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Response modes computed via linear resolvent analysis have shown promising results for
qualitatively modeling both the hydrodynamic and acoustic fields in jets when compared
to data-deduced modes from high-fidelity, large-eddy simulations (LES). For an improved
quantitative prediction of the near- and far-field, the role of Reynolds stresses must also
be considered. In this study, we propose a methodology to deduce an eddy-viscosity model
that optimally captures the nonlinear forcing of resolvent modes. The methodology is based
on the maximization of the projection between resolvent analysis and spectral proper or-
thogonal decomposition (SPOD) modes using a Lagrangian optimization framework. For a
Mach 0.4 round, isothermal, turbulent jet, four methods are used to increase the projection
coefficients: linear damping, spatially constant eddy-viscosity field, a turbulent kinetic en-
ergy derived viscosity field, and an optimized eddy-viscosity field. The resulting projection
coefficients for the optimized eddy-viscosity field between SPOD and resolvent can be in-
creased to over 90% for frequencies in the range St = 0.35−1 with significant improvements
to St < 0.35. We find that the use of a frequency-independent turbulent kinetic energy
turbulent viscosity model produces modes closely inline with optimal results, providing a
preliminary eddy-viscosity resolvent model for jets.

I. Introduction

Commercial aircraft have seen reduced noise levels and increased fuel efficiency by increasing the bypass
ratio of turbofan jet engines. However, the potential for additional noise reduction in modern aircraft is
limited as larger engines with even higher bypass ratios would necessitate a complete redesign. Unlike
commercial aircraft, military aircraft have not made significant progress in reductions to jet noise as they
must maintain much more stringent performance metrics and thus have been unable to incorporate turbofans
into their designs. The only viable pathway to reduce noise in these aircraft is through a more detailed
understanding of noise generated by high speed turbulent flow. Therefore, an improved understanding of the
fundamentals of noise mechanisms is necessary to inform further jet noise reduction techniques. The present
work seeks this understanding through the development of robust, reduced-order jet noise models.

The principle tool for jet noise modeling is the acoustic analogy1 or one of its many generalizations. The
analogy takes the form of a linear operator acting on fluctuations driven by a source term. In its most general
form the operator2 represents the full linearized equations of momentum (Navier-Stokes), continuity, and
energy, and the right-hand-side represents a forcing term that must be modeled in terms of partially known
(experimentally or numerically) statistics of turbulence. Thus our starting point is the full compressible
Navier-Stokes equations (plus continuity and energy equations), written compactly as:

∂q

∂t
= F(q) (1)

where, q is a vector of dependent variables. Inserting the standard Reynolds’ decomposition about the mean
flow:

q(x, r, θ, t) = q̄(x, r) + q′(x, r, θ, t) (2)
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we can rewrite the full equations by segregating terms that are linear and nonlinear in the fluctuations to
the LHS and RHS respectively. This gives

∂q′

∂t
−A(q̄)q′ = f(x, r, θ, t) (3)

with

A(q̄) =
∂F
∂q

(q̄). (4)

Like Goldstein’s analogy, this linear equation has a much richer Green’s function than second- or third-order
wave equations. Indeed, the operator accounts for both hydrodynamic (turbulent) fluctuations about the
mean as well as the near- and far- field acoustics.

Inclusion of the hydrodynamic component in the propagator, seen as a curse by some, is more properly
viewed as an opportunity because, beginning with the early experiments of Mollo-Christensen,3 it has become
increasingly apparent that coherent structures in the near-field are responsible for the far-field radiated
sound.4 These coherent structures take the spatio-temporal form of wavepackets, and have been found
to be a significant source for aft angle noise4 and have also been found partially responsible for sideline
noise.5,6 Such wavepackets were originally associated with instabilities of the mean turbulent flow,7–10 but
it is increasingly apparent that they are properly viewed as a kind of “high-gain” forced response whereby
the more random turbulent fluctuations are amplified through linear mechanisms.

Returning to equation (3), only a very limited set of Green’s functions have been found numerically (see,
for example11–15). Considering that a full characterization of the Green’s function implies solving the full
linearized equations of motion for a point source in any variable at any location within the jet, it is doubtful
that this approach can fully succeed without further simplifications.

The important simplifying idea is to seek a low-rank approximation of the full Green’s function. This
can be achieved through a process called resolvent analysis.16–18 This analysis uses the Singular Value
Decomposition (SVD) to decompose the LHS linear operator, which produces sets of mutually orthogonal
input and response modes, which are ranked in terms of the corresponding gain between the input and
response. By retaining only the highest-gain modes, a reduced-rank Green’s function can be constructed.

This kind of linear analysis has been understood for many decades, but the computational power and
algorithms to compute the resolvent decomposition for turbulent mean flows of interest have only come online
recently.6,18–23 The existence of a low rank response has been verified in detail for round, turbulent jets,21

and there is an encouraging level of agreement between the high-gain response modes and and structures
deduced from high-fidelity experimentally-verified large-eddy simulations (LES) of jets24,25 using a procedure
called spectral proper orthogonal decomposition23 (SPOD).

