
Streaks and coherent structures in jets from round and

serrated nozzles

Georgios Rigas∗, Ethan Pickering

California Institute of Technology, Pasadena, CA, USA

Oliver Schmidt

Mechanical Engineering, University of California, San Diego, La Jolla, CA USA
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Hydrodynamic instabilities are directly related to large-scale coherent structures that
are correlated with jet noise emission. Unravelling and accurately predicting their fun-
damental dynamics shows a promising direction for designing quieter jet engines. In this
study, we analyze high-fidelity large-eddy simulation data of a turbulent Mach 0.4 round jet
and a Mach 1.5 chevron jet. Using spectral proper orthogonal decomposition we identify,
beyond the well-known1 Kelvin–Helmoholtz and Orr mechanisms, elongated alternating
streamwise streaks of high and low-speed fluid that have been associated with a non-modal
lift-up effect in wall-bounded shear flows. In the global three-dimensional domain, the most
energetic streaks manifest for azimuthal wavenumber m = 1 and frequency St → 0. Fur-
thermore, for the chevron jet, streaks and streamwise vortices appear due to the presence
of the serrated nozzle, and they inherit the periodicity of the nozzle geometry. Finally,
local (planar) spectral proper orthogonal decomposition is used to analyze the coherent
structures of the chevron jet flow. Near the nozzle exit, antisymmetric and symmetric
modes appear to be amplified and linked to the presence of the chevrons/streaks. Further
downstream, the most energetic modes share similar characteristics to the ones observed
in round jets.

I. Introduction

Instabilities of free shear layers are directly related to the presence of coherent structures in turbulence.
These waves have been traditionally sought as modal solutions of the governing Navier–Stokes equations,
and experiment and simulation data alike confirm the acoustic importance of coherent structures in the
aft-angle radiation of high subsonic and supersonic jets.2

For parallel laminar shear flows, Rayleigh’s criterion states that a necessary condition for hydrodynamic
instability is the presence of an inflectional base flow. Squire’s theorem states that two-dimensional dis-
turbances are the first to become unstable and determine a critical Reynolds number for modal instability.
In the case of free-shear flows, such as round jets with inflectional profiles, disturbances grow due to the
Kelvin–Helmholtz (KH) instability over a range of frequencies and azimuthal mode numbers.

However, such shear flows also suffer non-modal3,4 instabilities involving two- and three-dimensional
disturbances, independent of the existence of inflectional points. For wall-bounded flows, these non-modal
mechanisms are identified as the first disturbance growth mechanisms promoting transition in subcritical
regimes. The lift-up5–7 and the Orr8 mechanisms both lead to transient growth of disturbances in shear flows.
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Figure 1. LES simulation of the Mach 1.5 chevron jet flow. Nozzle geometry with 12 chevrons (left). Instan-
taneous temperature fields T/T∞ between 1 (black) and 2.2 (white) shown on the right; on a midsection plane
at a chevron peak (top) and trough (middle); cross-flow cuts at x/D=1,2,5 (bottom).

For laminar jets, the effects of KH and Orr mechanism have been studied using linear resolvent analysis9 and
optimal temporal transient growth.10 The amplification of steady streamwise perturbations (streaks) due to
the vertical displacement of fluid particles by weak pairs of counter-rotating streamwise vortices through the
lift-up mechanism has been studied in Ref. 11. More recently,12 studied the stability of the KH instability
in the presence of streaks and found that streaks have the ability to stabilize the KH instability for a plane
laminar shear flow. A similar stabilizing mechanism has been identified in wall-bounded flows where the
injection of streaks stabilizes the growth of Tollmien-Schlichting waves.13 The lift-up mechanism has been
studied also in compressible flows.14,15

For turbulent shear flows, instability mechanisms persist at high Reynolds numbers and appear to govern
the dynamics of large-scale coherent structures according to a resolvent analysis of the turbulent mean flow
field.16,17 The recent resolvent analyses of a turbulent jet by Schmidt et al.18 (and references therein)
demonstrated the existence of both the KH and Orr mechanisms and showed how they control the observed
large-scale structures and low-rank behavior in turbulent jets. The KH mode creates strong axisymmetric
(m = 0) and helical (m = 1) perturbations over a range of frequencies peaking around St ≈ 0.6. At higher
frequencies, and for the axisymmetric mode at low frequencies (St < 0.2), where the KH response has lower
gain, a different kind of instability termed Orr waves dominates the response. Nogueira et al.19 showed
that for very low frequencies, but higher azimuthal wavenumbers, the response consists of a third-kind
of disturbances, elongated streamwise structures known as streaks, which, as mentioned above, have been
associated with transition mechanisms in wall-bounded flows.

