time [21]. Since then, the per-

formance gap between the I/O throughput and the compute capability
of supercomputers has only increased, hence exacerbating data move-

ment challenges [22]. A 2012 report titled “Storage challenges at Los
Alamos National Lab” noted that parallel file systems lack large parallel
I/O, which would be both high bandwidth and resistant to I/O patterns
without additional tuning [23]. Consequently, I/O systems remain rel-

atively slow and complex, making it difficult for non-expert users to
utilize them fully.

Middleware libraries were introduced to improve usability and sim-

plify parallel I/O. After all, as [22] noted, users need not be aware of
their data’s low-level layout and organization, which opens possibil-

ities for specialized I/O middleware. MPI-IO enables simple N–1 I/O
(𝑁 processes, 1 file) [24], and it has been an ongoing effort since 1999.
It contains optimizations reducing the number of distinct I/O requests
using techniques such as data sieving and collective I/O for noncontigu-

ous accesses [25]. MPI-IO, however, is still low-level, as the developer
needs to calculate the offsets within the file, while MPI aims to access
the data efficiently. Higher-level libraries such as HDF5 [26], Parallel
netCDF [27], ADIOS [22], and ADIOS 2 [28] have also been introduced
to isolate developers from low-level file system details and alleviate the
burden of platform-specific performance optimization. These libraries
often build on top of MPI-IO and introduce custom file formats.

Although robust solutions for parallel I/O are available, achiev-

ing good performance often requires application-specific and system-

specific tuning. Researchers have dedicated significant effort to optimiz-

ing applications that utilize the popular Lustre file system. Tools such as
5

Lustre IO Profiler [29] were introduced to monitor and understand the
I/O activities on the file system. The authors of this tool highlight the
importance of incorporating system-specific details, such as the num-

ber of Object Storage Targets (OSTs), into the MPI distribution used
in order to improve the achieved I/O bandwidth. The authors of Y-Lib
[30] also point out the low performance of MPI-IO on Lustre file sys-

tems and propose a solution that minimizes contention for file system
resources by controlling the number of OSTs with which each aggrega-

tor process communicates. This solution is shown to outperform MPI-IO
in many cases. Similarly, the authors of [31] demonstrate that Parallel
netCDF with MPI-IO does improve the performance over netCDF; how-

ever, even with supercomputer-specific optimizations, the performance
still disappoints once a large number of MPI ranks is used. The authors
utilize asynchronous I/O (quilt) servers alongside Parallel netCDF to
further improve the effective bandwidth. Other solutions explore tun-

ing the middleware or file system parameters, such as those presented
in [32–35]. These approaches often use sophisticated techniques, such
as genetic algorithms, to identify and tune parameters of the I/O stack
(HDF5, MPI-IO, and Lustre/GPFS parameters) [34,35]. The wealth of
work on the topic highlights the difficulty of achieving good perfor-

mance on current parallel file systems.

Despite the availability of powerful solutions and tools to tune the
performance, many developers still choose not to use them, even in
leadership scale systems [29]. An analysis conducted in 2015 using
Darshan [36] found that, depending on the supercomputing facility,
between 50 to 95% of monitored jobs used POSIX I/O exclusively. How-

ever, as [36] notes, relying on POSIX I/O does have to result in poor
application performance. In fact, in some cases, using a naive N–N (𝑁
processes, 𝑁 files) approach, where each process reads from or writes
to a unique file, can achieve better performance and scalability than
N–1, as it does not incur overhead to maintain data consistency. This
has been observed in PanFS, GPFS, and Lustre file systems. However,
the N–N approach presents challenges related to usability, such as when
restarting with a different number of processes, and high metadata costs

at scale [23,37].

M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

3.2.2. PySPOD I/O

In PySPOD, we take advantage of the N–N model’s good perfor-

mance, but like authors of [37], slightly modify it to be N–M (generally
M < N) mapping, where M is not to be confused with ‘italic’ 𝑀 adopted
in section 2.3. Such a setting, where N is the number of processes and
M is the number of files, is better suited to our application characteris-

tics. We use a simple two-phase I/O remnant of that proposed in [21]

back in 1993.

In particular, we first read the data from disk in a contiguous
manner; afterwards, we re-distribute the data according to the paral-

lel decomposition our application needs, as explained in section 3.1.
Parallel data re-distribution can be performed either with collective
communications, or point-to-point communications. In our case, we use
non-blocking point-to-point MPI communications, as it results in higher
reliability in the HPC systems that have been used in this work.

In the following, we enumerate the reasons for our decision to adopt
this two-phase I/O, and categorize these reasons into application-specific

and performance-specific.

Application-specific

• PySPOD is designed to analyze large datasets, which are
often split over multiple files. One such example is the
Climate Data Store (CDS), which provides rich climate
datasets [38], and that has been used in the scalability anal-

yses presented in sections 5.2 and 5.3. CDS, however, limits
the amount of data that can be downloaded in a single re-

quest. The resulting datasets’ size can be in the order of tens
of terabytes split over several hundred files. Another exam-

ple arises from computational fluid dynamics (CFD) simu-

lators such as SSDC, Nektar++ and Charles [39–41]. Such
software often writes output using one file per requested
timestep. Considering the data size and PySPOD’s competi-

tive scalability performance, we decided against converting
the data to a common format (such as HDF5), as the con-

version could be more expensive than the analysis, and we
implemented several native readers for different data for-

mats.

• Using two-phase I/O allows reusing sequential readers. The
design of keeping the I/O (first phase) separate from the
data distribution (second phase) effectively makes the I/O
phase into many concurrent but sequential I/O streams.
This design makes it easy for a user or a developer to im-

plement support for additional file formats in PySPOD. The
programming burden is greatly reduced, as there are plenty
of sequential reader modules in the Python Package Index
which can be used with minimal effort. This design choice
removes the burden of “thinking parallel” from a user/de-

veloper perspective, as the data distribution is performed in
the second phase, and it does not depend on the file format.

Performance-specific

• Using a two-phase I/O results in fewer and more contigu-

ous requests to the storage system, which is preferred on a
parallel file system. For illustration, most often, the data is
split over multiple files, where each file represents a differ-

ent range of timesteps, and the spatial coordinates follow
the first dimension. In our design, each process reads con-

tiguous data from at least one input file, i.e., all spatial
dimensions for a subset of timesteps (or, more generally, the
first dimension, i.e., time), which is good for performance.
An alternative design, such as using MPI-IO to immediately
read only a subset of spatial variables for all timesteps,
may result in every process accessing every file, depend-

ing on the MPI implementation used. As we discussed in
section 3.2.1, MPI-IO has been shown to perform poorly on
Lustre file systems [30]. In fact, an MPI-IO reader is also
6

implemented in PySPOD; however, we also obtained poor
Computer Physics Communications 302 (2024) 109246

performance results in early experimentation; hence, we de-

cided to extend and optimize the two-phase reader.