The jet mechanisms uncovered through the previously mentioned resolvent analysis and SPOD compar-
isons of Schmidt et al.21 provide the basic analysis for which this paper seeks to extend and improve. The
resolvent analysis of a round turbulent Mach=0.4 jet across Strouhal numbers St = [0.2−2] presents response
modes of two mechanisms, Kelvin-Helmholtz-type (KH) and Orr-type. The KH-type mode emerges as the
dominant high-gain mode from St = 0.3− 1.8, while the Orr-type modes dominate both at lower and higher
frequencies, as well as in the suboptimal resolvent modes. From their analysis the KH-type modes provided
significant qualitative agreement with corresponding SPOD modes, while Orr-type modes both optimal and
suboptimal showed significant discrepancies in both structure and spatial locations. Although the Mach
0.4 jet resolvent analysis presents a low-rank response for a large band of frequencies, the Orr-type modes
account for a substantial amount of flow energy and must be adequately captured.

Therefore, to constitute a complete jet noise model it is still required to pose a model for the statistics
of a sufficient set of input modes (i.e. suboptimal modes). Theoretically, it can be shown that if the
inputs are white noise (spatially uncorrelated), then the resolvent response modes must be identical to the
SPOD modes.23 Discrepancies between SPOD modes and resolvent response therefore implies correlation
between the input modes. As noted above, the agreement between SPOD (true response) and resolvent
modes (theoretical response) is only qualitative; quantitative discrepancies originate from the presence of
correlation between the resolvent inputs. Such correlation can be represented as a colored noise process,
and some approaches to determine its covariance structure based on matching (partially) observed statistics
have been developed.26,27

Here we examine the extent to which the addition of an eddy-viscosity model in the resolvent framework
can further reduce associated correlation between the resolvent input modes, such that white-noise (spatially)
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models for their coefficients would suffice. The eddy viscosity is a well-established approach insofar as the
mean flow is concerned, but its action on the fluctuation field is less clear. In resolvent jet computations to
date,6,18,19,21 the Reynolds number has typically been chosen to be as high as possible, but the resolvent
computations becomes intractable when the molecular viscosity alone is used–the sub-optimal input and
output modes then obtain a structure that is too fine to resolve even on a mesh as fine as the LES–thus
necessitating a compromise.

The use of eddy-viscosity models, i.e., turbulence models, have been used in various mean flow stability
analyses to account for additional mixing introduced by fine-scale turbulence. One of the first global stability
approaches, Crouch et al.,28 computed global responses for buffet modes through the Reynolds Averaged
Navier-Stokes equations closed via a Spalart-Allmaras turbulence model. Oberleithner et al.29 and Rukes
et al.30 significantly improved global linear stability results through the employment of a Boussinesq ap-
proximation and anisotropic eddy-viscosity model, respectively, for strongly swirling jets. Other studies on
eddy-viscosity models include Sartor et al.31 in stabilizing buffet modes, Tammisola & Juniper32 on global
stability analysis for fuel injectors, where they found that the choice of the model for turbulent dissipation
is less crucial than the choice of including it in improving global mode shapes, and Mettot et al.33 where
the use of an eddy-viscosity model was implemented for improved frequency control maps.

Recently Morra et al.34 also studied the relevance of eddy viscosity for resolvent analysis for wall bounded
flows. They found that the addition of a prescribed eddy-viscosity model for wall bounded flows in the
resolvent analysis lead to significant improvements in predicting the measured spatio-temporal power spectral
densities. However, they also conclude that contrary to wall-bounded flows, jets have a weak dependence on
a turbulent eddy viscosity, here we show the contrary for turbulent jets.

In this study, we develop an optimization framework to identify an eddy-viscosity field that leads to the
closest alignment possible between the SPOD and resolvent modes for a round, turbulent Mach 0.4 jet at
azimuthal wavenumber m = 0 (other azimuthal modes are relegated to future work). In the next section
we outline the governing equations, resolvent analysis, SPOD, and the optimization framework developed to
alignment the optimal modes. We propose four methods for improving the alignment between the modes and
present each method’s results. We conclude by adopting a frequency-independent turbulent kinetic energy
(TKE) eddy-viscosity model and demonstrate its performance over all Strouhal numbers considered.

II. Methods

A. Governing equations

For the round isothermal jet considered in this paper, the governing equations are cast in the cylindrical
coordinate frame with variable state vector q = [ρ′, u′x, u

′
r, u
′
θ, T

′]. Equations are non-dimensionalized by
centerline nozzle exit values, with subscript j. Mach number and Reynolds number are defined asMj = Uj/aj
and Rej =

ρjUjD
µj

, respectively, with isothermal conditions Tj/T∞ = 1, where U jet centerline axial velocity,

a speed of sound, ρ density, D nozzle diameter, µ dynamic viscosity, T temperature, and ∞ free-stream
conditions. Frequency is given by the dimensionless Strouhal number St = ω/(2πMj) where ω is the
angular frequency. The LES database consists of 104 snapshots, separated in time by ∆tc∞/D = 0.2 with
Rej = 4.5 × 105. Snapshots are read from an interpolated grid of dimension 656 × 138 × 128 spanning the
domain x/D, r/D, θ ∈ [0, 30] × [0, 6] × [0, 2π] where [x/D, r/D] = [0, 0] denotes the centerline of the nozzle
exit.