In this paper, we report evidence for the persistence of these mechanisms (KH, Orr, lift-up) at high
Reynolds numbers and turbulent regimes for jet flows. The analysis is based on data obtained from high-
fidelity Large Eddy Simulations (LES). Specifically, we focus on the streaks generated naturally in a round
Mach 0.4 isothermal jet, and streaks that are associated with chevrons in a Mach 1.5 heated jet. In both
cases, spectral proper orthogonal decomposition is employed to extract the coherent structures associated
with these three-dimensional instability mechanisms.

II. Large-eddy simulations

The large eddy simulations (LES) are performed with the compressible flow solver “Charles” developed
at Cascade Technologies.20 The present version of the solver uses a novel mesh generation paradigm based
on the computation of Voronoi diagrams.21
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A. Mach 1.5 chevron jet

The chevron database is an extension of the previous work by Brès et al.,22 with the flow configuration and
nozzle geometry matching those of the experiment carried out at the United Technologies Research Center
(UTRC) anechoic jet facility.23 The operating conditions correspond to the supersonic heated ideally-
expanded jet case B122 with the 12 count chevron (6 deg penetration) appended to the converging-diverging
nozzle (see figure 1). The presence of the chevrons changes the nozzle-exit area and leads to the formation of
shocks in the jet core. The Mach number is Mj = Uj/cj = 1.5, the acoustic Mach number is Ma = Uj/c∞ =
1.98 and the jet temperature is Tj/T∞ = 1.74, where the subscripts j and ∞ refer to the fully-expanded jet
properties and ambient (free-stream) conditions, respectively.

The main differences with the previous work are that wall modeling and near-wall adaptive mesh re-
finement are now employed on the internal nozzle surface, and that the simulated Reynolds number is now
Rej = ρjUjD/µj = 0.95 · 106, matching the experimental value. This is done to better capture/model the
state of the boundary layer inside the nozzle, which has been shown to be important for flow field and noise
predictions.24

B. Mach 0.4 Round jet

The round jet database is an extension of the previous work by Brès et al.24 for a contoured convergent-
straight nozzle and was validated against companion experiments conducted at PPRIME Institute, Poitiers,
France. Again, the simulation features near-wall adaptive mesh refinement and wall-modeling inside the
nozzle, as well as synthetic turbulence to model the internal boundary-layer trip used in the experiment. This
leads to fully turbulent nozzle-exit boundary layers. The jet is isothermal, with Mach number Mj = Ma = 0.4
and Reynolds number Rej = 4.5× 105 matching the experimental values.

C. LES databases

The M = 0.4 database is the same as the one used in Ref. 18 and consists of 10,000 snapshots separated by
dtc∞/D = 0.2 and interpolated onto a structured grid x, r, θ ∈ [0, 30]× [0, 6]× [0, 2π], with 656× 138× 128
points in each direction. The points are equally-spaced in the azimuth direction to enable simple azimuthal
decomposition in Fourier space.

The chevron database consists of 5,000 snapshots separated by dtc∞/D = 0.1 and interpolated onto a
structured cylindrical grid x, r, θ ∈ [0, 30] × [0, 5] × [0, 2π], with 700 × 142 × 360 points in each direction.
Here, the resolution in the azimuthal direction was increased to capture the chevron effects.

Throughout this paper, the variables from both databases are reported as non-dimensionalized by time
Uj/D, length D, velocity Uj , and pressure ρjU

2
j , with the resulting equation of state p = ρT

γM2
j

. Frequencies

are expressed in Strouhal number, St = fD/Uj . Variables are reported by the vector

q = [ρ, ux, ur, uθ, T ]T ,

where a standard Reynolds decomposition separates the vector into mean, q̄, and fluctuating, q′, components

q(x, r, θ, t) = q̄(x, r, θ) + q′(x, r, θ, t).