• Separating I/O from MPI removes the risk of performance
degradation due to an underoptimized MPI distribution.
As discussed in section 3.2.1, MPI-IO’s performance may
depend heavily on the MPI distribution used and its knowl-

edge of the underlying I/O system. By separating I/O and
data distribution, we read the data from the disk efficiently
and then explicitly distribute it with MPI. Since we use
point-to-point communication, which is at the very core of
MPI, it is much less likely that those functions will perform
poorly.

Application-specific and performance-specific

• SPOD output is expected in the form of one output file per
frequency and mode. However, because the data for each
frequency is spread across all processes, this would lead to
N–1 storage access for each file. This approach would be
highly inefficient due to relatively small spatial dimensions.
To address this issue, we use a two-phase process similar
to the one used for reading files, allowing each file to be
written by only one process.

To address the memory capacity limitations of PySPOD, we imple-

mented several precautions. One such measure was to read data in
chunks, with each process reading approximately 256 MB of data (value
determined empirically). This helps reducing memory overhead since
processing each chunk requires twice the memory, as time-split data
being sent can only be deallocated once it is received by the target pro-

cess, and space-split data is being received simultaneously. The chunk
size should be as small as possible to reduce the memory overhead of
using auxiliary memory but large enough to hide the I/O latency. On
our system, 256 MB chunks correspond to roughly 6% of total memory
per CPU core.

Additionally, we used a dictionary of NumPy arrays instead of one
large array. Such design allows us to deallocate processed data as its
FFT transforms replace it in memory, therefore reducing peak memory
usage. Specifically, we store the data for each chunk in three dictio-

nary keys, with each NumPy array occupying approximately 85 MB of
memory.

Moreover, we implemented reading in such a way that one process
first seeks through the metadata to identify which range of timesteps is
available in which file. This information, broadcast with MPI, signifi-

cantly reduces the overhead associated with N processes opening all M
files.

4. Datasets

The datasets adopted to test the parallel SPOD algorithm consist of

fluid mechanics, and geophysical data. The former uses jet data pro-

duced by high-fidelity large-eddy simulation (LES), and is described
in section 4.1. The latter uses fifth-generation reanalysis data (ERA5)
produced by ECMWF [42], and is described in section 4.2, along with
associated SPOD results.

4.1. SPOD analysis of fluid mechanics datasets

In our first example, we analyze the data generated by Yeung et
al. [43] using the solver Charles [41], from LES of a supersonic twin-

rectangular jet at a Reynolds number of 𝑅𝑒 ≈ 106 based on the jet exit
conditions and the equivalent nozzle diameter. The simulation was pre-

viously validated by Brès et al. [44] against the companion experiments
of Samimy et al. [45]. The time-resolved data consist of 20,000 snap-

shots of the 3D flow field, interpolated onto a Cartesian grid and saved
at a time interval of Δ𝑡 = 0.2. Each snapshot records five primitive vari-

ables: density (𝜌), velocities (𝑢, 𝑣, 𝑤), and temperature (𝑇), in single

precision, for a total of 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 ×𝑁var = 625 × 270 × 344 × 5 data

Computer Physics Communications 302 (2024) 109246M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

Fig. 2. Instantaneous flow field of the twin-rectangular jet: (a) Q-criterion isosurface, colored by pressure; (b) numerical schlieren on the 𝑦 = 0 and 𝑧 = −1.8 planes,
with contours of mean streamwise velocity on the 𝑥 ∈ {8, 16} planes.
points per snapshot. Storage of the database requires 18,392 GB on
disk in HDF5 format, or 23,220 GB once loaded into memory. Fig. 2(a)
visualizes an instantaneous Q-criterion isosurface, showing the highly
turbulent flow field of the high-Reynolds number jet. The colors repre-

sent pressure, 𝑝 − 𝑝∞. Alternating bands of red and blue in the region
𝑥 ≲ 5 correspond to near-field coherent pressure fluctuations, which ra-

diate sound outward and contribute to far-field noise. Fig. 2(b) shows
planar slices of the instantaneous density gradient magnitude, |∇𝜌|,
i.e., an artificial schlieren. Shock cells can be observed inside the po-

tential cores. Superimposed on the schlieren are contours of the mean
streamwise velocity, �̄�. Despite the chaotic instantaneous flow field, �̄�
displays reflectional symmetries about the major and minor axes, 𝑦 = 0
and 𝑧 = 0, respectively. The mean flow thus recovers the geometrical
symmetries of the twin-rectangular nozzles.

The modal decomposition of axisymmetric jets is typically preceded
by an azimuthal Fourier transform, which exploits the rotational invari-

ance of the turbulent statistics. Without loss of generality, the trans-

form reduces the analysis from a single 3D SPOD to one 2D SPOD
per azimuthal wavenumber. The absence of azimuthal homogeneity
in the twin-rectangular jet precludes such a simplification, thus neces-

sitating a costly 3D analysis, to which PySPOD is ideally suited. To
perform SPOD, we assemble the primitive variables into the state vec-

tor 𝐪 =
[
𝜌, 𝑢, 𝑣,𝑤,𝑇

]T
. Since the flow is compressible, we choose the

weight matrix

𝐖 = ∫
𝑧

∫
𝑦

∫
𝑥

diag
⎛⎜⎜⎝

𝑇

𝛾𝜌𝑀2
𝑗

, 𝜌, 𝜌, 𝜌,
𝜌

𝛾(𝛾 − 1)𝑇𝑀2
𝑗

⎞⎟⎟⎠d𝑥d𝑦d𝑧 , (19)

such that the inner product ⟨𝐪1,𝐪2⟩ = 𝐪H1 𝐖𝐪2 induces the compressible
energy norm [46]. Here, 𝛾 = 1.4 is the adiabatic index; 𝑀𝑗 = 1.5 is the
jet Mach number. We select a block size of 𝑁𝑓 = 256, with 50% overlap,
giving 𝐿 = 155 blocks.

The premultiplied SPOD eigenvalue spectra are reported in Fig. 3.
The leading eigenvalues show a prominent peak at 𝑓 ≈ 0.2, where 𝑓
is nondimensionalized by the nozzle height and the ambient speed of
sound. This peak corresponds to the fundamental screech tone. Screech-

ing of the supersonic twin-rectangular jet stems from acoustic resonance
between the nozzle and the shock cells, and has been observed both ex-

perimentally [47,45] and numerically [44,48,43] to occur at a similar
frequency. The peak at 𝑓 ≈ 0.2 persists at least to the second eigenvalue.
Large separations between the first, second, and third eigenvalues—

termed low-rank behavior [49]—in the frequency range 0.2 ≲ 𝑓 ≲ 0.3
signal the presence of coherent structures arising from underlying phys-

ical instabilities, in this case the screech mechanism.