For the round, statistically-stationary, turbulent, Mach 0.4 jet considered in this manuscript, the com-
pressible Navier-Stokes, energy, and continuity equations are linearized via a standard Reynolds decomposi-
tion, and Fourier transformed both temporally and azimuthally to the compact expression

(iωI−Am)qm,ω = Lm,ωqm,ω = fm,ω. (5)

Where Lm,ω is the forward linear operator, q = [ρ′, u′x, u
′
r, u
′
θ, T

′] is the state vector, f constitutes the
nonlinear forcing in each variable, ω is the frequency, and m is the azimuthal mode number. Discretization
is performed on the streamwise plane with fourth-order summation by parts finite differences from Mattsson
and Nordström35 and the polar singularity is treated as in Mohseni and Colonius.36 Additionally, non-
reflecting boundary conditions are implemented at the domain boundaries.
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B. Resolvent analysis

We can rewrite equation 5 by defining the resolvent operator, Rω,m = L−1m,ω,

qm,ω = Rm,ωfm,ω. (6)

Introducing the compressible energy norm,37

〈q1, q2〉E =

∫ ∫ ∫
q∗1diag

(
T̄

γρ̄M2
, ρ̄, ρ̄, ρ̄,

ρ̄

γ(γ − 1)T̄M2

)
q2rdxdrdθ = qH1 Wq2, (7)

(where superscript H denotes the Hermitian transpose) via the matrix W to the forcing and response gives
the weighted resolvent operator

Hm,ω = W
1
2
q (iωI−Am)−1W

− 1
2

f . (8)

Taking the singular value decomposition of the modified resolvent operator gives

Hm,ω = Qm,ωΣFHm,ω (9)

where Qm,ω = [q1m,ω, q
2
m,ω, ..., q

N
m,ω] are the optimal response modes, Fm,ω = [f1m,ω, f

2
m,ω, ..., f

N
m,ω] are the

optimal forcing modes, and Σ = (σ1, σ2, ..., σN ) are the optimal gains. Accounting for the numerical quadra-
ture weighting matrix normalizes each forcing and response mode such that they are orthonormal and may
be compared to their corresponding SPOD modes.

C. Spectral Proper Orthogonal Decomposition

Spectral proper orthogonal decomposition,38,39 finds an optimal set of orthogonal modes that describe a
dataset, but unlike spatial-only POD, produces modes that express both spatial and temporal correlation in
the data. Like DMD, each mode is associated with a unique frequency, but are naturally ranked by energy
and, through appropriate averaging, account for statistical variability in turbulent flows.23

Decomposing the LES database, Q, in the azimuthal and temporal dimensions via the discrete Fourier
transform gives the decomposed data matrices, Qm,ω. The cross-spectral density tensor at a given frequency
wavenumber pair is then given by

Sm,ω = Qm,ωQHm,ω (10)

and the SPOD eigenvalue problem presented by Lumley38,39 can be solved

Sm,ωWQs,m,ω = Qs,m,ωΛm,ω. (11)

The SPOD modes are represented by the columns of Qs,m,ω (subscript s denoting SPOD response mode
matrix) and are ranked by the diagonal matrix of eigenvalues Λm,ω. The modes are orthonormal in the Chu
energy norm, W , and satisfy Q∗s,m,ωWQs,m,ω = I. The cross-spectral density tensor may also be expanded

as Sm,ω = Qs,m,ωΛm,ωQ
H
s,m,ω.

Recently, multiple authors have reported the theoretical connection between the resolvent analysis and
SPOD.18,21,23,40 These analyses are connected through their response and forcing cross-spectral density
(CSD) matrices by the resolvent operator. Assuming any pair of wavenumbers/frequencies, we drop the m
and ω subscripts from the S and define the response CSD for response Sqq = 〈qqH〉 and Sff = 〈ffH〉 for
forcing, with 〈·〉 as the expectation operator. Applying the expectation operator to equation 6 multiplied by
its complex conjugate gives,

Sqq = 〈qqH〉 = 〈RffHRH〉 = RSffR
H . (12)

The above equation directly relates the cross-spectral densities of forcing and response terms with the
resolvent operator. Furthermore, if the forcing CSD is spatially white, meaning Sff = α(ω)I, where α(ω) is
a scalar frequency spectrum, then equation 12 reduces to:

Sqq = RαRH = QΣFHαFΣQH = QαΣ2QH (13)

Sqq = QsΛQ
H
s (14)

4 of 18

American Institute of Aeronautics and Astronautics



Therefore, the resolvent modes will be identical to the set of SPOD modes under spatially-white forcing.
Real turbulent flows, of course, are not white.23,26 To assess the degree of coloring between the resolvent

and SPOD analyses, projections can be made between the SPOD output, Qs, and the resolvent output, Q.
This connection has been explored within the jet community in both the near-field21,23 and the far-field.18,41

This paper seeks to find a (linear) turbulence model such that when it is included in the linear operator
L, the altered resolvent modes are best aligned with the observed SPOD modes. If a perfect alignment
could be achieved, then a spatially white-noise forcing could be applied to the (modified) linear operator to
produce the observed spectrum of large-scale turbulent structures (and ultimately their radiated sound). In
the next section we present an optimization framework designed to achieve this goal.

D. Optimization Framework

An optimization is constructed with the goal of discerning an optimal modification to the linear operator such
that the projection coefficients between SPOD and resolvent modes, are maximized. To do so we prescribe a
constrained optimization problem subject to the governing equations, the resolvent analysis, a normalization
constraint, and constraints associated with an assumed ansatz for modifying the operator. For the latter we
consider linear damping and eddy-viscosity frameworks. All components of this optimization are coupled as
a Lagrangian functional and the variations taken with respect to each parameter allow for the identification
of the functional’s stationary point, or maximum.