Here, x, r, θ, correspond to the streamwise, radial and azimuthal directions, respectively.

D. Mean flow symmetries

For the round jet, the mean flow is axisymmetric respecting the continuous rotational symmetry of the nozzle
geometry, q = q0(x, r).

Since the chevron jet has L-fold rotational symmetry (here L = 12 chevrons), the mean flow has to
respect this symmetry:

q(x, r, θ) = q0(x, r) +
∑
j≥1

qLj(x, r)e
iLjθ + c.c.. (1)

The mean velocity components for the chevron jet are shown in figure 2. Furthermore, each chevron sector
exhibits mirror symmetry, which is reflected on the mean flow.
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Figure 2. Mean velocity components in (x, r, θ) directions of the Mach 1.5 12-count serrated (chevron) nozzle
at x/D = 1.5.

III. Methods

Spectral proper orthogonal decomposition (SPOD) is used to identify the most energetic coherent struc-
tures in the frequency domain. More details for the implementation can be found in Ref. 1

A. SPOD with continuous rotational symmetry (round jet)

Performing SPOD on turbulent flow data requires each timestep, tk, to be represented as qk and the entire
dataset for N equally spaced timesteps is compactly assembled as

Q = [q1, q2, ..., qN ]. (2)

The data matrix Q is then azimuthally and temporally decomposed by a discrete Fourier Transform (DFT)
to give the decomposed data matrices, Qm,ω, by expanding

q′(x, r, θ, t) =
∑
ω

∑
m

q̂ω,m(x, r)eiωt+imθ. (3)

Then, the cross-spectral density tensor at a given frequency is found by

Sm,ω = Qm,ωQ∗m,ω (4)

and the SPOD eigenvalue problem is

Sm,ωWΨm,ω = Ψm,ωΛm,ω. (5)

The SPOD modes are represented by the columns of Ψm,ω and are ranked by the diagonal matrix of
eigenvalues Λm,ω. The modes are orthonormal in the compressible energy norm25

〈q1, q2〉E =

∫ ∫ ∫
q∗1diag

(
T̄

γρ̄M2
, ρ̄, ρ̄, ρ̄,

ρ̄

γ(γ − 1)T̄M2

)
q2rdxdrdθ, (6)

and satisfy Ψ∗m,ωWΨm,ω = I.

B. SPOD with discrete L-fold rotational symmetry (chevron jet)

Since the mean flow has L-fold rotational symmetry, it can be shown that the azimuthal Fourier modes of the
fluctuating field have a sparse coupling.26 That is, the fluctuating field can be separated into L independent
“azimuthal orders”, indexed by an equivalent Floquet multiplier M:

q′(x, r, θ, t) =
∑
ω

∑
M

∑
l

q̂ω,M−Ll(x, r)e
iωt+i(M−Ll)θ. (7)
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−L2 < M ≤ L
2 members: m = M − Ll

1 2 ... 14 15 16 ... 29 30

-5 -173 -161 ... -17 -5 7 ... 163 175

...

-1 -169 -157 ... -13 -1 11 ... 167 179

0 -168 -156 ... -12 0 12 ... 168 180

1 -179 -167 ... -23 -11 1 ... 157 169

...

6 -174 -162 ... -18 -6 6 ... 162 174

Table 1. Symmetry groups with L-fold symmetry. Here L = 12.

Figure 3. Mach 0.4 round jet. Energy of the first SPOD mode for the first six azimuthal wavenumbers and
Strouhal numbers ranging from [0-1], plotted in a frequency premultiplied spectrum. The same plot is shown
on the right recast as a percentage of the sum of energy at each azimuthal wavenumber.

