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Four different applications of spectral proper orthogonal decomposition (SPOD) are 
demonstrated on large-eddy simulation data of a turbulent jet. These are: low-rank 
reconstruction, denoising, frequency–time analysis and prewhitening. We demonstrate 
SPOD-based flow-field reconstruction using direct inversion of the SPOD algorithm 
(frequency-domain approach) and propose an alternative approach based on projection 
of the time series data onto the modes (time-domain approach). We further present 
a SPOD-based denoising strategy that is based on hard thresholding of the SPOD 
eigenvalues. The proposed strategy achieves significant noise reduction while facilitating 
drastic data compression. In contrast to standard methods of frequency–time analysis 
such as wavelet transform, a proposed SPOD-based approach yields a spectrogram 
that characterises the temporal evolution of spatially coherent flow structures. 
A convolution-based strategy is proposed to compute the time-continuous expansion 
coefficients. When applied to the turbulent jet data, SPOD-based frequency–time analysis 
reveals that the intermittent occurrence of large-scale coherent structures is directly 
associated with high-energy events. This work suggests that the time-domain approach is 
preferable for low-rank reconstruction of individual snapshots, and the frequency-domain 
approach for denoising and frequency–time analysis.

1. Introduction

The curse of dimensionality (see e.g. Meneveau, Lund & Moin 1992) in the analysis of
large turbulent flow data has led to the development of a number of modal decomposition
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techniques (Holmes et al. 2012). The primary utilities of these techniques are to 
extract the essential flow features and to provide a low-dimensional representation of 
the data. Most of these techniques seek modes that lie in the span of the snapshots 
that constitute the time-resolved data, and adhere to certain mathematical properties 
that define the decomposition. Arguably the most widely used technique is proper 
orthogonal decomposition (POD), introduced by Lumley (1967, 1970). A specific version 
of POD, the computationally inexpensive method of snapshots (Sirovich 1987; Aubry 
1991), decomposes the flow field into spatial modes and temporal coefficients. Its modes 
optimally represent the data in terms of its variance, or energy, and are coherent in space 
and at zero time lag. Another popular method is the dynamic mode decomposition (DMD; 
Schmid 2010), which is rooted in Koopman theory (Rowley et al. 2009) and assumes 
an evolution operator that maps the flow field from one snapshot to its next. The DMD 
modes are characterised by a single frequency and linear amplification rate. Refer to the 
reviews by Taira et al. (2017) and Rowley  & Dawson (2017) for summaries of various 
modal techniques.

Spectral proper orthogonal decomposition (SPOD) is the frequency-domain variant 
of POD and computes modes as estimates of the eigenvectors of the cross-spectral 
density (CSD) matrix. At each frequency, SPOD yields a set of orthogonal modes, 
ranked by energy. The mathematical framework underlying SPOD was first outlined by 
Lumley (1967, 1970). Early implementations of SPOD include Glauser, Leib & George 
(1987), Glauser & George (1992), Delville (1994), Arndt, Long & Glauser (1997), Picard 
& Delville (2000), Citriniti & George (2000) and Gordeyev & Thomas (2000). For 
statistically stationary flows, Towne, Schmidt & Colonius (2018) have demonstrated that 
SPOD combines the advantages of POD, namely optimality and orthogonality, and DMD, 
namely temporal monochromaticity. In this work, we demonstrate how these properties 
can be leveraged for different applications.

In the past, SPOD has been used to analyse a number of turbulent flows, including 
jets (Arndt et al. 1997; Gamard et al. 2002; Gamard, Jung & George 2004; Gordeyev 
& Thomas 2000, 2002; Jung, Gamard & George 2004; Iqbal & Thomas 2007; Tinney, 
Glauser & Ukeiley 2008a; Tinney, Ukeiley & Glauser 2008b; Schmidt et al. 2018; 
Pickering et al. 2019; Nekkanti & Schmidt 2021), the wake behind a disk (Johansson, 
George & Woodward 2002; Johansson & George 2006a,b; Tutkun, Johansson & George 
2008; Ghate, Towne & Lele 2020; Nidhan et al. 2020), pipe flows (Hellström & Smits 
2014; Hellström, Ganapathisubramani & Smits 2015; Hellström, Marusic & Smits 2016; 
Hellström & Smits 2017) and channel flows (Muralidhar et al. 2019). Several studies have 
shown that a significant amount of energy is captured by the first few modes at each 
frequency. For jets and disk wakes, Glauser et al. (1987), Citriniti & George (2000), Jung 
et al. (2004), Johansson & George (2006b) and Tinney et al. (2008b) have shown that the 
leading mode and first three modes capture at least 40 % and 80 % of the total energy, 
respectively. The above studies have in common that SPOD modes and eigenvalues are 
interpreted directly as physical structures and energies. The applications shown in this 
work, however, require a full or partial reconstruction of the data in the time domain 
(often after a manipulation of the expansion coefficients in the frequency domain). Partial 
reconstructions of the flow field from SPOD were previously shown by Citriniti & George 
(2000), Tinney et al. (2008b) and, more recently, Ghate et al. (2020). We demonstrate 
low-rank reconstruction using two approaches. One is by inverting the SPOD algorithm, 
which was previously employed by Citriniti & George (2000) in a similar manner, for 
which we present an alternative means of computation based on convolution in the time 
domain. The other is by taking an oblique projection of the data on the SPOD modes. The 
advantages and disadvantages of both approaches for different applications are discussed.
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The first of these applications is denoising. Most experimental flow-field data exhibit 
measurement noise that hampers physical analysis. The computation of spatial derivatives 
required for quantities such as the vorticity or strain rate, for example, leads to particularly 
large errors. Another difficulty is that physically relevant small-scale structures may be 
concealed by noise. The most common experimental technique for multi-dimensional 
flow-field measurement is particle image velocimetry (PIV). Common techniques to 
remove noise from PIV data include spatial filtering (Discetti, Natale & Astarita 2013), 
temporal filtering based on Fourier truncation, and POD-based techniques (Raiola, 
Discetti & Ianiro 2015; Brindise & Vlachos 2017). Spatial filters are typically based on 
Gaussian smoothing (Discetti et al. 2013). Different temporal filters such as median filters 
(Son & Kihm 2001), Hampel filters (Fore et al. 2005), Wiener filters (Vétel, Garon & 
Pelletier 2011) and band-pass filters (Sciacchitano & Scarano 2014) have been used for 
denoising PIV data. A comparison of different spatial and temporal filters is presented, 
for example, in Vétel et al. (2011). As an alternative to these standard techniques, 
POD reconstruction has been used as a means of denoising through mode truncation. 
Low-dimensional reconstructions from standard POD have been applied for this purpose to 
flow past a backward-facing step (Kostas, Soria & Chong 2005), arterial flows (Charonko 
et al. 2010; Brindise et al. 2017), turbulent wakes (Raiola et al. 2015) and vortex rings 
(Stewart & Vlachos 2012; Brindise & Vlachos 2017). In this contribution, we demonstrate 
the use of SPOD for denoising on surrogate data obtained by imposing high levels of 
additive Gaussian noise on simulation data. We demonstrate that SPOD-based denoising 
combines certain advantages of temporal filters and standard POD-based denoising.

Owing to their chaotic nature, turbulent flows are characterised by high levels of 
intermittency. A common tool for the analysis of intermittent behaviour is frequency–time 
analysis, that is, the representation of the frequency content of a time signal as a function 
of time. This representation is particularly well suited in identifying events such as 
short-time interval of high or low energy, and in identifying their wave characteristics, 
i.e. frequencies or wavenumbers. Frequency–time analysis can be performed using several 
different signal-processing tools such as wavelet transforms (WT) (Farge 1992), the 
short-time Fourier transform (STFT) (Cohen 1995), the S-transform (Stockwell, Mansinha 
& Lowe  1996), the Hilbert–Huang transform (Huang et al. 1998) and the Wigner–Ville 
distribution (Boashash 1988). We note that STFT and WT are arguably the most widely 
used techniques in fluid mechanics. Frequency–time diagrams obtained from these 
methods are generally referred to as spectrograms, or as scalograms for WT. The STFT 
performs Fourier transforms on consecutive short segments of a time signal. It has 
been used, for example, in the analysis of blood flows (Izatt et al. 1997; Zhang et al. 
2003), magnetohydrodynamics (Bale et al. 2005), aerodynamics (Samimy et al. 2007) 
and physical oceanography (Brown et al. 1989). The WT is based on the convolution of 
the time signal with a compact waveform, the so-called mother wavelet, that is scaled to 
represent different frequencies. Typical applications of the WT are found in atmospheric 
science (Gu & Philander 1995), oceanography (Meyers, Kelly & O’Brien 1993) and, 
most importantly for the present work, turbulence research (Farge 1992). In the latter 
context, they have been used to extract coherent structures (Farge, Schneider & Kevlahan 
1999; Farge, Pellegrino & Schneider 2001), and to analyse their intermittency (Camussi 
& Guj 1997; Onorato, Camussi & Iuso 2000; Camussi 2002). All methods mentioned 
above are signal-processing techniques that are applied to one-dimensional data. Here, we 
expand on the ideas of Schmidt, Colonius & Brés (2017a) and Towne & Liu (2019), and 
analyse the intermittency of the entire flow field. The underlying idea is that the global 
dynamics of the entire flow field can be described in terms of a limited set of statistically
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prevalent, most energetic coherent flow structures. For statistically stationary flows, such 
structures are distilled by SPOD, and their temporal dynamics is described by the SPOD 
expansion coefficients. Since SPOD is a frequency-domain technique, this idea leverages 
the fact that each SPOD mode is associated with a single frequency. Based on the two 
reconstruction techniques mentioned above, we apply, analyse and compare two variants 
of SPOD-based frequency–time analysis. The frequency-domain approach relies on direct 
inversion of the SPOD algorithm and was previously demonstrated by Towne & Liu (2019). 
This approach, however, becomes computationally intractable even for moderately sized, 
two-dimensional data. We show that this problem can be avoided by the convolution-based 
approach introduced herein.