To construct the Lagrangian functional we return to the forward equation 5 and substitute L with Lχ,
the modified operator which introduces the turbulence models discussed in the following section. We then
multiply both sides LHχ which emits the inverse resolvent eigenvalue problem, LHχ Lχ = σ−2:

q = σ2LHχ f̂ . (15)

We then enforce an energy constraint of the output through the Chu norm

q̂HWq̂ = 1. (16)

Then the cost function is constructed as

J = q̂HWq̂sq̂s
HWq̂ (17)

which seeks to maximize the square of the projection between the optimal SPOD mode, qs, and first resolvent
mode, q. By taking the square of the projection, qHWqs, we ensure that the cost is real. For brevity,
Qs = q̂sq̂s

H = QH
s .

We now construct the full Lagrangian functional combining the cost function 17, forward equation 5,
resolvent eigenvalue problem 15, and the constraint 16 to give

L = q̂HWQsWq̂ − q̃HW (Lχq̂ − f̂)− f̃HW (q̂ − σ2LHχ f̂)− λ(q̂HWq̂ − 1) + c.c. (18)

The newly acquired terms, (q̃, f̃ , λ), in the Lagrangian functional are Lagrangian multipliers and c.c. are the
complex conjugates to ensure real values. This results in a functional dependent on the six variables:

L([q,f , σ], [q̃, f̃ , λ]). (19)

To find the maximum Lagrangian functional, the variations with respect to all variables must be consid-
ered. Taking variations with respect to each multiplier gives:

∂L
∂[q̃, f̃ ,λ]

([δq̃, δf̃ , δλ]) = −δq̃HW ( ˆLχq − f̂)− δf̃HW (q̂ − σ2LHχ f̂)− δλ(q̂HWq̂ − 1) + c.c. (20)

It is easily seen from our governing equations that ˆLχq = f̂ , q̂ = σ2LHχ f̂ , and q̂HWq̂ = 1, therefore, the
stationary point with respect to the multipliers is automatically satisfied. Taking variations with respect to
the three resolvent variables gives:

5 of 18

American Institute of Aeronautics and Astronautics



∂L
∂q̂

= (QsWq̂ −LHχ q̃ − f̃ − λq̂)δq̂ = 0 (21)

∂L
∂f̂

= (q̃ + σ2Lχf̃)δf̂ = 0 (22)

∂L
∂σ

= (q̂HWf̃)δσ = 0. (23)

The stationary point is then met by constructing the following matrix and solving for the Lagrangian
multipliers: −LHχ −I −q̂

I Lχσ
2 0

0 q̂HW 0


q̃f̃
λ

 =

−QsW
H q̂

0

0

 (24)

To perform the optimization, a final variation is taken with respect to a prescribed parameter, or set of
parameters, χ, that affect the forward operator Lχ. The variation with respect to these parameters takes
the form

∂L
∂χ

=− q̃HW ∂Lχ
∂χ

q̂ + f̃HWσ2
∂LHχ
∂χ

f̂ + c.c = 0. (25)

The variation provides the direction of gradient ascent for the optimization parameter and the updated
parameter is

χk+1 = χk + α
∂L
∂χ

(26)

where k is the iteration number and α is a step size determined through a root finding algorithm or a line
search.

We do not know in general if the optimization problem here yields global or local maxima, and particularly
when χ involves many degrees of freedom the topology of the cost function may be very complex. We
briefly discuss the observed topology in connection with the specific models considered (and their resulting
parameters χ) in the next section.

E. Turbulence models considered

Four methods for including a turbulence model in the linear operator are investigated. The first model
is simplest: a linear damping term is added to the model, whereas the other three models are based on
eddy-viscosity concepts. The eddy viscosity differs from linear damping in that it acts on derivatives of the
fluctuations to give a damping that is proportional to the wavenumber squared. The simplest eddy viscosity
we test is a constant model, which is equivalent to specifying a constant, effective Reynolds number. The
remaining two models consider spatially-varying eddy viscosity. The first of these is based on a simple closure
based on turbulent kinetic energy (TKE) and a length scale, and the last model directly optimizes the entire
spatial eddy-viscosity field under a constraint of positivity. For the first three models, where the form of the
model is determined a priori, we still use optimization to determine the best possible overall constant.

1. Linear damping term (finite-time-horizon resolvent)

The first parameter studied within the optimization is that of a linear damping, which is equivalent to
finite-time-horizon resolvent analysis introduced by Jovanović.42 A recent resolvent study by Yeh & Taira43

used a finite-time approach to localize the forcing and responses modes of an airfoil. Without the addition
of a finite-horizon, the forcing modes in their study extend infinitely in the upstream direction and in the
downstream direction for response modes. However, in real flows there exist significant short term (i.e.
finite-time) dynamics of interest, such as intermittent behavior and development times for flow structures. A
similar argument can be made with jet flows, where wavepackets may not be adequately bounded in the axial
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direction when compared to their corresponding SPOD modes, which by construction accurately account for
the intermittent behavior and development times of structures in real flows.

For this model, the operator is modified so that

Lχ = L− βI. (27)

where β = 1/τ > 0, and τ is the desired temporal decay rate. We used the optimization framework above
to select, as a function of frequency, the value of β that best aligns the principle resolvent and SPOD
modes. The optimization (at each frequency) is with respect to a single constant, that is χ = [β]. For this
optimization an initial condition of β = 0 was used. The sensitivity of the optimal β to this initial guess was
checked for selected frequencies and verified that (at least for β > 0), we achieved a global maximum.

2. Constant eddy-viscosity field

For the eddy-viscosity models, we modify the linear operator to include a Boussinesq-type eddy viscosity,
that is we take

Lχ = L+LT (µT ). (28)

where LT is the discretized operator associated with the linearization of equations including the eddy-viscosity
model. With a slight abuse of notation, we write

LT =

 LT,Cont.LT,Mom.