The discrete counterpart of this expansion involves a finite set of modes with azimuthal wavenumbers M−Ll,
for each M . For the specific case here, there are 360 uniformly distributed points in the azimuthal direction,
resulting in the groups shown in table 1. Similar to the round jet, the cross-spectral density tensor at a given
frequency is found now by combining together azimuthal modes within the group related to the azimuthal
order M :

SM,ω = QM,ωQ∗M,ω (8)

and the SPOD eigenvalue problem is

SM,ωWΨM,ω = ΨM,ωΛM,ω. (9)

IV. Streaks in round jets

In order to identify the most energetic coherent structure in the turbulent round jet, SPOD was performed
over a range of Strouhal numbers, [0, 1]. Figure 3a shows, on a semi-log, frequency premultiplied plot,
the energy of the first SPOD mode for azimuthal wavenumbers m = 0 to 5. This preserves the visual
identification on the graph of areas of high energy, since the area under the power spectral density curve,
Φm ≡ λ, is proportional to the modal energy:

〈qm, qm〉E =

∫ ∞
0

Φm dSt =

∫ ∞
0

St Φm d(logSt). (10)
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Figure 4. Mach 0.4 round jet. Three dimensional reconstruction of the first SPOD mode (axial velocity, u′x)
at St→ 0 for m = 1 (left) and m = 3 (right). Iso-contours of ±25% and ±5% of the maximum axial velocity are
shown. High speed (red) and low speed (blue) streamwise elongated structures (streaks).

In figure 3b the same data are re-scaled at each frequency with the sum of energy over all azimuthal
wavenumbers (Em,St/

∑
mEm,St × 100). This highlights the dominant wavenumbers at each frequency and

facilitates the identification of different instabilities. The importance of the Kelvin-Helmholtz mechanism
for m = 0 near St=0.6, and its affect on nonzero azimuthal wavenumbers, is evident in both plots. At
low frequencies, meaning St → 0, for m = 0, the amplification of the KH mode diminishes and the Orr
mechanism dominates. The modal shapes associated with the KH and Orr mechanisms have been shown
in previous studies.18 At the limit of small frequencies and mainly for m = 1 and 2, a second energetic
region is observed. These trends in the wavenumber-frequency contour plots resemble those obtained for
laminar boundary layers,27 where lift-up dominates as streamwise wavenumbers approach 0, or equivalently
the frequency approaches zero for spatially developing flows. For nonzero azimuthal wavenumbers, where
the lift-up mechanism is expected to be found due to its three-dimensional characteristics, m = 1 provides
the largest energy across all frequencies, followed by a gradual reduction for higher azimuthal wavenumbers.

In figure 4, the three-dimensional reconstructed streamwise velocity field from the leading SPOD mode
is shown for zero frequency and m = 1 and 3. For St → 0, and m > 0, the streamwise fluctuating velocity
component was found to be the most amplified one. Here we approached St → 0 using 1024 snapshots for
the temporal FFT and 75% overlap, resulting in 36 realizations for the SPOD problem at each frequency
and azimuthal wavenumber. Evidently, streamwise elongated structures, resembling streaks that have been
observed in boundary layers,27 are found, extending throughout the computational domain. These streaky
structures are reminiscent of the dominant kinetic-energy-based structures educed by Freund & Colonius28

using snapshot POD. Similar structures had been identified earlier by Citriniti George29 performing local
POD of the velocity field 3 diameters downstream of a round jet nozzle using a 172 hotwire array, but they
had not been linked to the lift-up mechanism in the previous studies. Based on global energy, we find that
the m = 1 streak is the most amplified one with spatial development downstream of the potential core where
the shear layers merge. Streaks with higher azimuthal wavenumbers are identifier closer to the nozzle.

V. “Forced” steady streaks in chevron jets

Beyond the natural stochastic generation of streaks that could also occur in jets from serrated nozzles, we
find that streaks are also formed directly due to the serrated nozzle geometry. In other words, the geometric
characteristics of the periodic array of chevrons are “forcing” the amplification of streaks with the same
azimuthal periodicity as the chevrons. Specifically, due to the generation of streamwise vorticity through
the cross-stream velocity components (see figure 2), a large response is expected in the streamwise velocity
component through a mechanism similar to the lift-up observed in round jets. Also, the chevrons lock the
azimuthal angle of the streamwise vortices and streaks and make their identification in the turbulent field
easier, when compared to the round jet. This is likely similar to turbulent boundary layers modified by
a spanwise array of cylindrical elements, which develop steady streaks, in a process related to the spatial
transient growth of upstream disturbances.30