Prewhitening is a post-processing technique used for trend detection that is commonly 
used in the atmospheric and geophysical sciences. It was first proposed by Von Storch 
(1999). Prewhitening was used, for example, for the detection of trends in temperature and 
precipitation data (Zhang et al. 2001), rainfall (Lacombe, McCartney & Forkuor 2012), 
teleconnections (Rodionov 2006) and hydrological flows (Khaliq et al. 2009; Serinaldi & 
Kilsby 2015). Technically, prewhitening is achieved by a filtering operation that results in 
a flat power spectrum to remove serial correlations. We show two different SPOD-based 
ways to achieve this goal in the frequency domain.

The remainder of this paper is organised as follows. Section 2 describes the two 
techniques for SPOD-based flow-field reconstruction. In § 3, we demonstrate these 
techniques on the numerical data of a turbulent jet. The four different applications, 
SPOD-based low-dimensional reconstruction, denoising, frequency–time analysis and 
prewhitening, are demonstrated in § 3.1, § 3.2, § 3.3 and § 3.4, respectively. Section 4 
summarises this work.

2. Methodology

2.1. Spectral proper orthogonal decomposition
In the following, we provide an outline of a specific procedure of computing SPOD based 
on Welch’s method (Welch 1967) and emphasise aspects that are important in the context 
of data reconstruction. Refer to the work of Towne et al. (2018) for details of the derivation 
and mathematical properties, and Schmidt & Colonius (2020) for a practical introduction 
to the method.

Given a fluctuating flow field qi = q(ti), where i = 1, . . . ,  nt, which is obtained by 
subtracting the temporal mean q̄ from each snapshot of the data, we start by constructing 
a snapshot matrix

Q = [
q1, q2, . . . , qnt

]
. (2.1)

Note that multi-dimensional data are cast into the form of a vector qi of length
n, corresponding to the number of variables times the number of grid points. The
instantaneous energy of each time instant, or snapshot, is expressed in terms of a spatial
inner product

‖q‖2
x = 〈q, q〉x =

∫
Ω

q∗(x, t)W (x)q(x, t) dx, (2.2)

where W is a positive-definite Hermitian matrix that accounts for the component-wise 
weights, Ω the spatial domain of interest and (.)∗ denotes the complex conjugate. The 
common form of space-only POD is obtained as the eigendecomposition of QQ∗W and 
yields modes that are optimal in terms of (2.2). The SPOD, however, specialises POD
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for statistically stationary processes and seeks modes that are optimal in terms of the 
space–time inner product

‖q‖2
x,t = 〈q, q〉x,t =

∫ ∞

−∞

∫
Ω

q∗(x, t)W (x)q(x, t) dx dt. (2.3)

For statistically stationary data, it is natural to proceed in the frequency domain and solve
the POD eigenvalue problem for the Fourier transformed two-point space–time correlation
matrix, that is, the CSD matrix. To estimate the CSD, the data are segmented into nblk
overlapping blocks with nfft snapshots in each of them, as

Q(k) =
[
q(k)1 , q(k)2 , . . . , q(k)nfft

]
. (2.4)

If the blocks overlap by novlp snapshots, the j-th column in the k-th block is given by

q(k)j = qj+(k−1)(nfft−novlp)+1. (2.5)

Each block is considered as a statistically independent realisation of the flow under the
ergodic hypothesis. The motive behind the segmentation of data is to increase the number
of ensemble members. In practice, a windowing function is applied to each block to reduce
spectral leakage. In this study, we use the symmetric Hamming window

w(i + 1) = 0.54 − 0.46 cos
(

2πi
nfft − 1

)
for i = 0, 1, . . . , nfft − 1. (2.6)

Following best practices established by Harris (1978), we only apply windowing for
overlapping blocks to avoid excessive loss of information at the boundaries, i.e. if
novlp /= 0. Subsequently, the weighted temporal discrete Fourier transform,

q̂(k)j = F
{

w( j)q(k)j

}
, (2.7)

is performed on each windowed block to obtain the Fourier-transformed data matrix

Q̂(k) =
[
q̂(k)1 , q̂(k)2 , . . . , q̂(k)nfft

]
, (2.8)

where q̂(k)i denotes the k-th Fourier realisation at the i-th discrete frequency. Next, we
reorganise the data by frequency. The matrix containing all realisations of the Fourier
transform at the l-th frequency reads

Q̂l =
[
q̂(1)l , q̂(2)l , . . . , q̂(nblk)

l

]
. (2.9)

From this form, the SPOD modes, Φ, and associated energies, λ, can be computed as the
eigenvectors and eigenvalues of the CSD matrix Sl = Q̂lQ̂∗

l . In practice, the number of
spatial degrees of freedom, n, is often much larger than number of realisations. In this
case, it is more economical to solve the analogous eigenvalue problem

1
nblk

Q̂∗
l W Q̂lΨ l = Ψ lΛl (2.10)

for the coefficients ψ that expand the SPOD modes in terms of the Fourier realisations.
In terms of the column matrix Ψ l = [ψ(1)l , ψ

(2)
l , . . . , ψ

(nblk)
l ], the SPOD modes at the l-th
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frequency are recovered as

Φ l = 1√
nblk

Q̂lΨ lΛ
−1/2
l . (2.11)

The matrices Λl = diag(λ(1)l , λ
(2)
l , . . . , λ

(nblk)
l ), where by convention λ(1)l ≥ λ(2)l ≥ · · · ≥

λ
(nblk)
l , and Φ l = [φ(1)l ,φ

(2)
l , . . . ,φ

(nblk)
l ] contain the SPOD energies and modes,

respectively. By construction, the SPOD modes are orthogonal in the space–time inner
product (2.3). At any given frequency, the modes are also orthogonal in the spatial inner
product (2.2).

2.2. Data reconstruction
In § 2.2.1, we show how the data can be reconstructed in the frequency domain, that is, the
inversion of the SPOD. An alternative approach based on (oblique) projection in the time
domain is presented in § 2.2.2. Whether one approach or the other is preferred depends on
the specific application. Detailed discussions for each application under consideration in
this work can be found in § 3. We will use the term ‘frequency domain’ if the expansion
coefficients are computed using the inversion of the SPOD problem, (2.13), and ‘time
domain’ if oblique projection, (2.19), is used.

2.2.1. Reconstruction in the frequency domain
The common factor of the different applications of SPOD considered in this study is that
they require truncation or re-weighting of the SPOD basis. In practice, this is achieved by
modifying the expansion coefficients. The original realisations of the Fourier transform at
each frequency can be reconstructed as

Q̂l = Φ lAl, (2.12)

where Al is the matrix of expansion coefficients:

Al = √
nblkΛ

1/2
l Ψ ∗

l = Φ∗
l W Q̂l. (2.13)

Equation (2.13) shows that the expansion coefficients can either be saved during the
computation of SPOD or be recovered later by projecting the Fourier realisations onto
the modes. In the following, we omit the frequency index l with the understanding that the
SPOD eigenvalue problem is solved at each frequency separately. From (2.12), it can be
inferred that each column of the matrix

A =

⎡
⎢⎢⎣

a11 a12 · · · a1nblk
a21 a22 · · · a2nblk
...

...
. . .