LT,Energy

 = discretization of


0

∇ ·
[
µT

(
(∇u) + (∇u)T + λΘI

)]
γM2µT

[
1
2

{
(∇u) + (∇u)T

}
:

{
(∇u) + (∇u)T

}
+ λΘ2

]
 (29)

where Θ = ∇ · u is the dilatation, I is the second order identity tensor, and λ = −2/3. The eddy-viscosity
term, µT , is nondimensionalized by ρj , Uj , D and in sum with the molecular viscosity presents an effective
viscosity µeff = µT + 1/Rej . However, in the eddy-viscosity models presented here, µT tends to be much
larger than 1/Rej and as such µeff ≈ µT .

The first eddy-viscosity model we consider is a constant field, µT = 1
ReT

, with constant turbulent Reynolds
number. The optimization (again at each frequency) is thus over a single parameter, χ = [ReT ]. For this
case, an initial condition of ReT = 3× 104 was used. Again, the sensitivity of the optimal ReT to the initial
guess was checked for selected frequencies and verified to achieve a global maximum.

3. Turbulent kinetic energy eddy-viscosity model

A large variety of spatially varying eddy-viscosity models have been proposed for the mean Reynolds stresses.
As a first step towards a more comprehensive evaluation, we consider a specific model based on turbulent
kinetic energy (TKE).44 This model was primarily chosen due to its simplicity and availability of the corre-
sponding quantities from the LES database, though as we will show it is surprisingly effective. The model
takes the form

µT,TKE = ρ̄ck1/2lm (30)

where c is a scaling constant, k is the mean flow turbulent kinetic energy, and lm is a chosen length scale
representative of the mean shear layer thickness. We choose this constant as the width of the shear layer
where the turbulent kinetic energy is more than 10% of its maximum value, at each axial location. The
resulting eddy-viscosity field (relative to c) is plotted in figure 1, and the black lines denote the location
where TKE is 10% of its maximum value. Note that after ≈ x/D = 5, lm is defined from r/D = 0 to the
10% TKE contour. For this model, the single optimization parameter (again at each frequency) is the overall
constant, and we take χ = [c]. This optimization was initialized with c = 0.01 and similar to the previous
methods, the sensitivity to this initial guess was checked and achievement of a global maximum met.
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Figure 1. Computed eddy-viscosity field via the turbulent kinetic energy model, µT,TKE = ρ̄ck1/2lm, with c = 1.
The black lines denote the region of > 10% maximum TKE which defines the length scale, lm.

4. Optimal eddy-viscosity field

The final method consists of optimizing for the entire spatial eddy-viscosity field. The purpose of such an
optimization is not for creation of an eddy-viscosity model, but to understand what might be the upper
bound (in terms of the optimization) of any such model. Here we take, simply χ = [µT ], so that the number
of optimization parameters is now much larger and equal to the number of grid points in the x−r plane. For
this case, a complete assessment of the sensitivity of initial conditions and proof of a global maximum are
intractable due to its complexity, and reserve future efforts to a robust understanding of the optimization
topology. Considering the previous methods’ insensitivity to initial conditions, ability to attain the global
maximum, and the optimization upper bound of qsWq = 1, we progress with the optimal eddy-viscosity
field optimization confident the results are at or near the true global maximum. Important for this confidence
is a well-chosen initial condition. To this end, the initial condition provided for the full-field optimization is
that of the optimal ReT constant eddy viscosity result.

III. Results

A. Optimal mode alignment

We first present the resulting mode shapes of the entire state vector, q′ = [ρ′, u′x, u
′
r, u
′
θ, T

′], and pressure
(p′ found by equation of state p = ρT/γM2) for the optimal viscosity case. Comparisons are made between
the optimal result with SPOD and the previously reported results of Schmidt et al.,21 where a constant
effective eddy viscosity, ReT = 3× 104 was used (resulting in a resolvent analysis conducted at a Reynolds
number Rej/ReT = 15 times lower than the true jet Reynolds number). Pressure mode shapes and their
corresponding optimal projection coefficients are then shown for each method considered, ReT = 3 × 104,
linear damping, constant eddy-viscosity field, TKE eddy-viscosity model, and the optimal eddy-viscosity field.
All results presented here are for the axisymmetric mode m = 0, and we consider a range of frequencies from
St = 0.05 to 1.

Figure 2 displays the real of the fluctuating field for all state variables including pressure from SPOD, opti-
mal viscosity, and ReT = 3×104 at St = 0.05. Contours are given by 0.5||·′ ||∞ of the SPOD mode, where ·′ is
the fluctuating variable in question (with ||·′||∞ values: [ρ′, u′x, u

′
r, u
′
θ, T

′, p′] = [2.8, 198.6, 46.0, 37.2, 1.2, 10.4]×
10−3 for this case), with red and blue as positive and negative values respectively. This color scheme, based
upon each SPOD mode, is maintained for the remainder of the contoured figures. It is immediately apparent
that the optimal viscosity method is able to closely match the mode shapes of SPOD for all variables, with
the exception of u′θ.