In Fig. 4, we study these structures by visualizing the pressure com-

ponent, 𝝓𝑝, of the SPOD modes corresponding to the first four eigen-
7

values at 𝑓 = 0.21. We recover 𝝓𝑝 from the density and temperature
Fig. 3. Premultiplied SPOD eigenvalue spectra of the twin-rectangular jet. The
spectra fade from black to white with increasing mode number. Modes corre-

sponding to the highlighted (∙) eigenvalues at 𝑓 = 0.21 are reported in Fig. 4.

components of each mode, 𝝓𝜌 and 𝝓𝑇 , respectively, using the linearized
ideal gas equation,

𝝓𝑝 =
1
𝛾

(
𝝓𝜌𝑇 + 𝜌𝝓𝑇

)
. (20)

Isovalues of Re{𝝓𝑝} = ±0.0005 are chosen to highlight the 3D structure
of the far-field acoustic waves. Each row in Fig. 4 shows one mode. The
left and right columns, 4(a,c,e,g) and 4(b,d,f,h), also display the cross-

sectional views of the planes 𝑧 = 1.3 and 𝑦 = −0.25, respectively. These
provide insights into the wavepackets within the jet plume, which are
well-known to be efficient sources of noise [50]. In Fig. 4(a,b), mode 1
recovers near-perfect antisymmetry about the major-axis plane, 𝑦 = 0,
and symmetry about the minor-axis plane, 𝑧 = 0. In contrast, mode 2
in 4(c,d) is clearly antisymmetric about both planes. Mode 4 in 4(g,h),
on the other hand, is symmetric about both planes. The symmetry of
mode 3 is difficult to ascertain visually from 4(e,f). In particular, the
strong in-phase (4(b,h)) and out-of-phase (4(d)) coupling between the
twin jets observed in modes 1, 2, and 4 appear to be lost in mode 3
(4(f)). This is due to insufficient statistical convergence.

A comprehensive discussion of twin-rectangular jet dynamics ex-

ceeds the scope of this work. However, our findings illustrate some of
the physical insights that can be gleaned from a 3D modal analysis,
which PySPOD vastly accelerates.

4.2. SPOD analysis of geophysical datasets

In our second example, we use data from ERA5, a fifth-generation

reanalysis dataset produced by the ECMWF that combines model data

Computer Physics Communications 302 (2024) 109246M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

Fig. 4. SPOD modes of the twin-rectangular jet at frequency 𝑓 = 0.21: (a,b) mode 1; (c,d) mode 2; (e,f) mode 3; (g,h) mode 4. Isosurfaces of Re{𝝓𝑝} = ±0.0005 are
shown, along with cross-sections at 𝑧 = 1.3 (left column) and 𝑦 = −0.25 (right column). The corresponding SPOD eigenvalues are highlighted in Fig. 3.
with global observations using the laws of physics to create a complete
and consistent global climate and weather dataset. We obtained this
data from the Climate Data Store (CDS) [38].

In particular, we consider the horizontal speed of air moving to-

wards the east on 37 pressure levels (i.e., vertical levels) spanning from
January 1940 to December 2022 [38]. This quantity is also referred
to as U component of the horizontal wind velocity, and its unit is me-

ters per second. The dataset contains 727,584 time snapshots on a 3D
grid of dimension 1440 × 721 × 37. The total size of this dataset is
51,745 GB, corresponding to 27.9 trillion data points and 103,490 GB
in memory when using single-precision floating-point, as for this ex-
8

ample, and 199,452 GB in double-precision. In Fig. 5, we depict the
horizontal wind velocity adopted for pressure level 1 (top left), 12 (top
right), 24 (bottom left), and 37 (bottom right). dataset.

The SPOD algorithm uses 10-year data blocks, that corresponds to a
block size of 𝑁𝑓 = 87, 600 time snapshots, resulting in a total of 𝐿 = 8
blocks, where we used 0% overlapping.

This SPOD configuration was chosen to capture low-frequency at-

mospheric modes. More specifically, the analysis of this dataset aims to
capture the quasi-biennial oscillation (QBO) that has an approximate
period of 2 to 2.5 years, as reported in [6]. This atmospheric oscil-

lation is characterized by quasi-periodic reversals of the zonal-mean
zonal winds in the equatorial stratosphere – see also [51]. QBO has im-
portant implications on teleconnections, influencing weather patterns

Computer Physics Communications 302 (2024) 109246M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

Fig. 5. U component of the wind velocity for pressure (i.e., vertical) levels 1 (top left), 12 (top right), 24 (bottom left), and 37 (bottom right), at midnight (00:00)
on the 1st of January 2010. Level 1 corresponds to a pressure of 1 millibars, level 12 to 125 millibars, level 24 to 600 millibars, and level 37 to 1000 millibars.
Fig. 6. Eigenvalue spectra vs. period (in days). The pink vertical line denotes
the peak associated to the QBO, whose associated mode is depicted in Fig. 7.
We can also notice other high-frequency peaks, related to yearly, sub-yearly,
daily and sub-daily patterns.

in the Northern Hemisphere, and the tropics (including tropical precip-

itation) [52]. Its most distinctive feature is a latitudinal band of the U
component of the wind velocity in the tropical region (±20◦ latitude).

Indeed, Fig. 6 shows the eigenvalue spectra for the U component
9

of the wind velocity, where the leading eigenvalue show a prominent
peak at period 𝑇 = 912.5 days. This peak corresponds to the QBO, and
shows as this phenomenon exhibits low-rank behavior, since the en-

ergy of the leading eigenvalue is remarkably separated from the other
eigenvalues. Fig. 7 shows the highly-coherent three-dimensional struc-

ture of the leading mode. This manifests as a latitudinal band of the U
component of the wind velocity in the tropical region, that is the signa-

ture of QBO. The results are consistent with those in [6], albeit the data
adopted there was ERA-20C [53], that has significantly coarser spatial
and temporal resolution, but longer coverage (from 1900 to 2010). In
our results, we also observe several high-frequency peaks in the eigen-

values (periods shorter than 1 day) thanks to the improved temporal
resolution of our dataset.

As for the example presented in section 4.1, a comprehensive dis-

cussion of QBO dynamics is outside the scope of this work. Yet, we
remark that the analysis outlined in this section would have been ex-

tremely challenging without the parallel (distributed) implementation
presented in this work.

5. Scalability

The scalability results were obtained on the geophysical dataset in-

troduced and analyzed in section 4.2. Here, we discuss the scalability
setup (section 5.1), strong (section 5.2) and weak (section 5.3) scalabil-

ity studies conducted using that dataset.

5.1. Scalability setup

To test the scalability of the PySPOD library, we used the Sha-

heen II supercomputer, a Cray XC40 system hosted by King Abdullah

University of Science and Technology (KAUST) [54]. Each of Shaheen’s

Computer Physics Communications 302 (2024) 109246M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

Fig. 7. Real part of the leading three-dimensional SPOD mode for the U component of the wind velocity; period of 912.5 days.
6,174 nodes features two Intel Haswell (Xeon E5-2698v3) CPUs with
16 cores each and 128 GB of memory. The nodes are connected via a
Cray Aries interconnect with Dragonfly topology. While the nodes were
allocated in exclusive mode by the scheduler, the network was shared
with other users, as is typical in a production environment. To allevi-

ate the memory capacity bottleneck and maximize the I/O bandwidth,
we run PySPOD with 4 MPI processes per compute node. We do not use
multithreading.