...

anblk1 anblk2 · · · anblknblk

⎤
⎥⎥⎦ , (2.14)

l

contains the expansion coefficients that allow for the reconstruction of a specific 
Fourier realisation from the SPOD modes. Vice versa, the coefficients contained in 
each row of A can be used to expand a specific SPOD mode in terms of the Fourier
realisations. This can most easily be seen by rewriting (2.12) as Φ l = (1/nblk)Q̂ lA∗Λl

−1.
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Figure 1. Schematic representation of overlapping blocks, Hamming window and the SPOD parameters such
as nt, nfft, novlp and nblk. The left and right blocks are denoted using blue and red lines, respectively. The vertical
line corresponds to the snapshot number 210, and the blue and red circles indicate the corresponding value of
the window function.

The Fourier-transformed data of the k-th block can be reconstructed as

Q̂(k) =
⎡
⎣
(∑

i

aikφ
(i)

)
l=1

,

(∑
i

aikφ
(i)

)
l=2

, . . . ,

(∑
i

aikφ
(i)

)
l=nfft

⎤
⎦. (2.15)

The original data in the k-th blocks Q(k) can now be recovered using the inverse
(weighted) Fourier transform

q(k)j = 1
w( j)

F−1
{

q̂(k)j

}
. (2.16)

Reconstructing the time series from the reconstructed data segments concludes the
inversion of the SPOD.

A schematic of the windowing and blocking strategy is shown in figure 1. The use of
overlapping blocks leads to an ambiguity in the reconstruction as the i-th snapshot can
either be obtained from the k-th block as q(k)j , or from the (k + 1)-th block as q(k+1)

j+novlp−nfft
.

Different possibilities to remove this ambiguity are described in Appendix A. Based
on this discussion, snapshots are reconstructed as averages of two reconstructions from
overlapping blocks, weighted by the relative value of their windowing function. Partial
reconstructions in the frequency domain are readily achieved by zeroing the expansion
coefficients of specific modes prior to applying the inverse Fourier transform.

2.2.2. Reconstruction in the time domain
As an alternative to the reconstruction in the frequency domain, we present in the following
a projection-based approach in the time domain. This approach is computationally
efficient, and has the advantage that it can be applied to new data that was not used to
compute SPOD and to individual snapshots. However, the time-domain reconstruction
does not leverage the orthogonality of the SPOD modes in the space–time inner product.
Instead, it is based on an oblique projection of the data onto the modal basis. We start by
representing the data as a linear combination of the SPOD modes as

Q ≈ Φ̃Ã. (2.17)

The matrix Φ̃ contains the basis of SPOD modes at all frequencies. Arranging the basis
vectors by frequency first, we write

Φ̃ =
[
φ
(1)
1 ,φ

(2)
1 , . . . ,φ

(nblk)
1 ,φ

(1)
2 ,φ

(2)
2 , . . . ,φ

(nblk)
2 , . . . ,φ(1)nfft

,φ(2)nfft
, . . . ,φ(nblk)

nfft

]
. (2.18)
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ΦAssuming that ˜ has full column rank, the matrix of expansion coefficient is obtained 
from the weighted oblique projection

Ã =
(
Φ̃∗W Φ̃

)−1
Φ̃∗W Q. (2.19)

The oblique projection is required as SPOD modes at different frequencies are not
orthogonal in the purely spatial inner product, 〈·, ·〉x, defined in (2.2). We furthermore use
a weighted oblique projection based on the weight matrix W to guarantee compatibility
with this inner product. Using the oblique projection, a single snapshot q = q(x, t) is
represented in the SPOD basis as

q̃ = Φ̃
(
Φ̃∗W Φ̃

)−1
Φ̃∗W q, (2.20)

and the entire data are recovered as

Q̃ = Φ̃Ã. (2.21)

In the case where Φ̃ is rank-deficient or ill-conditioned, Φ̃∗W Φ̃ is not invertible. For a
general rank-r matrix, we perform the symmetric eigenvalue decomposition

Φ̃∗W Φ̃ = UDU∗, with U = [U1 U2] , D =
[

D1 0
0 0

]
, (2.22)

where D1 = diag(d1, d2, . . . , dr) with d1 ≥ d2 ≥ · · · ≥ dr > 0 is the diagonal matrix of
(numerically) non-zero eigenvalues and U1 is the corresponding matrix of orthonormal
eigenvectors. In some applications, we desire a more aggressive truncation to rank k < r.
For full-rank reconstructions, we use a truncation threshold of dk/d1 = 10−6 in this work.
Denoted by

Ã{k} = U{k}D−1
{k}U∗

{k}Φ̃
∗W Q, (2.23)

is the rank-k approximation of Ã, where D{k} = diag(d1, d2, . . . , dk) and U{k} =
[u1, u2, . . . , uk]. In the truncated basis, U{k}D−1

{k}U∗
{k} approximates

(
Φ̃∗W Φ̃

)−1
. In the

following, we demonstrate how the above and other truncation and partial reconstruction
strategies can be used to achieve a number of objectives in the processing of flow data.

3. Applications of SPOD: low-rank reconstruction, denoising, frequency–time
analysis and prewhitening

In this section, four different uses of SPOD-based applications are introduced and 
demonstrated for the example of a turbulent jet. The theoretical background of each 
application is presented in the context of the jet. In particular, low-dimensional 
reconstruction is discussed in § 3.1, denoising in § 3.2, frequency–time analysis in § 3.3 
and prewhitening in § 3.4.

We consider the large-eddy simulation (LES) data of an isothermal subsonic turbulent 
jet, the Reynolds number, Mach number and temperature ratio are defined as Re=ρjUjD/
μj = 0.45 × 106, Mj = Uj/cj = 0.4 and Tj/T = 1.0, respectively, where ρ is the density, U 
velocity, D nozzle diameter, μ dynamic

∞ 
viscosity, c speed of sound and T temperature. The

subscripts j and ∞ refer to the jet inlet and free-stream conditions, respectively. We use 
the LES data computed by Brès & Lele (2019). The simulation
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was performed using the compressible flow solver ‘Charles’ (Brès et al. 2017) on an  
unstructured grid using a finite-volume method. The reader is referred to Brès et al.
(2018); Brès & Lele (2019) for further details on the numerical method. The LES database 
consists of 10 000 snapshots sampled at an interval of �tc∞/D = 0.2 acoustic time units. 
Data interpolated on a cylindrical grid spanning x, r ∈ [0, 30] × [0, 6] was used in this 
analysis. The flow is non-dimensionalised by the nozzle exit values, namely velocity by
Uj, pressure by ρjUj

2, length by the nozzle diameter D and time by D/Uj. Frequencies are 
reported in terms of the Strouhal number St = fD/Uj. For simplicity, and without loss of 
generality, we perform our analysis only on the pressure field in what follows. Refer to 
Freund & Colonius (2009) for analysis on different energy norms and POD modes of a jet. 
We further exploit the rotational symmetry of the jet and consider individual azimuthal 
Fourier components. The helical (m = 1) component provides an example of complex 
data.

To determine the spectral estimation parameters for the SPOD, we follow the guidelines 
provided in Schmidt & Colonius (2020) and Schmidt et al. (2018), which, in turn, follow 
standard practice in spectral estimation. The SPOD is computed for blocks containing 
nfft = 256 snapshots with 50 % overlap, resulting in a total number of nblk = 77 blocks. 
A 50 % overlap is used to minimise the variance of the spectral estimate (Welch 1967).

Since SPOD yields one set of eigenpairs per frequency, we may investigate 
the contributions of different frequencies independently. The SPOD eigenvalues are 
represented in the form of a spectrum, reminiscent of a power spectrum, in figure 2(a). 
Grey lines of decreasing intensity connect eigenvalues of constant mode number and 
decreasing mode energy. The first, most energetic mode is shown in magenta. The 
red line represents the sum of all eigenvalues and corresponds to the power spectral 
density (PSD) integrated over the physical domain. This line of the integral total energy 
can be compared with truncated sums of eigenvalues, that is, the energy contained in 
reconstructions of different ranks. As the eigenvalues are sorted by energy, the lines 
corresponding to the truncated sums of the leading 3 and 10 eigenvalues fall between 
the leading-eigenvalue spectrum and the total energy curve. Figure 2(b) shows  the  
normalised cumulative energy content, independent of frequency. The first and the leading 
10 modes contain 30 % and 80 % of the total energy, respectively. Figure 2(c) shows  
the percentage of energy accounted for by each mode as a function of frequency. At 
low frequencies, the first few modes contain a high percentage of energy, whereas the 
energy is more dispersed at higher frequencies. The solid and dashed white lines indicate 
the number of modes required to retain 50 % and 90 % of the total energy at each 
frequency.