In fact, the discrepancy between u′θ terms highlight some of the statistical errors contained within SPOD
modes. For the axisymmetric case, m = 0, we expect u′θ to be quite small for spatially-varying eddy-viscosity
fields and identically to zero with a constant eddy-viscosity field. The SPOD mode, in contrast to u′θ quite
small, provides a rather incoherent u′θ result with velocity only 5 times smaller than u′x. This corresponds
to a u′θ contribution in the projection coefficient qsWq of ≈ 0.08, bounding the physical maximum of the
optimization to qsWq = 0.92 without considering additional error in the other variables. These statisti-
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Figure 2. Real component of the fluctuating response state variables, q′ = [ρ′, u′x, u
′
r, u
′
θ, T
′], and pressure, p′,

at St = 0.05. The columns display SPOD, optimal eddy viscosity, and ReT = 3 × 104 modes from left to right
respectively. Contours are given by 0.5|| ·′ ||∞ of the SPOD mode, where ·′ is the fluctuating variable in question
(with || ·′ ||∞ values: [ρ′, u′x, u

′
r, u
′
θ, T
′, p′] = [2.8, 198.6, 46.0, 37.2, 1.2, 10.4] × 10−3), with red and blue as positive and

negative values respectively.

cal errors are linked to the weak low-rank behavior associated with Orr-type modes seen at low and high
frequencies and within the suboptimal modes when compared to the stronger, low-rank behavior associated
with KH-type modes at moderate frequencies (i.e. St = [0.3− 0.8]).21 This leads us to expect optimization
results of the Orr-type modes with slightly lower projection coefficient agreement due to SPOD statistical
limitations. Therefore, we proceed cognizant of the limitations for Orr-type mode alignment, and the op-
timization method’s potential for non-physical alignment with SPOD, but remain confident in the method
given the optimization did not align with the statistical discrepancies of u′θ in figure 2.

We also note that the pressure field, as a quantity of particular interest for jet noise, provides a rather
representative mode shape for each case. As such, we proceed by visualizing only the real fluctuating pressure
component for the remainder of the study, however the projection coefficients, |qsWq|, maintain and present
the full state results.

Figure 3 shows the pressure modes and reports the alignment coefficients at the lowest frequencies,
St = 0.05 and 0.2. The top row shows the dominant SPOD mode from the LES, the second row shows the
dominant resolvent mode with fixed ReT = 3 × 104, and the remaining rows show the 4 optimized eddy-
viscosity models. At low frequency, the resolvent analysis at ReT = 3×104 fails to capture the low frequency
mode shapes. The optimized models, by contrast, have much better alignment with SPOD, increasing the
projection coefficient by as much as 7-fold, and displaying a wavepacket structure consistent with the SPOD
mode.

As expected, the optimal eddy viscosity field reached the highest alignment between the methods. It
is followed by optimal constant eddy viscosity, the optimal TKE eddy-viscosity model, and optimal linear
damping. We can see that although the linear damping is able to increase the projection coefficient, the
performance is significantly inferior to the eddy-viscosity models, likely due to its monolithic damping effect
over all wavenumbers. With one exception (the TKE model at St = 0.05), all the eddy-viscosity models
perform similarly, reaching projection coefficients of about 70%.

At these low frequencies, St < 0.3, the non-optimized resolvent spectrum for a Mach 0.4 jet is dominated
by Orr-type modes,21 a viscous, non-modal instability mechanism that is sensitive to Reynolds number, with
rapidly increasing amplification as Reynolds number increases. The eddy viscosity greatly attenuates these
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Figure 3. Real component of the response pressure fluctuations for St = 0.05 and St = 0.2 in the left and right
columns respectively. Row 1 presents the optimal SPOD mode for which the optimization seeks to match.
The following rows present results for ReT = 3 × 104 and the optimal results for linear damping, constant
eddy-viscosity field, turbulent kinetic energy model, and the full eddy-viscosity field optimization.

modes in favor of a Kelvin-Helmholtz (KH) response that peaks further upstream, consistent with what is
observed in the SPOD.

Note that while we only plot the response pressure, we see similar trends and improvements in all flow
variables similar to figure 2.

Proceeding to higher frequencies, figure 4 displays the optimal fluctuating pressure modes for SPOD
and the five resolvent methods for St = 0.6 and 1. Projection coefficients are already quite high for these
frequencies, as has been previously noted,21 but are further increased with the eddy-viscosity models, reaching
an astonishing 96% for the optimal eddy viscosity. Here the differences in the mode shapes are subtle as the
modes are generally shortened from the baseline case to better match the SPOD at both frequencies. Like the
lower frequencies, the eddy-viscosity methods outperform the linear damping method as the eddy-viscosity
terms address the Reynolds stresses.

At these higher frequencies, the jet response is a clear Kelvin-Helmholtz wavepacket, a modal, inviscid
stability mechanism, and it is thus unsurprising that the results are relatively insensitive to the precise
eddy-viscosity model. On the other hand, it is gratifying that the TKE and constant eddy-viscosity models
perform almost as well as the optimized eddy-viscosity model.

For St = 1 the optimized projection coefficient are falling compared to the St = 0.6 case. This is again
due to the emergence of Orr-modes with similar energy as the KH modes. By performing SPOD in limited
domains near the nozzle exit, it becomes clear that the modal, low-rank KH response continues to much
higher frequencies in the near nozzle region,45 but when considering the global response, these are always
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Figure 4. Real component of the response pressure fluctuations for St = 0.6 and St = 1 in the left and right
columns respectively. Rows present the equivalent methods as described in figure 3.

Figure 5. Optimal alignments for all methods investigated including ReT = 3× 104.