For storage, we utilized the Cray Sonexion® 2000 Storage System,
which offers over 16 PB of usable capacity using 72 Scalable Storage
Units (SSUs), 144 Object Storage Services (OSSs) and 144 Object Stor-

age Targets (OSTs). The system features 5,988 4 TB disks. The theoret-

ical performance of this storage exceeds 500 GB/s [55], and published
application benchmarks have shown that applications such as WRF can
achieve a bandwidth of 25–35 GB/s, including communication, or 65
GB/s of raw I/O performance measured on aggregators when using 144
OSTs and 4 MPI ranks per node. Similar results have been obtained with
NPB benchmarks [56].

We stored both datasets on the Lustre storage system described in
section 5.1. Since many processes may need to access each file and the
datasets are large, we used a stripe count of 144. However, we did not
use striping for output to limit each process to only communicate with
one Object Storage Target (OST) and reduce contention, given that each
process writes a single file. In both cases, we used the default stripe size
of 1 MB.

We report the following timings for PySPOD: time for I/O (com-

bined reading and writing of 5 leading modes to disk), computation of
the DFT (step 2 in Fig. 1), computation of the inner product and as-

sociated matrix �̂� (step 3 in Fig. 1), eigenvalue decomposition (step
5 in Fig. 1), and computation of the SPOD modes (just prior to step 6
in Fig. 1). Given the variability of performance on Dragonfly networks
[57] and shared file systems [58], we report arithmetic averages based
on 5 repetitions.

We employed PySPOD release 2.0.0, along with the following pack-

ages: mpi4py 3.1.4, netCDF4 1.6.3, NumPy 1.24.2, SciPy 1.10.1, and
Xarray 2023.2.0. Cray-provided modules for Python 3.10.1 and Cray
MPICH 7.7.18.

5.2. Strong scalability

To perform the strong scalability analysis, we used a 2D version
10

of the dataset presented in section 4.2, corresponding to the 10 hPa
Fig. 8. Strong scalability of PySPOD using horizontal speed of air moving to-

wards the east data from January 1940 to December 2022, using from 256 to
8,192 processes. Dashed lines represent ideal scalability for each component.

pressure level [59]. This dataset contains 727,584 time snapshots on
a 1440 × 721 grid and is 1,407 GB in size when stored on the disk
in netCDF format. The data set contains a total of 755.4 billion data
points in single-precision floating point, which amounts to 5,628 GB in
memory once stored in double-precision floating-point for this study.
As we scale from 256 up to 8,192 processes (64 to 2,048 nodes), this
corresponds to between 21.99 GB and 0.68 GB, or 4,055 and 126 spatial
points over time per process. This provides a broad range of scenarios.
In all cases, all the temporal data is split into 1-year (8,760 snapshots)
blocks. This choice of block size is different to that of section 4.2 for
the sake of using consistent configurations in both strong and weak
scalability analyses.

As shown in Fig. 8, the outcomes differ depending on the task

that is being performed (different curve colors in Fig. 8). In partic-

M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

ular, we achieved a satisfactory speedup for I/O as the number of
processes increased (teal curve), with the peak average read bandwidth
of 73.76 GB/s (4,096 processes) and the maximum individual measured
bandwidth of 88.04 GB/s. Even though the read speed peaks at 4,096
processes, the combined I/O time (reading and writing) is minimally
lower when using 2,048 processes. The reported timings include com-

munication (i.e., the second phase of the two-phase I/O) and should be
compared to the 25–35 GB/s figure quoted in section 5.1. We consider
the results extremely competitive on this hardware.

The FFT calculation (violet curve), the second most expensive part
of the SPOD algorithm, exhibited surprising behavior. The speedup
is measured at 50 × when the number of processes is increased by
32 × (from 256 to 8,192 processes). This phenomenon has been pre-

viously observed on the same supercomputer [60] and can be ex-

plained by cache effects, frequency throttling, and possibly problem
size-dependent NumPy optimizations.

The computation of matrix �̂� (brown curve), a collective commu-

nication-heavy routine, stops scaling past 2,048 cores; however, at this
point, it only takes around 7 seconds. Similarly, the eigenvalue compu-

tation (orange curve), which is problem size-dependent and not paral-

lelized (see rationale in section 3.1), is represented by a horizontal line,
i.e., its cost depends on the dimensions of the data and not the number
of processes. On the other hand, the calculation of SPOD modes (green
curve) scaled well despite its cost being measured in single seconds.

In terms of overall relative efficiency,1 we calculate it to be 74%
when using 2,048 cores and 38% or lower once increasing to 4,096
cores and beyond. Even though the efficiency is only 15% when us-

ing 8,192 processes, we note that in this scenario, the total runtime is
only around 127 seconds. The shortest runtime was achieved when us-

ing 4,096 processes and was around 98 seconds, 4 seconds faster than
when using 2,048 processes. Based on the presented performance char-

acteristics and emphasizing that I/O is the dominating cost, we suggest
using as many processes as required to saturate the I/O bandwidth.
Increasing the dedicated resources past the I/O saturation point will
significantly reduce the parallel efficiency.

5.3. Weak scalability

For the weak scalability analysis, we used the ERA5 dataset contain-

ing the horizontal U component of wind speed on 37 pressure levels
described in section 4.2. As mentioned there, the total size of this data
set is 51,745 GB, and we used between 10 and 80 years of data, cor-

responding to between 3.4 and 26.8 trillion data points stored using
6,273 GB to 49,863 GB of disk space. The corresponding memory re-

quired in double-precision floating-point that was adopted in this study
ranged from 25,092 GB to 199,452 GB. To maintain a constant load per
process, we use 10 years of data per 2,048 processes (512 nodes) and
scale up to 16,384 processes (4,096 nodes), where we use 80 years of
the horizontal U component of wind speed data. Similarly to the strong
scalability analysis, we split the data temporally into 1-year blocks. As
shown in Fig. 9, we observe satisfactory I/O behavior (teal curve). The
bandwidth peaks at 80.41 GB/s when using 12,288 cores. DFT (violet
curve) and modes (green curve) computation also remain efficient as
more data and processes are used. However, the computation of matrix
�̂� shows worse scaling and its timing displays significant variation in
repeated executions (brown curve). In an environment with shared in-

terconnect, this result points to the increased collective communication
cost at scale. Additionally, the eigenvalue computation (orange curve),
a serial component, becomes more expensive as the problem size grows.