The first and second modes at two representative frequencies are shown in figure 3. 
The frequency St = 0.5 corresponds to the maximum difference between first and second 
eigenvalues. The leading mode at this frequency shows a Kelvin–Helmholtz (KH) 
wavepacket (Suzuki & Colonius 2006; Gudmundsson & Colonius 2011; Schmidt et al. 
2018) in the shear layer of the jet. A similar, but a more compact wavepacket structure 
is observed at St = 1.0. The suboptimal mode at both frequencies exhibit a multi-lobed 
wavepacket structure, whose amplitude peaks near the end of the potential core at x ≈ 6. 
The reader is referred to Schmidt et al. (2018) and Tissot et al. (2017) for a physical 
discussion of this observation and the link to non-modal instability. In the present context, 
our preliminary interest is in the desirable mathematical property of SPOD that guarantees 
that the modes optimally represent the turbulent flow field in terms of the space–time inner 
product, (2.3). In the following, different uses of low-dimensional reconstructions that use 
SPOD modes as basis vectors are introduced and discussed.
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and the suboptimal modes are shown in (b,d). (a) SPOD mode 1, St = 0.50, (b) SPOD mode 2, St = 0.50, (c) 
SPOD mode 1, St = 1.00 and (d) SPOD mode 2, St = 1.00.

3.1. Low-dimensional flow-field reconstruction
Since SPOD seeks an optimal series expansion for each frequency, the choice of what 
eigenpairs to include in a low-dimensional reconstruction is not obvious. Here we first 
discuss the most elementary way of truncation based on the frequency-wise optimality 
property, that is, a certain number of modes is retained at each frequency. We refer 
to this as a nmodes × nfreq-mode reconstruction, where nmodes is the number of modes 
retained at each frequency, and nfreq = nfft/2 + 1 is the number of positive frequencies,
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Figure 4. Low-dimensional reconstruction of the jet data: frequency-domain reconstruction (a,b), and
time-domain reconstruction (c,d) in terms of the space–time norm (a,c) and the spatial norm (b,d). The
original data (blue lines), shown for reference, are compared with the full reconstructions using all modes,
and reconstructions using 10 × 129, 3 × 129 and 1 × 129 modes. Summed SPOD mode energies are shown as
dashed lines. Vertical dotted blue and red lines in (b,d) indicate the left and right blocks in the reconstruction
(see figure 1).

including zero. If all modes are linearly independent, then the overall rank of the
reconstructions is given by the total number of basis vectors, nmodesnfreq.

Following the discussion in § 2, we present two means of obtaining an SPOD-based
low-dimensional reconstruction:

(i) in the frequency domain (see § 2.2.1) using (2.16); and
(ii) in the time domain (see § 2.2.2) using (2.20).

The frequency-domain approach directly follows from the mathematical definition
of SPOD, and was previously used by Citriniti & George (2000), Jung et al. (2004),
Johansson & George (2006b) and Tinney et al. (2008a). The time-domain approach can
be viewed as the most general approach that can be applied to any given modal basis. It is
not specific to SPOD, but commonly used for low-order modelling.

In the following, we first compare different low-dimensional reconstructions in terms
of their block-wise and snapshot-wise energy in figure 4. It follows from (2.3), that the
energy of a single block is

‖q‖2
x,t = 〈q, q〉x,t =

∫
�T

∫
Ω

q∗(x′, t)W (x′)q(x′, t) dx′ dt, (3.1)
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Figure 5. Low dimensional reconstruction in the frequency-domain with truncation correction: (a) space–time 
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truncated modes. The correction is facilitated by adding the energies of the truncated modes (given by their 
SPOD eigenvalues).

where �T = [t1 (k 1)(nfft novlp), tnfft (k 1)(nfft novlp)] is the time interval of the k-th block. The 
spatial norm

+
( 

−
2.2) 

−
measures the

+
ener

− 
gy p

−
resent in each snapshot. Both the block-wise and snapshot-wise pressure norms are computed for both reconstruction approaches. The 

evolution of the space–time norm is shown for the entire database in figure 4(a,c). For the 
spatial norm, we focus on the first 768 snapshots in figure 4(b,d). This segment 
corresponds to five blocks and exhibits dynamics that is representative of the rest of the 
data.

Low-dimensional reconstructions using 1 × 129, 3 × 129, 10 × 129 modes and the 
reconstruction using all modes are presented in figure 4. The dimension of the modal bases 
directly reflects their ability to capture the pressure norms of the data. The full-
dimensional reconstructions in the frequency and time domain recover the data 
completely. Notably, the dynamics in space–time norm is accurately captured, even by the 
1 × 129-mode reconstruction. For a fixed number of modes, the time domain approach 
captures more energy and provides a better approximation of the data than the frequency-
domain approach. Take as an example the 10 × 129 basis: the time-domain reconstruction 
accurately approximates for the full data (figure 4c,d), which is notably underpredicted by 
frequency-domain reconstruction (figure 4a,b). This difference can be understood by 
considering the SPOD energy content of the reconstruction. The dashed lines in figure 
4(a,b) denote this energy, which is given by the sum of the first nmodes eigenvalues over all 
frequencies. As expected, the space–time and spatial norm of the different reconstructions 
fluctuate about the sum of the eigenvalues. Higher energies are obtained by the time-
domain reconstruction in figure 4(c,d) as the modal expansion coefficients obtained via 
oblique projection are not bound to specific frequencies. In what follows, we will see 
again and again that this flexibility of the expansion coefficients of the time-domain 
approach leads to an overall better reconstruction. This additional degree of freedom can 
be leveraged to obtain an accurate reconstruction of the flow dynamics. It is, in fact, the 
optimality property of the oblique projection, (2.20), that guarantees that the time-domain 
approach yields the best possible approximation in a least-square sense. For example, the 1 
× 129 time-domain reconstruction seen in figure 4(d) is sufficient to capture the dynamics 
of the original data accurately. From figure 4(b), it can be seen that the frequency-domain 
reconstruction significantly overpredicts the pressure norm during the first 32 snapshots. 
This effect only occurs for the two outermost blocks, which do
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Figure 6. Instantaneous pressure field: (a) original flow field is shown; (b,d, f ,h) reconstructions in the
frequency domain; (c,e,g,i) reconstructions in the time domain. Flow fields reconstructed using 1 × 129 modes,
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not posses neighbouring blocks in one direction. In Appendix A (figure 20), we show by
comparison with a rectangular window that this error is a result of the Hamming window.
The presence of the windowing effect in the first and last blocks is equally reflected in the
space–time norm, see figure 4(a).

Figure 5 demonstrates that the frequency-domain approach accurately recovers the mode
energies given by the SPOD eigenvalues. By adding the residual energy contained in
the truncated eigenvalues, both the space–time norm (figure 5a) and the spatial norm
(figure 5b) can be collapsed to the total energy. The remaining differences are largely
due to the windowing effect.

Figure 6 compares a single time instant of the original data in (a) with reconstructions
of increasing fidelity in the frequency (left) and the time domain (right). Both the
1 × 129-mode reconstructions shown in figure 6(b,c) capture the dominant wavepackets.
However, the frequency-domain reconstruction lacks the detail of the time-domain
reconstruction. The higher accuracy of the time-domain reconstruction can be explained
by its less stringent nature. As the leading SPOD modes often represent a spatially
highly confined structure, other structures associated with the same frequency cannot
be represented by the frequency-domain reconstruction. The KH-type wavepacket seen
in figure 3(c) is a good example of such a confined structure. This difference between
the approaches also explains the better reconstruction of the integral energy in the
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time domain, as previously observed in figure 4. The higher-dimensional versions for 
both approaches shown in figure 6(d–g) yield increasingly more detailed and accurate 
reconstructions. Both approaches yield reconstructions that are indistinguishable from the 
original data when all modes are used (see figure 6h,i).

We infer from figures 4–6 that reconstruction in the time domain provides a better 
estimate of the flow field than the frequency-domain version. To understand this 
observation, figure 7 reports the SPOD eigenspectra of the 1 × 129-mode reconstructions 
and compares them to those of the full data. Only the leading three eigenvalues are shown 
for clarity. The leading eigenvalue of the frequency-domain reconstruction in figure 7(a) 
approximately follows the full data with some discrepancies at lower frequencies. No 
such discrepancies are observed for the time-domain reconstruction in figure 7(b); in fact, 
the leading eigenvalue spectra are indistinguishable. Contrast this observation with the 
expectation that a 1 × nfreq frequency-domain reconstruction should exactly reproduce
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the leading-mode eigenspectrum, and that all higher-eigenvalue spectra are expected to
be zero. In the context of figure 21 in Appendix A, we show that this is an effect of
windowing that is not observed when using a rectangular window. The time-domain
reconstruction, on the other hand, accurately approximates the first, and, to some degree,
the leading suboptimal eigenvalue spectra. This again demonstrates the higher accuracy of
the time-domain reconstruction that results from the higher flexibility of the expansion.