.

inferior in energy to the Orr response being excited and peaking further downstream.
Performing the optimization across the frequency range St = 0.05−1 for all methods results in alignment
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Figure 6. The optimal parameters across St = [0.05− 1] for the optimal constant eddy-viscosity field (i.e. ReT )
and the optimal TKE eddy-viscosity model (i.e. c) in the left and right plots respectively.

coefficients displayed in figure 5. Throughout the frequency range considered, the alignments have generally
improved considerably from the baseline case. Although we cannot be sure we found a global maximum,
the optimal eddy-viscosity field provided the highest projection coefficients throughout the entire frequency
range. However, the other eddy-viscosity models produce alignments that are quite close to the optimal eddy-
viscosity field. The constant eddy-viscosity is nearly optimal at lower frequencies (Orr-type modes), whereas
the TKE model is more nearly optimal at higher ones. The linear damping model, while an improvement
over the baseline case, is generally inferior to the eddy-viscosity models, and is not considered further.

B. Optimal parameters

We now turn our attention to the optimal parameters identified from optimal alignment of the eddy-viscosity
models with SPOD.

The optimal parameters responsible for the increase in projection coefficients are shown in figure 6 for
the constant eddy viscosity and TKE eddy-viscosity model. For the constant eddy-viscosity field there are
three regions of interest from St = 0.05 − 0.3, St = 0.3 − 0.8 and St > 0.8. In the low frequency region,
the baseline jet response consists of Orr-type modes that have a strong Reynolds number dependence, and
relatively larger eddy viscosities are required to damp them. For St = 0.05 the ratio of molecular Reynolds
number to effective Reynolds number is Rej/ReT ≈ 13, 500, impacting the resolvent mode by a four order of
magnitude difference when compared to the molecular viscosity. The middle frequency regime is dominated
by the inviscid KH mechanism and Rej/ReT ≈ 450 is optimal, but recall from the optimization results
above that the projection coefficients are high even without the eddy viscosity. In the higher frequency
regime the response, in the baseline case, corresponds to a mix of KH and Orr-type waves, and the low-rank
nature begins to diminish in the SPOD spectrum. As frequency increases the dependency on inverse effective
Reynolds number begins to increase, similar to low frequencies, due to Orr-type modes and at the the highest
frequency of our study, St = 1, we have Rej/ReT ≈ 135.

Similar trends are observed for the optimal coefficient, c, for the TKE eddy-viscosity field plotted in
figure 6. For both the low frequency and high frequency regions the coefficient is somewhat sensitive to
frequency. However, over the KH dominated region the coefficient remains relatively constant. Although
it is unclear why the scaling trends change as such, the end result is a TKE coefficient, c, which varies
throughout St = 0.05− 1 by only one order of magnitude.

For the full field eddy-viscosity optimization, we first recall that its primary purpose is to determine what
may be an upper bound for how well any eddy-viscosity model could perform. Given that the alignments
between the resolvent and SPOD modes were not significantly higher for the optimized scheme than for the
modeled eddy-viscosity approaches (with optimal parameters), the detailed eddy-viscosity fields are of lesser
importance. Still, some aspects of the physics are apparent in the optimized fields, which are presented in
figure 7 for selected Strouhal numbers. From these fields there are three distinguishable forms the eddy-
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Figure 7. Optimal eddy-viscosity fields, µT , for various Strouhal numbers from low frequency to high frequency
proceeding left to right and top to bottom.

viscosity fields take. The first form is a downstream, off-centerline region of large eddy viscosity. In a sense,
the addition of eddy viscosity represents a damping of the response mode and this can be understood by
figure 3 where the resolvent mode computed via the optimal eddy-viscosity field is “pushed” upstream to
match the observed SPOD mode. This behavior is seen up until ∼ St = 0.25, for frequencies larger than
St ≥ 0.3 the field changes character further upstream and resides along the potential core. This is associated
with the change in optimal mechanisms from Orr to KH. Orr-type modes occur further downstream and
off-centerline, while KH modes are active along the shear layer.

One interesting note from the full optimization eddy-viscosity fields are their spatial structure and general
envelope. In sum these fields appear to construct an eddy-viscosity field similar to that of the TKE model.
For low frequency fields, higher eddy viscosity is seen above r/D = 0.5 and downstream relating to the portion
of the TKE model above r/D = 0.5 and moderate frequencies mirror the diagonal structure denoting the
location of the shear layer also observed for r/D < 0.5 in the TKE model. These insights begin to highlight
support for a TKE eddy-viscosity model.

C. Suboptimal modes

The optimization currently only aligns the principle SPOD and resolvent modes. However, suboptimal modes
are also of interest, particularly as they are known to be relevant for modeling coherence decay associated
with ‘jittering of wavepackets’ to produce sound.46 Although the suboptimals could in theory also be better
aligned through an optimal eddy viscosity, we are interested here in whether alignment with only the principle
modes substantially alters the alignment of suboptimal modes, i.e. whether it diagonalizes the forcing CSD
tensor. Using the optimal parameters for each method, the suboptimal modes are computed and shown in
figure 8 for modes 2 and 3 and figure 9 for modes 4 and 5.

Projection values are present for all comparisons and show significant improvement for the suboptimal
modes when compared to the ReT = 3 × 104 case which provides only 3% alignment for SPOD mode 2.
Not only are the mode shapes for the baseline case dissimilar, but the contour values of SPOD show the
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Figure 8. Suboptimal modes 2 and 3 at St = 0.6 in the left and right columns respectively for SPOD, ReT = 3×
104, constant eddy-viscosity field, turbulent kinetic energy model, and the full eddy-viscosity field optimization.