Overall, the efficiency is 64% when using 6,144 cores. Despite the
decrease in efficiency to 38% when using 16,384 cores, the overall run-

time for this scenario is under 20 minutes, which we find acceptable

1 The relative parallel efficiency is calculated as 𝐸𝑃 = (256 × 𝑇256)∕(𝑃 × 𝑇𝑃),
11

where 𝑇𝑃 is the wall-clock time corresponding to 𝑃 processes.
Computer Physics Communications 302 (2024) 109246

Fig. 9. Weak scalability of PySPOD using the hourly horizontal speed of air
data on 37 pressure levels data. 10 years of data per 2,000 processes, between
January 1940 and December 2020 (when using 16,384 processes).

given the sheer size of the dataset (49,863 GB on disk and 199,452 GB
in memory).

6. Discussion and conclusions

The new parallel SPOD algorithm allows modal decompositions that
were extremely challenging if not impossible with the serial algorithms
available. We were able to compute SPOD decompositions up to 199 TB
using HPC platforms, and exploiting the scalability and performance
of the parallel algorithm. In particular, the key novel aspect is the I/O
handling dictated by the smart data layout that was devised and imple-

mented. This allowed preserving all time operations (more specifically
the DFT), and trivially distribute across MPI ranks the spatial compo-

nent of the data. The results reported in section 4 show the power of
the package in providing results on big data, enabled by the scalabil-

ity performance shown in section 5. The latter were possible thanks to
an efficient implementation of I/O, that also allowed for a reduction in
terms of memory consumption. The new package may allow unlocking
new physics from big data that was not possible to analyze before.

CRediT authorship contribution statement

Marcin Rogowski: Conceptualization, Data curation, Formal analy-

sis, Investigation, Methodology, Software, Visualization, Writing – orig-

inal draft, Writing – review & editing. Brandon C.Y. Yeung: Data
curation, Formal analysis, Software, Writing – original draft, Writing –
review & editing. Oliver T. Schmidt: Methodology, Writing – original
draft, Writing – review & editing. Romit Maulik: Methodology, Writing
– original draft, Writing – review & editing. Lisandro Dalcin: Con-

ceptualization, Data curation, Formal analysis, Funding acquisition, In-

vestigation, Methodology, Project administration, Resources, Software,
Supervision, Validation, Visualization, Writing – original draft, Writing
– review & editing. Matteo Parsani: Funding acquisition, Project ad-

ministration, Resources, Supervision, Writing – original draft, Writing –
review & editing. Gianmarco Mengaldo: Conceptualization, Data cura-

tion, Formal analysis, Funding acquisition, Investigation, Methodology,
Project administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review & editing.

M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data for the turbulent jet is confidential. Atmospheric data is from
ERA5 where the scripts for downloading can be made available. Note
the data size is of the order of several terabytes.

Acknowledgements

Marcin Rogowski, Lisandro Dalcin, and Matteo Parsani acknowl-

edge support from King Abdullah University of Science and Technology
(KAUST) award BAS/1/1663-01-01. Brandon C. Y. Yeung and Oliver
T. Schmidt gratefully acknowledge support from Office of Naval Re-

search award N00014-23-1-2457, under the supervision of Dr. Steve
Martens. Romit Maulik was supported by U.S. DOE ASCR Award
Data-intensive Scientific Machine Learning: DE-FOA-2493. Gianmarco
Mengaldo was supported by MOE Tier 2 grant 22-5191-A0001-0:
“Prediction-to-Mitigation with Digital Twins of the Earth’s Weather”.
The authors are thankful to the KAUST Supercomputing Laboratory for
their computing resources. LES calculations were carried out on the
“Onyx” Cray XC40/50 system in ERDC DSRC, using allocations pro-

vided by DoD HPCMP.

References

[1] G. Berkooz, P. Holmes, J.L. Lumley, The proper orthogonal decomposition in the
analysis of turbulent flows, Annu. Rev. Fluid Mech. 25 (1993) 539–575.

[2] R. Maulik, G. Mengaldo, PyParSVD: a streaming, distributed and randomized
singular-value-decomposition library, in: 2021 7th International Workshop on Data
Analysis and Reduction for Big Scientific Data (DRBSD-7), IEEE, 2021, pp. 19–25.

[3] P.J. Schmid, Dynamic mode decomposition of numerical and experimental data, J.
Fluid Mech. 656 (2010) 5–28.

[4] J.L. Lumley, The structure of inhomogeneous turbulent flows, in: A.M. Yaglom, V.I.
Tatarski (Eds.), Atmospheric Turbulence and Radio Propagation, 1967, pp. 166–178.

[5] A. Towne, O.T. Schmidt, T. Colonius, Spectral proper orthogonal decomposition
and its relationship to dynamic mode decomposition and resolvent analysis, J. Fluid
Mech. 847 (2018) 821–867.

[6] O.T. Schmidt, G. Mengaldo, G. Balsamo, N.P. Wedi, Spectral empirical orthogo-

nal function analysis of weather and climate data, Mon. Weather Rev. 147 (2019)
2979–2995.

[7] O.T. Schmidt, T. Colonius, Guide to spectral proper orthogonal decomposition, AIAA
J. 58 (2020) 1023–1033.

[8] A. Lario, R. Maulik, O.T. Schmidt, G. Rozza, G. Mengaldo, Neural-network learning
of SPOD latent dynamics, J. Comput. Phys. 468 (2022) 111475.

[9] O.T. Schmidt, Spectral proper orthogonal decomposition using multitaper estimates,
Theor. Comput. Fluid Dyn. 36 (2022) 741–754.

[10] G. Mengaldo, R. Maulik, PySPOD: a python package for spectral proper orthogonal
decomposition (SPOD), J. Open Sour. Softw. 6 (2021) 2862, https://doi .org /10 .
21105 /joss .02862.

[11] D. Kosambi, Statistics in function space, in: DD Kosambi, Springer, 2016,
pp. 115–123.

[12] M. Loeve, Probability Theory, Courier Dover Publications, 2017.

[13] J.L. Lumley, Stochastic Tools in Turbulence, Courier Corporation, 2007.

[14] P. Welch, The use of fast Fourier transform for the estimation of power spectra: a
method based on time averaging over short, modified periodograms, IEEE Trans.
Audio Electroacoust. 15 (1967) 70–73.

[15] L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent struc-

tures, Q. Appl. Math. 45 (1987) 561–571.

[16] A. Nekkanti, O.T. Schmidt, Frequency-time analysis, low-rank reconstruction and
denoising of turbulent flows using SPOD, J. Fluid Mech. 926 (2021).

[17] T. Sayadi, P.J. Schmid, Parallel data-driven decomposition algorithm for large-scale
datasets: with application to transitional boundary layers, Theor. Comput. Fluid
Dyn. 30 (2016) 415–428.

[18] L. Dalcin, R. Paz, M.A. Storti, MPI for python, J. Parallel Distrib. Comput. 65 (2005)
1108–1115.

[19] L. Dalcin, Y.-L.L. Fang, mpi4py: status update after 12 years of development, Com-

put. Sci. Eng. 23 (2021) 47–54.