To quantify the accuracy of the two approaches, figure 8 compares their 2-norm errors as
a function of the number of basis vectors (modes). For both the methods, the error reduces
significantly as the number of modes retained per frequency increases from one to ten. For
a fixed number of modes, the time-domain reconstruction is consistently more accurate.
Recall that this is guaranteed by the optimality property of the oblique projection. It is,
in fact, observed that the error of the time-domain reconstruction approaches machine
precision for 40 or more modes per frequency. For the frequency-domain approach this
only occurs for the full reconstruction using all modes.

3.2. Denoising
After using SPOD truncation for the low-dimensional approximation previously described,
we now explore its potential for denoising. We will show that additive noise is captured by
certain parts of the spectrum, and that truncation of these parts leads to efficient denoising.
This strategy is most efficiently implemented in the frequency domain. The local-in-time
optimality of the time-domain approach is a hindrance in this context as it tends to
reconstruct the noise. However, the one-to-one correspondence between modes and
frequencies of the frequency-domain approach leads to efficient denoising.

We demonstrate denoising on additive Gaussian white noise, arguably the most common
type of noise occurring in experimental environments. In particular, we add Gaussian
white noise that has a standard deviation equal to the spatial mean of the standard deviation
along the lipline of the pressure data. This scenario is very similar, for example, to heavily
contaminated PIV data in which the variance of the noise is of the same order as the
variance of the physical phenomena of interest. The SPOD eigenvalue spectrum of this
noisy data is shown in figure 9(a). Most noticeably, the addition of noise has introduced a
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noise floor at λ ≈ 4 × 10−5, effectively cutting off the spectrum at St ≈ 1.5. Information 
above this frequency lies below the noise floor and is not directly accessible. The leading 
eigenvalue of the original data (red dashed line) is shown for comparison. It lies well below 
the leading eigenvalue of the noisy data, which is elevated owing to the energy contained 
in the added noise. To illustrate the ability of SPOD to differentiate between spatially 
correlated, physical structures and noise, examples of modes that are above and below the 
noise floor are compared in figure 9(b–d). The leading mode at St = 0.5 (figure 9b) clearly 
reveals the KH wavepacket and is indistinguishable from the corresponding mode of the 
original data shown in figure 3(a). The fifth mode at St = 0.5 (figure 9c) and the leading 
mode at St = 1.5 (figure 9d), by contrast, are heavily contaminated by noise. The noise 
floor in the SPOD spectrum is found to be a very good indicator of this distinction. We 
therefore propose a denoising strategy based on hard thresholding of the spectrum. In this
example, we pick a threshold of 5 × 10−5 (blue line), slightly above the noise floor. To 
address the effect of the truncation on the SPOD spectrum, we report the leading SPOD 
eigenvalue of the denoised data (magenta dashed line) in the same figure. It coincides 
with the leading eigenvalue of the noisy data up to the point where it intersects with the 
threshold limit, beyond which it falls off sharply, giving it the characteristics of a low-pass 
filter. A closer analysis of the truncated and original spectra reveals that the denoised field 
contains only 2.6 %  of the energy of the noisy field, but that it contains 92.7 %  of the 
energy of the original flow field. Another positive side effect is that only 74 out of 9933 
modes (nfreq × nblk) have been retained, resulting in a space saving of 99.26 %. These 
significant space savings are an advantage over standard denoising strategies based on 
low-pass filtering.

Representative instantaneous snapshots of the original data are compared with their 
noisy and denoised counterparts, and to the result of standard low-pass filtering in 
figure 10. The standard low-pass filter uses the cut-off frequency of St = 0.8 of the SPOD 
approach (inferred from figure 9) in the truncation of the long-time Fourier transform. 
A higher threshold, and its associated cut-off frequency, was found to lead to more 
aggressive filtering that can partially remove relevant flow structures. A threshold below 
the noise floor, on the other hand, leads to unsatisfactory noise rejection. In practice, a good 
trade-off between noise rejection and preservation of physically relevant flow structures is 
achieved by using the SPOD spectrum as a gauge to choose a threshold slightly above the 
noise floor. A comparison of the denoised data in figure 10(c,d) with the noisy data in 
figure 10(b) shows that significant noise reduction was achieved in all parts of the domain 
using both strategies. The resulting denoised flow fields clearly reveal the flow structures 
present in the original data. By visual inspection of the filtered pressure fields shown 
in figures 10(c) and 10(d), the SPOD-based strategy appears somewhat more efficient at 
removing the noise.

For a more quantitative assessment, we compare the denoised flow fields in terms of 
two quantities. First, their signal-to-noise ratio (SNR) along the lipline, and second, the 
relative error between the denoised snapshots and the original data. The SNR is defined as

SNR = Psignal

Pnoise
=
σ 2

signal

σ 2
noise

, (3.2)

where P is power and σ standard deviation. We further define the integral (over the
physical domain) error as

error = ‖q − q̌‖x

‖q‖x
, (3.3)
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Figure 11. Comparison of the two denoising strategies: (a) the SNR along the lipline (r = 0.5) for the noise
added flow field (black line), SPOD-based denoised flow field (red lines), and the low-pass filtered flow field
(blue line); (b) error of the noisy data, SPOD-based denoised data, and the low-pass filtered data. The amplitude
of the additive noise was adjusted such that the average SNR along the lipline is one.

where q and q̌ are the original and the denoised flow fields, respectively. Figure 11(a)
compares the SNR along the lipline at r = 0.5 for the noisy and the denoised flow fields.
Both methods achieve an increase in the SNR over large parts of the domain. The low-pass
filter performs better for x � 10, and the SPOD-based filter beyond that point. For x � 2.5,
the SPOD-filtered pressure field exhibits a marginally lower SNR than the unfiltered
data. We find that this is the result of the aggressive truncation of the high-frequency
components by the SPOD-based filter. A result that is almost identical to that of the
low-pass filter can be achieved by lowering the λ-threshold (a similar value for both
methods is used here for consistency). Figure 11(b) compares the time traces of the
errors of the noisy and the two denoised flow fields. The error of the noisy data serves
as a reference, and it is observed that both methods significantly reduce this error. The
SPOD-based approach performs consistently better than the low-pass filter. This result
is consistent with the visual observation of the denoised fields in figure 10(c,d). Note
that the threshold is an adjustable parameter in both methods. In practice, we find that by
adjusting this parameter qualitatively very similar results can be obtained by both methods.
This, however, leaves the SPOD-based approach with the advantage of significant data
reduction.
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Figure 12. The SPOD-based frequency–time diagrams obtained using the time-domain approach: (a) first ten
modes at each frequency; (b) leading mode at each frequency. The SPOD of the pressure field is considered.

3.3. Frequency–time analysis
Intermittency, that is, the occurrence of flow events at irregular intervals, is an
inherent feature of any turbulent flow. A common approach for the characterisation of
intermittent behaviour is frequency–time analysis. Arguably the most commonly used
tools of frequency–time analysis are WT and STFT. Their outcomes are scalograms
and spectrograms, respectively, which indicate the presence of certain scales (WT), or
frequency components (STFT), at certain times. Both methods are signal-processing
techniques that are applied to one-dimensional time series, and therefore only quantify
intermittency locally. As an alternative to this local perspective, we demonstrate how
SPOD expansion coefficients can be used to study the intermittency of the spatially
coherent flow structures represented by the modes. Next, frequency–time analyses based
on both time-domain and frequency-domain reconstructions are introduced and compared.

3.3.1. Time-domain approach
We first consider the time-domain approach, in which the expansion coefficients obtained
via oblique projection readily describe the temporal behaviour of each mode. The
amplitudes of the expansion coefficients computed from (2.19), |∑nmodes

j=1 ã( j)( fl, t)|, hence,
yield the desired frequency–time representation for the leading nmodes. The expansion

φcoefficients are calculated using the full basis, i.e. ˜ in (2.18), consists of all modes at 
all frequencies. Subsequently, we only consider the expansion coefficients of the leading 
nmodes modes at each frequency. An alternative approach is to perform the oblique 
projection using a reduced basis that consists of only the leading nmodes modes at each 
frequency. We find that the first approach is preferable in the context of frequency–time 
analysis and is explained in the Appendix B (see figure 22). The frequency–time diagrams 
for nmodes = 10, and 1, are shown in figures 12(a) and  12(b), respectively. The leading 10 
modes correspond approximately to 80 % of the total energy as shown in figure 2(b). Most
of the energy is concentrated at low frequencies, St � 0.2, as expected from the eigenvalue 
spectrum in figure 2. The eigenvalue spectrum provides a statistical representation of the 
structures that are coherent in space and time, whereas the frequency–time diagrams 
provide a temporal information of these structures. Bright yellow spots indicate high 
similarity of the instantaneous flow field with the leading mode in (b). These regions also 
correspond to high-energy events as we will show in figure 14.
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Figure 13. The SPOD-based frequency–time diagrams obtained using the convolution approach: (a) first ten
modes at each frequency; (b) leading mode at each frequency. The SPOD of the pressure field is considered.
The cyan box in (b) is centred around the global maximum of the instantaneous energy at t = 1380, analysed
in figures 14 and 15(c,d) below.