In figure 5, iso-contours of mean streamwise vorticity and streamwise velocity are shown. The axisym-
metric mean flow component has been subtracted from the second figure. Mean vorticity introduced due
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Figure 5. Mach 1.5 chevron jet. Iso-contours of mean streamwise vorticity for Ωx = ±3.3 (left) and mean
streamwise velocity for Mx = ±0.1 (right). The axisymmetric mean flow has been subtracted for the second
graph.

to the presence of chevrons creates streamwise vortices. Similar streamwise vortices have been identified
before31 either using chevrons or microjets in a Mach 0.9 turbulent jet. These streamwise vortices generate
regions of high and low speed fluid, similar to the lift-up mechanism, amplifying transiently in space steady
streaks as shown in figure 5b for the first few jet diameters in the streamwise direction. The presence of
streamwise vortices in the upstream region continuously feeds streaks by the transport of momentum from
inner or outer jet locations. Once streamwise vortices decay in amplitude, streaks reach their maximum
amplitude, and subsequently decay downstream.

VI. Planar SPOD of chevron jet

Due to the presence of the chevrons, streamwise vortices and streaks are generated near the chevron
nozzle. It is expected these structures to alter the stability characteristics of the coherent structures found
in round jets. Because these features are local to the near-nozzle shear layer region, it is challenging to be
identified using the global SPOD modes. To investigate them further, we preform a local SPOD problem in
cross-stream planes at specific x locations. The most energetic M = 0, St = 0.6 mode in terms of fluctuating
streamwise velocity is shown in figure 6. Here, we have truncated the expansion given in table 1 to include
m = {−12, 0, 12} for M = 0.

Preliminary results shown here, indicate that near the nozzle exit and approximately for the first 2 jet
diameters, the most energetic mode is antisymmetric (sinuous) with major component the m = ±12 mode.
In the same region, the second most energetic mode is symmetric (varicose) with major component again
the m = ±12 mode. Beyond this, the quasi-axisymetric m = 0 mode becomes the dominant one. Three
diameters downstream, the symmetric mode is the second most energetic, since the most energetic was found
to be the axisymmetric. The third most energetic mode at this location is the symmetric one.

Based on the above, we see the presence of three distinct modes with specific symmetries and spatial
structure. These correspond to azimuthal modes near the nozzle sharing the same periodicity with the
chevron nozzle. There are two types of modes, one antisymmetric and a symetric one, with the antisymmetric
being the most energetic locally near the nozzle. Further downstream the quasi-axisymmetric one becomes
the prevailing mode, showing close similarities with the axisymmetric mode observed for the axisymmetric
round jet. Future analysis will attempt to link these structures to the underlying instability mechanics and
their link to the streaks introduced due to the presence of the chevrons.
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Figure 6. First and second most energetic planar SPOD mode for M = 0 (m = [−12, 0, 12]), St = 0.6: streamwise
velocity perturbation. Magnitude of modes in physical space (top). Plane at x/D = 1.5 (bottom). Near the
nozzle exit, the most energetic mode is antisymmetric (sinuous) with respect to the chevron geometry, and the
second mode is symmetric (varicose). At 3 diameters from the nozzle, the quasi-axisymmetric mode becomes
the dominant one.
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VII. Conclusions

We have analyzed high-fidelity LES data of a turbulent Mach 0.4 round jet and a Mach 1.5 chevron jet.
Using spectral proper orthogonal decomposition we identify, beyond the well-known1 Kelvin-Helmoholtz and
Orr modes, structures that take the form of elongated streamwise streaks that have been associated with non-
modal lift-up mechanism in wall-bounded flows. In the global three-dimensional domain, the most energetic
streaks manifest for azimuthal wavenumber m = 1 and frequency St → 0. For the chevron jet, streaks and
streamwise vortices appear due to the presence of the serrated nozzle, and they inherit the periodicity of
the nozzle geometry. Finally, local (planar) spectral proper orthogonal decomposition is used to analyze
the coherent structures of the chevron jet flow. Near the nozzle exit, antisymmetric and symmetric modes
appear to be amplified and linked to the presence of the chevrons. Further downstream, the most energetic
modes shares similar characteristics to the ones observed for round jets. A quantitative comparison in the
future, will allow the clarification of the effect of the chevrons on the instability properties of the jet and the
implications for acoustic radiation.
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