[20] P. Crandall, R. Aydt, A. Chien, D. Reed, Input/Output characteristics of scalable
parallel applications, in: Supercomputing ’95: Proceedings of the 1995 ACM/IEEE
12

Conference on Supercomputing, 1995, p. 59.
Computer Physics Communications 302 (2024) 109246

[21] J.M. Del Rosario, R. Bordawekar, A. Choudhary, Improved parallel I/O via a two-

phase run-time access strategy, Comput. Archit. News 21 (1993) 31–38.

[22] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J.Y. Choi, S. Klasky, R. Tchoua, J.
Lofstead, R. Oldfield, M. Parashar, N. Samatova, K. Schwan, A. Shoshani, M. Wolf,
K. Wu, W. Yu, Hello ADIOS: the challenges and lessons of developing leadership
class I/O frameworks, Concurr. Comput., Pract. Exp. 26 (2014) 1453–1473, https://

doi .org /10 .1002 /cpe .3125.

[23] J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland, A. Torres, A. Torrez,
Storage challenges at Los Alamos National Lab, in: 2012 IEEE 28th Symposium on
Mass Storage Systems and Technologies (MSST), 2012, pp. 1–5.

[24] R. Thakur, W. Gropp, E. Lusk, On implementing MPI-IO portably and with high per-

formance, in: Proceedings of the Sixth Workshop on I/O in Parallel and Distributed
Systems, 1999, pp. 23–32.

[25] R. Thakur, W. Gropp, E. Lusk, Optimizing noncontiguous accesses in MPI–IO, Paral-

lel Comput. 28 (2002) 83–105.

[26] The HDF Group, Hierarchical data format version 5, http://www .hdfgroup .org /
HDF5, 2000-2010.

[27] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel,
B. Gallagher, M. Zingale, Parallel netCDF: a high-performance scientific I/O inter-

face, in: SC ’03: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing,
2003, p. 39.

[28] W.F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu, P. Davis, J.
Choi, K. Germaschewski, K. Huck, A. Huebl, M. Kim, J. Kress, T. Kurc, Q. Liu, J. Lo-

gan, K. Mehta, G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta, K.
Takahashi, N. Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu, S. Klasky, ADIOS 2:
the adaptable input output system. A framework for high-performance data manage-

ment, SoftwareX 12 (2020) 100561, https://doi .org /10 .1016 /j .softx .2020 .100561.

[29] C. Xu, S. Byna, V. Venkatesan, R. Sisneros, O. Kulkarni, M. Chaarawi, K.
Chadalavada, LIOProf: exposing Lustre file system behavior for I/O middleware,
in: 2016 Cray User Group Meeting, 2016.

[30] P.M. Dickens, J.S. Logan, A high performance implementation of MPI-IO for a Lustre
file system environment, Concurr. Comput., Pract. Exp. 22 (2010).

[31] T. Balle, P. Johnsen, Improving I/O performance of the weather research and fore-

cast (WRF) model, in: Proceedings of the Cray User Group Meeting, London, United
Kingdom, 2016.

[32] W. Yu, J.S. Vetter, H. Sarp Oral, Performance characterization and optimization of
parallel I/O on the Cray XT, in: 2008 IEEE International Symposium on Parallel and
Distributed Processing, 2008, pp. 1–11.

[33] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, J. Shalf, Tuning HDF5 for Lustre file
systems, https://www .osti .gov /biblio /1050648, 2010.

[34] B. Behzad, H.V.T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol, M. Snir,
Taming parallel I/O complexity with auto-tuning, in: Proceedings of the Interna-

tional Conference on High Performance Computing, Networking, Storage and Anal-

ysis, SC ’13, Association for Computing Machinery, New York, NY, United States,
2013.

[35] B. Behzad, S. Byna, S.M. Wild, M. Prabhat, M. Snir, Improving parallel I/O autotun-

ing with performance modeling, in: Proceedings of the 23rd International Sympo-

sium on High-Performance Parallel and Distributed Computing, HPDC ’14, Associa-

tion for Computing Machinery, New York, NY, United States, 2014, pp. 253–256.

[36] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat, S. Byna,
Y. Yao, A multiplatform study of I/O behavior on petascale supercomputers, in:
Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’15, Association for Computing Machinery, New York,
NY, United States, 2015, pp. 33–44.

[37] Y. Yu, D.H. Rudd, Z. Lan, N.Y. Gnedin, A. Kravtsov, J. Wu, Improving parallel IO
performance of cell-based AMR cosmology applications, in: 2012 IEEE 26th Inter-

national Parallel and Distributed Processing Symposium, 2012, pp. 933–944.

[38] H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J.
Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, J.-

N. Thépaut, ERA5 hourly data on pressure levels from 1940 to present, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS), https://doi .org /10 .24381 /
cds .bd0915c6. (Accessed 19 June 2023), 2018.

[39] M. Parsani, R. Boukharfane, I.R. Nolasco, D.C. Del Rey Fernández, S. Zampini,
B. Hadri, L. Dalcin, High-order accurate entropy-stable discontinuous collocated
Galerkin methods with the summation-by-parts property for compressible CFD
frameworks: scalable ssdc algorithms and flow solver, J. Comput. Phys. 424 (2021)
109844, https://doi .org /10 .1016 /j .jcp .2020 .109844.

[40] D. Moxey, C.D. Cantwell, Y. Bao, A. Cassinelli, G. Castiglioni, S. Chun, E. Juda, E.
Kazemi, K. Lackhove, J. Marcon, et al., Nektar++: enhancing the capability and
application of high-fidelity spectral/hp element methods, Comput. Phys. Commun.
249 (2020) 107110.

[41] G.A. Brès, F.E. Ham, J.W. Nichols, S.K. Lele, Unstructured large-eddy simulations
of supersonic jets, AIAA J. 55 (April 2017) 1164–1184, https://doi .org /10 .2514 /1 .
J055084.

[42] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J.
Nicolas, C. Peubey, R. Radu, D. Schepers, et al., The ERA5 global reanalysis, Q. J.
R. Meteorol. Soc. 146 (2020) 1999–2049.