3.3.2. Convolution-based approach
A direct way of using SPOD for frequency–time analyses is in terms of the SPOD
expansion coefficients. Since each block is associated with a finite time interval, this
approach requires the computation of SPOD using an overlap of novlp = nfft − 1 to
obtain time-resolved coefficients (Towne & Liu 2019). This approach assumes that the
value of the expansion coefficient obtained from a finite time segment (block) represents
the instantaneous frequency content at the centre of the time segment. A limitation of
this approach is its high memory requirement (3.6 TB for the present example). As an
alternative, we propose a computationally tractable way of calculating time-continuous
expansion coefficients based on the convolution theorem. Applying the convolution
theorem to the inverse SPOD problem yields

a(i)l (t) =
(
φ
(i)
l exp(−i2πflt)� q

)
(t)

=
∫
�T

∫
Ω

(
φ
(i)
l (x)

)∗
W (x)q(x, t + τ)w(τ ) exp(−i2πflτ) dx dτ, (3.4)

where � indicates the convolution between the time evolving SPOD mode and the data,
which takes into the account the windowing function, w(τ ), and the weight matrix,
W . In practice this convolution is computed by expanding the SPOD mode in time as
φ
(i)
l exp(−i2πflt) and convolving it over the data one snapshot at a time. In this step,

we leverage the orthogonality property of the SPOD mode in the space–time inner
product, which allows us to compute the expansion coefficient one at a time. If the
SPOD was computed using an overlap of nfft-1, then the expansion coefficients, a(i)l ,
obtained from (3.4) and (2.13) are mathematically identical. Here, the underlying idea is
to apply the continuously discrete convolution integral to the SPOD mode computed with
a significantly lower overlap to make it computationally feasible. We confirmed that the
frequency–time diagrams of the expansion coefficients obtained using (3.4) for an overlap
of 50 % are virtually indistinguishable to those obtained from (2.13) for an novlp = nfft − 1
(shown in the Appendix C, figure 24). This is to be expected since the convergence of
the SPOD modes does not improve significantly for overlap over 50 %. In practice, the
convolution integral in (3.4) is most efficiently computed using fast-Fourier transforms.

Frequency–time diagrams of the expansion coefficients for the convolution approach
are shown in figure 13. Figure 13(a) and 13(b) show the contribution of the leading
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Figure 14. Temporal evolution of the pressure 2-norm in the vicinity of its global maximum at t = 1380. The 
convolution approach, based on (3.4), is compared to the time- and frequency-domain approaches, previously 
shown in figure 4(b,d). The 1 × 129-mode reconstructions are shown.

ten modes and the leading mode, respectively. These frequency–time diagrams appear 
less detailed compared to the frequency–time diagrams of the time-domain approach. 
In the context of figure 15, though, we will show that figures 12 and 13 basically 
contain the same information. For now, it is sufficient to note that the convolution and 
time-domain approaches detect the same trends. Take as an example, the high energy
events occurring at low frequency in the time ranges, 550 � t � 590 and 1370 � t � 
1400, in the spectrograms of figures 12(b) and 13(b).

3.3.3. Comparison of methods and interpretation of results
Next, we investigate if the high similarity between the instantaneous flow field and the 
modes indicates high energy. Figure 14 shows the temporal evolution of the pressure 
2-norm for the original data, low-dimensional 1 × 129-mode reconstructions using the 
time-domain, frequency-domain and the convolution approaches. The pressure 2-norm 
of the data is highly underpredicted by the time-domain approach that uses a full basis 
(nblk×129), but is able to capture the major trends of the original data. The time-domain 
reconstruction performed using a modal basis of 1 × 129 is also shown for comparison. 
This accurately follows the spatial norm of the original data, except for an offset, similar 
to figure 4(d). The frequency-domain curve also shows a similar trend. In addition, 
the spatial norm of the 1 × 129-mode reconstruction using the convolution approach 
is shown. It follows the trend of the original data and attains its global maximum at 
the same time instant. Minor differences between the convolution (time-continuous) and 
frequency-domain (50 % overlap) approaches are expected, see Appendix C. All curves 
in figure 14 peak at the time of maximum instantaneous energy, previously indicated in 
figure 13(b). This indicates that a high similarity between the instantaneous flow field 
and the leading mode implies high overall energy. We highlight that this finding is not 
self-evident as the leading SPOD mode represents the most energetic flow structure in a 
purely statistical sense. The important physical insight is that the intermittent occurrence 
of large-scale coherent structures is directly associated with high-energy events.
To understand the qualitative differences of the frequency–time diagrams in figures 12 and 
13, we now look at the expansion coefficients of the two approaches. Figure 15
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aã

(τ
)

Convolution

Time-domain
Moving average

Time-domain

(a)

(c) (d)

(b)

Figure 15. Oblique projection and convolution-based expansion coefficients of the leading mode at St = 0.5
(top) and St = 0.05 (bottom): (a,c) time traces in the vicinity of their global maximum (black dashed line);
(b,d) cross-correlation of the expansion coefficients obtained using the two different approaches. The black
dash-dotted line denotes the weighted moving mean of the time-domain expansion coefficient. The moving
mean uses as weights the same Hamming windowing function as the SPOD.

compares the expansion coefficient of the leading mode, obtained by the time-domain
and convolution approaches. As an example, the expansion coefficient at St ≈ 0.50 is
shown in figure 15(a). It is centred around its global maximum, in the time interval
1000 ≤ t ≤ 1300. We observe that the time traces of the expansion coefficients obtained
from the two approaches show similar trends. In particular, the local peaks occur at
similar locations, with both curves exhibiting the global maximum at t = 1150 (black
dashed line). Compared to the time-domain approach, the convolution curve is smoother
and resembles a moving average of the time-domain curve (black dash-dotted line). For
optimal comparison with the convolution approach, the moving average is computed
by weighting the time-domain curve by the Hamming window in (2.6) and averaging
over 256 points. To further quantify the relation between the expansion coefficients
of the two approaches, we show the cross-correlation coefficient in figure 15(b). The
cross-correlation coefficient confirms the observation that the expansion coefficients
obtained from the two approaches are similar, by demonstrating a cross-correlation
coefficient of 0.77 at 0-time lag (τ = 0). We have confirmed that this correspondence
holds in general. In figures 15(c) and 15(d), for example, the same trends are observed
for the expansion coefficients at the lower frequency of St = 0.05 over the time interval
previously shown in figure 14. From figure 15, we infer that the intermittency of the
coherent structures can be captured using both approaches.
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of all eigenvalues are shown for comparison.

After establishing the correspondence between the time-domain and convolution
approaches, we now compare the spectral characteristics of the two approaches. The PSD
of the expansion coefficients associated with the leading mode at St = 0.2, 0.5 and 1.0, for
the time and convolution-domain approaches are shown in figure 16(a). As expected the
PSD peak at the frequency of the corresponding mode for both approaches. The expansion
coefficients computed in the convolution approach exhibit a much narrower peak than
those in the time-domain approach. Note that, we cannot expect a sharp spectral peak even
for the convolution approach owing to spectral leakage and the modulation of the wave
amplitude as seen in figure 15. Figure 16(c) compares the PSD of the leading mode and
the ten leading modes at St = 0.5, which underlines the dominance of the leading mode at
this particular frequency. The expansion coefficients are presented in terms of the spectral
energy content in figure 16(b,d). As the expansion coefficients are uncorrelated, and their
expected value is equal to the SPOD modal energy,

E
{

a(i)f a( j)
f

}
= λ(i)f δij, (3.5)
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(b) contribution of φ(1) for St = 0.5 and (c) for St = 0.05; (d) and (e) comparisons of the real part of the
pressure field along the lipline (r = 0.5) for St = 0.5 and St = 0.05, respectively. The instantaneous flow field
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it is expected that the convolution approach accurately approximates the eigenvalue
spectrum. The blue and magenta lines are almost coincident in figure 16(b,d), thus
confirming this conjecture. For the time-domain approach, the expected value for the sum
of first 10 modes approximates the total integral PSD for all but the low frequencies
St ≥ 0.2 in figure 16(d). On considering only the first eigenvalue, the time-domain
approach underpredicts the eigenvalue spectrum for St ≤ 1.0, (figure 16b). Note that,
this observation does not contradict the observations made in context of figure 4, as the
expansion coefficients are obtained from a full basis here, but from a smaller basis in
figure 4(d).