Figure 9. Suboptimal modes 4 and 5 at St = 0.6 in the left and right columns respectively for SPOD, ReT = 3×
104, constant eddy-viscosity field, turbulent kinetic energy model, and the full eddy-viscosity field optimization.

magnitudes of the ReT = 3 × 104 cases are drastically different, indicating that the distribution of energy
between variables in this case is poor. In contrast, each of the eddy-viscosity models show increased alignment
with the suboptimals. The greatest increase in alignment for suboptimal modes is via the optimized TKE

14 of 18

American Institute of Aeronautics and Astronautics



Figure 10. Projections of the first five SPOD modes into the first five resolvent modes determined for ReT =
3× 104 and the three eddy-viscosity models at St = 0.6.

eddy-viscosity model, projecting to 73% for the first SPOD suboptimal and 45% with the second suboptimal.
This observation provides significant support for the physical relevance of the TKE eddy-viscosity model.
For suboptimal modes 4 and 5 in figure 9 the projection coefficients begin to rapidly deteriorate. This is
attributable to the flattening of the SPOD spectrum and statistical limitations typically seen beyond the
first few modes.

Assessing the suboptimals returns us to the question of colored-forcing in turbulent flows. As already
discussed, the CSD tensor of the response may be related to CSD tensor of the forcing through the resolvent
analysis. However, the CSD tensor for the forcing is generally unknown. In this study we instead assume
the CSD tensor is white in space and attempt to adjust the resolvent operator such that white-noise forcing
suffices. To assess how well our optimization of the first SPOD mode performed with regards to diagonalizing
the forcing CSD, the projections of five SPOD modes are compared with the first five modes from each method
in figure 10.

We first notice that the baseline case with ReT = 3 × 104 provides essentially no alignment of the
suboptimal modes and thus does not diagonalize the coefficients. However, when considering each of the
eddy-viscosity models we see both increased alignments with the suboptimals and a trend towards the
diagonal. Here the TKE eddy-viscosity model is superior to even the optimal eddy viscosity, providing
further evidence for physical relevance to the TKE eddy-viscosity model.

D. Sensitivity of the TKE eddy-viscosity model

Considering the good performance of the TKE model demonstrated in the previous sections, we turn our
focus to how such a model should be tuned. As was shown in figure 6 the optimal TKE coefficient ranged
from c = 0.02−0.004, with a constant region at mid frequencies where c = 0.01. However, the fully optimized
eddy-viscosity field produced only marginally better alignment than the TKE model for most cases, and this
suggests that the results may not be very sensitive to the precise constant. In this section, we sweep over
frequencies but holding c constant at values c = [0.017, 0.0135, 0.01, 0.0065]. The resulting alignments are
plotted versus frequency in figure 11.

All of the constants chosen provide acceptable alignments across the middle range of frequencies where
the low-rank KH response is observed. Except for the outlier at St = 0.1, the constants c = 0.0065 and
0.01 are suboptimal by only about ∼ 10− 20%. Thus overall we find that the TKE eddy-viscosity model is
relatively insensitive to the scaling parameters. This suggests the structure of the TKE model is physically
relevant and its implementation in further resolvent jet models is fruitful for prediction.

IV. Conclusions

In this paper we test the extent to which eddy-viscosity models can be used to improve the alignment
between the observed large-scale structures (deduced by SPOD) and the optimal resolvent mode. We for-
mulated an optimization problem that allowed us to test different eddy-viscosity models and compare them
to an optimal eddy-viscosity field that seeks the best alignment possible of any model.
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Figure 11. Alignments across all Strouhal numbers for various TKE eddy-viscosity model coefficients, c =
[1.7, 1.35, 1, 0.65]× 10−2, and compared with the optimal TKE coefficient at each frequency.

Regardless of the specific model, we obtained substantial improvements in alignment compared to a
baseline case that used a constant eddy viscosity corresponding to a value of ReT = 30, 000. Across the
frequencies considered, the addition of eddy viscosity served to highlight the role different mechanisms at play
for the m = 0 mode we considered, namely, Orr-type and KH-type instabilities. The Orr-type mechanism
is sensitive to the eddy-viscosity fields, whether at low or high frequencies as the optimal mode or in the
suboptimal modes. The KH-type mode however is relatively insensitive to the eddy-viscosity field, a result
expected from the inviscid nature of the inflectional KH instability.

Suboptimal modes were also assessed for the optimal parameters and significant improvements were
found. All eddy-viscosity models emitted suboptimal modes that were more closely aligned with suboptimal
SPOD modes than in the baseline case. In particular, the TKE model presented the greatest diagonalization
of the forcing CSD, providing evidence for the model’s physical relevance.

To assess the sensitivity to the optimal TKE coefficients, four constant values were chosen and their
ability to model the SPOD modes throughout the frequency range was shown. All constant coefficients
provided reasonable agreement across the entire frequency range, giving only marginal losses in projections
when compared to the optimal TKE coefficient projections. Two constants of superior performance were
c = 0.0065, 0.01. Considering the relative simplicity and insensitivity of the TKE model, we suggest its
implementation in future resolvent jet models for increased model accuracy.

Future work looks to better assess the role of SPOD statistical errors on the optimization and extensions
of the analysis to the remainder of the parameter space in jets, m > 0, various Mach numbers, and towards
an optimization specifically designed for far-field noise. Additionally, we wish to investigate and assess the
applicability of modern eddy-viscosity models used throughout the literature.
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