[43] B.C.Y. Yeung, O.T. Schmidt, G.A. Brès, Three-dimensional spectral POD of su-

personic twin-rectangular jet flow, AIAA Paper 2022–3345, June 2022, https://
doi .org /10 .2514 /6 .2022 -3345.

http://refhub.elsevier.com/S0010-4655(24)00169-3/bib47BED375904AEFF8FD55CDED08AA9AB3s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib47BED375904AEFF8FD55CDED08AA9AB3s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib7F64CB53B13226082C6ABE461F5F4E5Bs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib7F64CB53B13226082C6ABE461F5F4E5Bs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib7F64CB53B13226082C6ABE461F5F4E5Bs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD87FE682B27E5C4E28A70F26C75479E2s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD87FE682B27E5C4E28A70F26C75479E2s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib0423A56F12964DAD543FACB0132FF219s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib0423A56F12964DAD543FACB0132FF219s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib9519C8CFDBC53770EC6D3EAD8C20D593s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib9519C8CFDBC53770EC6D3EAD8C20D593s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib9519C8CFDBC53770EC6D3EAD8C20D593s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib54CD539E9627676F46DB042327397EB5s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib54CD539E9627676F46DB042327397EB5s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib54CD539E9627676F46DB042327397EB5s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib6626CFE3048139F168E9483970B49F65s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib6626CFE3048139F168E9483970B49F65s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib687EB5CD45C56686364D40FBC6FF748Ds1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib687EB5CD45C56686364D40FBC6FF748Ds1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib51126BDE2F9613E8AE55B2B01B86233Es1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib51126BDE2F9613E8AE55B2B01B86233Es1
https://doi.org/10.21105/joss.02862
https://doi.org/10.21105/joss.02862
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib49186D7EC4E1C9E4FCBCE312A1CAE330s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib49186D7EC4E1C9E4FCBCE312A1CAE330s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib38BC994418B8F26659BECB72680219D4s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib62E3394CA51064088EC28F8C9EBF6AC1s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib30412908D250710522C13FBDF63E403As1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib30412908D250710522C13FBDF63E403As1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib30412908D250710522C13FBDF63E403As1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib98AE3E57E23F284F30E4C1E8C175BE1Ds1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib98AE3E57E23F284F30E4C1E8C175BE1Ds1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib1F2052FCDF67F3E4FDA1E7AF598B40DEs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib1F2052FCDF67F3E4FDA1E7AF598B40DEs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD23BA58CD945474B1021C95CF73E34C1s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD23BA58CD945474B1021C95CF73E34C1s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD23BA58CD945474B1021C95CF73E34C1s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib96E4B86149D31F82CE33AFAD160A00F0s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib96E4B86149D31F82CE33AFAD160A00F0s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibAF54799D1C70BFEC269AE36080D55C6Fs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibAF54799D1C70BFEC269AE36080D55C6Fs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib68D9E40FDEF8369E657078CB0169E4EFs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib68D9E40FDEF8369E657078CB0169E4EFs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib68D9E40FDEF8369E657078CB0169E4EFs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib854400CAA11FFDF29F75D87D44389C84s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib854400CAA11FFDF29F75D87D44389C84s1
https://doi.org/10.1002/cpe.3125
https://doi.org/10.1002/cpe.3125
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibE193C85F229A2A2D04240B2799447F23s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibE193C85F229A2A2D04240B2799447F23s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibE193C85F229A2A2D04240B2799447F23s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD0614FE72D9B38B4E3FE6EF117A0FB1Es1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD0614FE72D9B38B4E3FE6EF117A0FB1Es1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD0614FE72D9B38B4E3FE6EF117A0FB1Es1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib53F42F2D5D22F82502FF35D2845B3ACAs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib53F42F2D5D22F82502FF35D2845B3ACAs1
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib8880F2B2D2724614688D278BBADEDDE1s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib8880F2B2D2724614688D278BBADEDDE1s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib8880F2B2D2724614688D278BBADEDDE1s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib8880F2B2D2724614688D278BBADEDDE1s1
https://doi.org/10.1016/j.softx.2020.100561
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib4B10A66DA403CC900E527FB89EEE64EBs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib4B10A66DA403CC900E527FB89EEE64EBs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib4B10A66DA403CC900E527FB89EEE64EBs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib7D2E335EB2104DB3363BAA5227951DA3s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib7D2E335EB2104DB3363BAA5227951DA3s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib87A242C81DC9AB51E9E821933861BF41s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib87A242C81DC9AB51E9E821933861BF41s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib87A242C81DC9AB51E9E821933861BF41s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib9DA98CCA9326F91E6E1BFE3C346A7176s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib9DA98CCA9326F91E6E1BFE3C346A7176s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib9DA98CCA9326F91E6E1BFE3C346A7176s1
https://www.osti.gov/biblio/1050648
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib37309356BCD844D5919495B5B780A322s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib37309356BCD844D5919495B5B780A322s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib37309356BCD844D5919495B5B780A322s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib37309356BCD844D5919495B5B780A322s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib37309356BCD844D5919495B5B780A322s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib49265925CFBAD71F42CFBD72BB889B13s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib49265925CFBAD71F42CFBD72BB889B13s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib49265925CFBAD71F42CFBD72BB889B13s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib49265925CFBAD71F42CFBD72BB889B13s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD5D60A6C08EC4BAB4EDB68E1E83F0ED4s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD5D60A6C08EC4BAB4EDB68E1E83F0ED4s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD5D60A6C08EC4BAB4EDB68E1E83F0ED4s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD5D60A6C08EC4BAB4EDB68E1E83F0ED4s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibD5D60A6C08EC4BAB4EDB68E1E83F0ED4s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib4BD865A0D015B274B318E31F5659D52Cs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib4BD865A0D015B274B318E31F5659D52Cs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib4BD865A0D015B274B318E31F5659D52Cs1
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.1016/j.jcp.2020.109844
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibF12D3947BE4EC235F1DBF3F7A736C505s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibF12D3947BE4EC235F1DBF3F7A736C505s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibF12D3947BE4EC235F1DBF3F7A736C505s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibF12D3947BE4EC235F1DBF3F7A736C505s1
https://doi.org/10.2514/1.J055084
https://doi.org/10.2514/1.J055084
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib2C13F9FEA497458A69230775DA32F593s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib2C13F9FEA497458A69230775DA32F593s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib2C13F9FEA497458A69230775DA32F593s1
https://doi.org/10.2514/6.2022-3345
https://doi.org/10.2514/6.2022-3345

Computer Physics Communications 302 (2024) 109246M. Rogowski, B.C.Y. Yeung, O.T. Schmidt et al.

[44] G.A. Brès, B.C.Y. Yeung, O.T. Schmidt, A. Esfahani, N. Webb, M. Samimy, T.
Colonius, Towards large-eddy simulations of supersonic jets from twin rectangu-

lar nozzle with plasma actuation, AIAA Paper 2021–2154, August 2021, https://

doi .org /10 .2514 /6 .2021 -2154.

[45] M. Samimy, N. Webb, A. Esfahani, R. Leahy, Perturbation-based active flow control
in overexpanded to underexpanded supersonic rectangular twin jets, J. Fluid Mech.
959 (2023) 1–34, https://doi .org /10 .1017 /jfm .2023 .139.

[46] B.-T. Chu, On the energy transfer to small disturbances in fluid flow (part I), Acta
Mech. 1 (September 1965) 215–234, https://doi .org /10 .1007 /BF01387235.