After examining the properties of the expansion coefficients, we focus on the spatial
composition of the reconstructed flow field in terms of contributions from individual
modes in figure 17. The time instant of high energy, previously marked in figure 15, is
chosen as an example. The contribution of the leading SPOD modes at two representative
frequencies, St = 0.5, and 0.05, to the original flow field is shown in figure 17.
Figure 17(b,c) show the modes weighted by their expansion coefficient, a(1)φ(1) at the
corresponding time instant of these two frequencies. Close to the nozzle exit, the LES flow
field clearly exhibits a KH-type instability wave. The leading mode at St = 0.5 closely
resembles this structure. Similarly, the dominant wave pattern with a large wavelength
(≈ 5) observed in the flow field is represented by the mode at St = 0.05 in a location
downstream of the potential core (12 � x � 20). The real part of the pressure field along
the lipline (r = 0.5) is compared with the contributions of the leading modes at St = 0.5
and St = 0.05 in figures 17(d) and 17(e), respectively. It can be seen that the phases of
the pressure field and the mode at St = 0.5 are aligned in the region where the mode
attains its maximum. A weaker but similar kind of phase alignment is also observed for
low frequency, St = 0.05, despite the disturbed nature of the wavepacket in the region,
12 � x � 20. For the flow field at the current time instant, this also explains that the
contribution of the leading mode at St = 0.05 is lower than St = 0.5, where the KH
wavepacket dominates the flow field. These observations confirm that the maximum in
the frequency–time diagrams indicate close resemblance of the instantaneous flow field
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with the corresponding SPOD modes. Since the SPOD modes are the most energetic 
structures it is not surprising that the maxima in the frequency–time diagrams indicate the 
intervals of high energy. Furthermore, as the leading SPOD modes are spatially coherent 
and contain the most energy at each frequency, we infer that SPOD-based frequency–time 
analysis can be used to gauge the intermittency of large-scale coherent structures. Here, 
for brevity, only the convolution approach is shown, but we note that these conclusions 
also hold for the time-domain approach.

3.4. Prewhitening
As mentioned in § 1, prewhitening is a filtering operation that results in a flat power 
spectrum, and is commonly used for trend detection in atmospheric and geophysical 
applications. The goal, therefore, is to use SPOD to scale the data  in order to have the 
same energy at all frequencies. We propose to achieve this goal by rescaling the expansion 
coefficients of the reconstruction in the frequency domain. The frequency-domain 
approach is chosen for the same reasons as for denoising in § 3.2. We leverage the fact 
that the expansion coefficients are uncorrelated, and that their expected value is equal to 
SPOD modal energy

E
{

a(i)f a( j)
f

}
= λ(i)f δij. (3.6)

We propose two different scalings,√∑
f
∑

i λ
(i)
f√

λ
(i)
f

a(i)f (scaling 1) (3.7)

and

1√∑
i λ
(i)
f

a(i)f (scaling 2) (3.8)

to scale the integral mode energy, that is, the sum of all eigenvalues, to one at each 
frequency. Both methods achieve this goal, but result in different relative scalings of 
individual SPOD modes. Figures 18(a) and 18(b) show the effect of the two scalings on 
the SPOD eigenvalue spectrum. The reconstructed flow fields obtained from the expansion 
coefficients scaled using (3.7) and (3.8) are shown in figures 18(c) and 18(d), respectively. 
Note that (3.7) collapses all eigenvalues in figure 18(a) to the same value. Scaling 2, on the 
contrary, preserves both the mode hierarchy and the relative energy content. In comparison 
to the original flow field shown in figure 6(a), prewhitening emphasises high-frequency 
structures in the shear layer, whereas it de-emphasises the highly energetic large-scale 
structures associated with low frequencies downstream of the potential core. This portrayal 
of the flow field might appear unfamiliar; we emphasise that the objective of prewhitening 
is not physical interpretation, but pattern identification. Here, for example, the prewhitened 
pressure fields bring to light the trapped acoustic modes in the potential core. These modes 
have only recently been described in detail (Schmidt et al. 2017b; Towne et al. 2017). 
Previously, they remained largely unnoticed in the analysis of jet data because of their low 
energy content. An important difference between SPOD-based prewhitening and classical 
local, point-wise prewhitening techniques is that the SPOD-based approach preserves the 
spatial coherence of the flow structures identified by the SPOD modes.
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4. Summary and conclusions

Different applications of SPOD including low-rank reconstruction, denoising, prewhitening
and frequency–time analysis are demonstrated for the example of LES data of a turbulent
jet. A fundamental building block for these applications is the capability to reconstruct
the original data from the SPOD. In the frequency domain, this can be accomplished
by inverting the SPOD problem (see, e.g. Citriniti & George 2000). We demonstrate
that this inversion can be computed either directly in the frequency domain or using a
convolution-based strategy. The latter approach becomes a necessity in the context of
frequency–time analysis, where the corresponding SPOD problem becomes intractable.
As an alternative to frequency-domain reconstruction, we introduce a time-domain
approach that is based on the oblique projection of the data onto the SPOD modes.
A reduced-order model based on SPOD that uses oblique projection was recently devised
by Chu & Schmidt (2020).

Here, we show the complete recovery of the data using all modes and compare
with low-dimensional reconstructions. The low-dimensional reconstructions from both
approaches accurately capture the integral energy of the segmented data (in the space–time
norm). However, the time-varying dynamics (in the purely spatial norm) is only captured
by the low-dimensional reconstructions in the time domain. For a fixed number of
modes, the time-domain approach captures more of the energy (in both norms). On
the downside, the association of the SPOD modes with a single frequency is lost.
Instantaneous pressure fields reconstructed in the frequency domain, on the contrary,
preserve this monochromatic property of the SPOD modes, but may lack the finer
details of the flow-field reconstructions in the time domain. The main advantage of
the frequency-domain approach is that it conserves the orthogonality property and the
frequency-mode correspondence of the SPOD. The main advantage of the time-domain
approach is its optimality in reconstructing the instantaneous flow field with the least
possible number of modes.
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After establishing the advantages and disadvantages of both approaches, we demonstrate 
SPOD-based denoising as an application of the frequency-domain approach. As expected, 
noise is mainly captured by higher SPOD modes at low frequencies and all modes 
at high frequencies. As a best practice, we propose a hard threshold above the noise 
floor that is identified from the SPOD eigenvalue spectrum. Significant noise reduction 
is achieved. At the same time, a substantial amount of energy of the original flow field is 
retained. Compared to a standard low-pass filter, SPOD-based denoising has the additional 
advantage of significant storage savings.

Finally, we demonstrate how SPOD-based frequency–time analysis can be used to 
analyse the intermittency of turbulent flows. Established means of frequency–time 
analysis such as WT are signal-processing techniques that are applied to one-dimensional 
time signals. The alternative, SPOD-based approach demonstrated here, provides a 
global perspective in which spectrograms characterise the temporal evolution of the 
spatially coherent flow structures represented by the SPOD modes. The SPOD-based 
frequency–time analysis requires the computation of time-varying expansion coefficients 
at each time instant, and is computationally intractable in the frequency domain. 
This problem is mitigated by the convolution-based strategy, which is mathematically 
equivalent in the limit of the intractable continuously discrete (in time) SPOD problem. 
This convolution-based approach is compared to the projection-based approach in the 
time domain. The expansion coefficients calculated from both methods show similar 
trends. We further demonstrate that a moving average of the spectrogram obtained via 
oblique projection resembles the spectrogram obtained from the convolution approach. 
For consistency, the moving time average is directly based on the SPOD windowing. The 
main advantage of the frequency domain, and therefore the convolution approach, is that 
it retains the orthogonality property and mode-frequency correspondence of the SPOD. 
The frequency–time analysis of the jet data confirms the highly intermittent nature of this 
turbulent flow. In accordance with the SPOD eigenvalue spectrum, it is found that most
of the energy is concentrated at low frequencies St � 0.2. A comparison of the total flow 
energy as a function of time with the spectrograms shows that high-energy events are 
directly linked to the presence of flow structures resembling the leading SPOD modes. 
We highlight that this behaviour is not necessarily expected as the SPOD modes represent 
the most energetic structures only in a statistical sense. From previous work (Schmidt 
et al. 2018), it is well known that SPOD modes often isolate certain, prevailing physical 
phenomena. The use of SPOD-based frequency–time analysis, hence, provides additional 
physical insight by indicating time intervals during which a particular mechanism is active.

Based on the results, we recommend the use of the time-domain approach for low-rank 
reconstruction of individual snapshots, and the frequency-domain approach for denoising 
and frequency–time analysis. For the latter application the proposed convolution strategy 
facilitates efficient computation of the time-continuous expansion coefficients. A Matlab 
code for the convolution-based frequency–time analysis is freely available online.
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Figure 19. Errors of different ways to compute the frequency-domain reconstruction for 1 × 129, 3 × 129 and
10 × 129 modes: (a) 2-norm; (b) spatial norm (2.2). Analogous to figure 5, the residual energy of the truncated
modes is subtracted for comparison.

Appendix A. Effect of different parameters on the flow-field reconstruction

The segmentation of the data is a crucial step in spectral estimation. Following the original
work by Welch (1967), we use an overlap of 50 % between blocks to minimise the variance
of the spectral estimate, see § 3 above. The use of overlapping segments, though, results in
an ambiguity for the reconstruction, which we may compute using the following:

(i) the left (previous) block;
(ii) the right (following) block;

(iii) the average of the left and right reconstructions;
(iv) either the left or right reconstruction based on the higher windowing weight;
(v) the average of the left and right reconstructions weighted by the relative value of

Hamming window;
(vi) the average of the left and right reconstructions weighted by the relative distance to

the centres of the overlapping blocks.

Figure 19 compares the errors of low-dimensional reconstructions using 1 × 129, 3 ×
129 and 10 × 129 modes for all the six possibilities. It is found that the reconstruction
based on the window-weighted average of the left and right reconstructions produces
the smallest error. Based on this finding, this option is used for the frequency-domain
reconstruction throughout the paper. Using the window-weighted average approach, the
i-th snapshot is reconstructed as

qi ≈
q(k)j w( j)+ q(k+1)

j−novlp
w
(|j − novlp|

)
w( j)+ w

(|j − novlp|
) , (A1)

where j = i − (k − 1)(nfft − novlp), i ∈ [1, nt], j ∈ [1, nfft] and k ∈ [1, nblk]. From figure 4
(in particular 4b), it becomes apparent that these distinctions only matter for truncated
series reconstructions; full-dimensional reconstructions are generally accurate.

The sudden jumps in the local energy of the reconstruction observed in figure 4
are a windowing effect. We demonstrate this by comparison with reconstruction using
rectangular windows and no overlap in figure 20. The low-dimensional reconstructions
using 1 × 129, 3 × 129 and 10 × 129 modes; and all modes are shown. Many observations
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made in the context of figure 4, also hold here: the dimension of the modal bases is 
directly proportional to its ability to capture the pressure norm of the data and, for a 
fixed number of modes, the time-domain results in a better approximation of the data 
than the frequency-domain approach. The most notable difference can be seen between 
figures 20(b) and  4(b). The windowing effect in the frequency-domain reconstructions 
is absent if the rectangular window is used. Note in particular the difference during 
the first few snapshots and near the locations of switching from one block to another 
(vertical dotted black lines). Despite this advantage in the context of frequency-domain 
reconstructions for small nmodes, rectangular windowing is generally not recommended 
because of spectral leakage (Schmidt & Colonius 2020).

By analogy with figure 7, we report in figure 21 the SPOD eigenspectra of the 1 × 
129-mode frequency- and time-domain reconstructions for a rectangular window and 
novlp = 0. The SPOD eigenvalue spectra of the full data is also shown for comparison. 
Only the leading three eigenvalues are shown for clarity. The leading eigenvalue of 
the frequency-domain and time-domain reconstructions are indistinguishable from the 
leading eigenvalues of the full data. For the frequency-domain reconstruction, the higher 
eigenvalue spectra are zero to machine precision, as expected. This indicates that the 
windowing effect causes the elevation of the higher eigenvalue spectra in figure 7(a). The 
time-domain reconstruction, on the other hand, is able predict the higher eigenvalues as
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explained in the context of figure 7(b). This implies that the time-domain reconstruction
is much less sensitive to the choice of windowing function.

Appendix B. Projection-based frequency–time analysis: effect of choice of basis and
correspondence to convolution-based approach

Oblique projection-based frequency–time analysis is dependent on the choice of modal
basis. The two obvious choices of bases for the projection are

(i) nmodes×129 modes, i.e. only those SPOD modes used in the analysis,

Φ̃ =
[
φ
(1)
1 ,φ

(1)
2 , . . . ,φ(1)nfft

]
(B1)

or
(ii) nblk×129 modes, i.e. all available SPOD modes,

Φ̃ =
[
φ
(1)
1 ,φ

(2)
1 , . . . ,φ

(nblk)
1 ,φ

(1)
2 ,φ

(2)
2 , . . . ,φ

(nblk)
2 , . . . ,φ(1)nfft

,φ(2)nfft
, . . . ,φ(nblk)

nfft

]
.

(B2)

Owing to the non-orthogonality of these modes in the spatial norm, these two choices
will result in different outcomes. Shown in figure 22(a) is the frequency–time diagram
for nmodes = 1, that is a 1 × 129-mode basis containing only the leading mode at each
frequency. A fundamentally different behaviour from that in figure 12 is observed.
The diagram exhibits a banded structure, and, in contrast to the reference diagram
based on all SPOD modes, the majority of maxima is not found in the low-frequency
regime, St � 0.2. To understand this difference, the PSD of the expansion coefficient
associated with the leading mode at St = 0.5 is shown in figure 22(b). The expansion
coefficient computed with the 1 × 129-modal basis exhibits a much broader peak than
the one computed with full basis. This behaviour indicates a loss of the mode-frequency
correspondence for the heavily truncated basis. Next, both approaches are compared by
taking the convolution-based expansion coefficient as the reference. The cross-correlation
of the expansion coefficients from both approaches with the reference signal from the
convolution approach are shown in figure 22(c). The expansion coefficient computed
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Figure 22. The SPOD-based frequency–time analysis obtained using the time-domain approach with 1 ×
129-modal basis: (a) frequency–time diagram of the leading mode at each frequency; (b) PSD of the individual
expansion coefficients of the leading SPOD mode at St = 0.5 for the time-domain approach with the 1 ×
129 basis (blue line) and nblk×129 basis (red line); (c) cross-correlation of the expansion coefficient in the
time-domain approach using the 1 × 129 basis (blue line) and the nblk×129 basis (red dotted line) with the
convolution approach.
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Figure 23. The SPOD-based frequency–time diagrams obtained using the moving mean of the time-domain 
oblique projection based approach: (a) first 10 modes at each frequency; (b) leading mode at each frequency. 
The moving mean uses as weights the same Hamming windowing function as the SPOD.

using the 1 × 129-modal basis exhibits a much lower correlation with the reference. We 
conclude from this analysis that the time-domain approach should be conducted using all 
SPOD modes, as it yields a more accurate description of the intermittency of the coherent 
structure represented by the SPOD modes.

In figure 15, we demonstrated that the expansion coefficients computed from a moving 
average of the time-domain approach resemble those from the convolution approach. 
For further evidence, we show in figure 23 the frequency–time diagrams obtained by 
taking the moving mean, at each frequency, of the time-domain diagram previously shown 
in figure 12. The outcome should be compared to the frequency–time diagrams obtained 
using the convolution approach, i.e. figure 13. It is observed that the frequency–time
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Figure 24. Comparison between two strategies for SPOD-based frequency–time analysis: frequency–time
diagrams for (a) the convolution approach (SPOD modes precomputed with 50 %, overlap) and (b) the
frequency-domain approach using novlp = nfft − 1; expansion coefficients for (c) St = 0.05 and (d) St = 1.0.

diagrams are qualitatively very similar. The effect of taking the moving average is mainly
visible at higher frequencies, where it leads to minor loss of detail. For qualitative flow
analysis, we therefore conclude that the moving average of the time-domain approach
can well be used to approximate the much more computationally involved convolution
approach.

Appendix C. Frequency–time analysis based on frequency-domain approach: effect
of overlap and correspondence to convolution-based approach

Figure 24 demonstrates the similarity between the frequency–time diagrams obtained
using the convolution method and the frequency-domain approach. For the convolution
method, (3.4), a basis of precomputed SPOD modes with 50 % overlap was used. To obtain
time-continuous expansion coefficients using the frequency-domain approach, we require
novlp = nfft − 1. As this is computationally intractable, the data (only here) were reduced
to every third grid point in the streamwise and radial directions. The time traces of the
individual expansion coefficients for St = 0.05 and 1.0 are reported in figure 24(c,d).
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