[47] J. Jeun, A. Karnam, G.J. Wu, S.K. Lele, F. Baier, E.J. Gutmark, Aeroacoustics of
twin rectangular jets including screech: large-eddy simulations with experimental
validation, AIAA J. 60 (November 2022) 6340–6360, https://doi .org /10 .2514 /1 .
J060895.

[48] G.A. Brès, S.T. Bose, C.B. Ivey, M. Emory, F. Ham, GPU-accelerated large-eddy sim-

ulations of supersonic jets from twin rectangular nozzle, AIAA Paper 2022–3001,
June 2022, https://doi .org /10 .2514 /6 .2022 -3001.

[49] O.T. Schmidt, A. Towne, G. Rigas, T. Colonius, G.A. Brès, Spectral analysis of jet
turbulence, J. Fluid Mech. 855 (2018) 953–982, https://doi .org /10 .1017 /jfm .2018 .
675.

[50] P. Jordan, T. Colonius, Wave packets and turbulent jet noise, Annu. Rev. Fluid Mech.
45 (2013) 173–195, https://doi .org /10 .1146 /annurev -fluid -011212 -140756.

[51] M. Baldwin, L. Gray, T. Dunkerton, K. Hamilton, P. Haynes, W.J. Randel, J.R.
Holton, M. Alexander, I. Hirota, T. Horinouchi, et al., The quasi-biennial oscilla-

tion, Rev. Geophys. 39 (2001) 179–229.

[52] L.J. Gray, J.A. Anstey, Y. Kawatani, H. Lu, S. Osprey, V. Schenzinger, Surface im-

pacts of the quasi biennial oscillation, Atmos. Chem. Phys. 18 (2018) 8227–8247.

[53] P. Poli, H. Hersbach, D.P. Dee, P. Berrisford, A.J. Simmons, F. Vitart, P. Laloyaux,
D.G. Tan, C. Peubey, J.-N. Thépaut, et al., Era-20c: an atmospheric reanalysis of the
twentieth century, J. Climate 29 (2016) 4083–4097.

[54] B. Hadri, S. Kortas, S. Feki, R. Khurram, G. Newby, Overview of the KAUST’s Cray
X40 System – Shaheen II, in: Proceedings of the Cray User Group Meeting, Chicago,
United States, 2015.

[55] B. Hadri, S. Kortas, R. Fiedler, G.S. Markomanolis, Regression testing on Shaheen
Cray XC40: implementation and lessons learned, in: Preceedings of the Cray Users
Group Meeting (CUG2017), 2017.

[56] G.S. Markomanolis, B. Hadri, R. Khurram, S. Feki, Scientific applications perfor-

mance evaluation on burst buffer, in: J.M. Kunkel, R. Yokota, M. Taufer, J. Shalf
(Eds.), High Performance Computing, Springer International Publishing, Cham,
2017, pp. 701–711.

[57] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri, K. Kumaran,
Run-to-run variability on Xeon Phi based Cray XC systems, in: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’17, Association for Computing Machinery, New York, NY, United
States, 2017.

[58] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock, K. Schwan,
M. Wolf, Managing variability in the IO performance of petascale storage systems,
in: SC ’10: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, 2010, pp. 1–12.

[59] H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J.
Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee,
J.-N. Thépaut, ERA5 hourly data on single levels from 1940 to present, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS), https://doi .org /10 .24381 /
cds .adbb2d47. (Accessed 19 June 2023), 2018.

[60] L. Dalcin, M. Mortensen, D.E. Keyes, Fast parallel multidimensional FFT using ad-

vanced MPI, J. Parallel Distrib. Comput. 128 (2019) 137–150, https://doi .org /10 .
1016 /j .jpdc .2019 .02 .006.
13

https://doi.org/10.2514/6.2021-2154
https://doi.org/10.2514/6.2021-2154
https://doi.org/10.1017/jfm.2023.139
https://doi.org/10.1007/BF01387235
https://doi.org/10.2514/1.J060895
https://doi.org/10.2514/1.J060895
https://doi.org/10.2514/6.2022-3001
https://doi.org/10.1017/jfm.2018.675
https://doi.org/10.1017/jfm.2018.675
https://doi.org/10.1146/annurev-fluid-011212-140756
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib181067C23DE07AF4A5E07BB52D08B27Bs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib181067C23DE07AF4A5E07BB52D08B27Bs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib181067C23DE07AF4A5E07BB52D08B27Bs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib1719B03B4FAE2880143DDCC510D4F4DAs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib1719B03B4FAE2880143DDCC510D4F4DAs1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibA57259EB9B5A70C1A4E56F5FEE67E277s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibA57259EB9B5A70C1A4E56F5FEE67E277s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibA57259EB9B5A70C1A4E56F5FEE67E277s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib49F4A88B5FF6BFA7DE6AD2E6DE9DB322s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib49F4A88B5FF6BFA7DE6AD2E6DE9DB322s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib49F4A88B5FF6BFA7DE6AD2E6DE9DB322s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibFD1F3278D4CDC04CF057040293FE818Es1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibFD1F3278D4CDC04CF057040293FE818Es1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibFD1F3278D4CDC04CF057040293FE818Es1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib9008ECBD1C99E92BC0D618C5027CB017s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib9008ECBD1C99E92BC0D618C5027CB017s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib9008ECBD1C99E92BC0D618C5027CB017s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bib9008ECBD1C99E92BC0D618C5027CB017s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibB31A9D863F8D1E3C76F401C6E9E4C11As1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibB31A9D863F8D1E3C76F401C6E9E4C11As1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibB31A9D863F8D1E3C76F401C6E9E4C11As1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibB31A9D863F8D1E3C76F401C6E9E4C11As1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibB31A9D863F8D1E3C76F401C6E9E4C11As1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibFD8BF578D77726C5F5D4BCF76CCCE145s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibFD8BF578D77726C5F5D4BCF76CCCE145s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibFD8BF578D77726C5F5D4BCF76CCCE145s1
http://refhub.elsevier.com/S0010-4655(24)00169-3/bibFD8BF578D77726C5F5D4BCF76CCCE145s1
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1016/j.jpdc.2019.02.006
https://doi.org/10.1016/j.jpdc.2019.02.006

	Unlocking massively parallel spectral proper orthogonal decompositions in the PySPOD package
	1 Introduction
	2 The spectral proper orthogonal decomposition
	2.1 A note on suitable data
	2.2 Theory
	2.3 Practical implementation
	2.4 SPOD for data compression

	3 Parallelization strategy
	3.1 SPOD algorithm
	3.2 I/O handling
	3.2.1 Background and related work
	3.2.2 PySPOD I/O

	4 Datasets
	4.1 SPOD analysis of fluid mechanics datasets
	4.2 SPOD analysis of geophysical datasets

	5 Scalability
	5.1 Scalability setup
	5.2 Strong scalability
	5.3 Weak scalability

	6 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

