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Bispectral mode decomposition is used to investigate triadic interactions within a Mach
0.4 turbulent jet. We explore its potential to identify dominant triadic interactions and
their associated spatial structures in an unforced turbulent jet. The bispectral measure is
broadband in frequency for each azimuthal wavenumber triad. The [1,1,2] and [0,0,0] azimuthal
wavenumber triads are dominant, emphasizing the importance of the self-interactions of the
helical and axisymmetric components. Bispectral modes reveal that streaky structures are
fed by the interaction of a Kelvin-Helmholtz wavepacket with its conjugate. Streaks are also
observed in other frequency interactions, occurring in regions where the structures of these
frequencies are spatially active. Furthermore, integral interaction maps and nonlinear transfer
terms are computed to determine the direction of energy transfer and to pinpoint the spatial
regions where nonlinearity is most active. As the shear layer develops, small scales interact
nonlinearly, transferring energy to larger scales. Moving downstream, near the potential core
closure, larger scales become more active, resulting in a forward energy cascade.

I. Introduction
In turbulent jets, coherent structures are the primary sources of aft-angle noise [1]. The pioneering work by Crow

and Champagne [2] identified the presence of large-scale coherent structures in turbulent jets. Subsequent researchers
[3–7] have modeled these coherent structures as linear stability solutions of the turbulent mean flow. Most studies,
until now, have focused on characterizing these structures in terms of their statistical importance and have linked them
to linear mechanisms [8–10]. In this work, our emphasis is on identifying the nonlinear triadic interactions and their
associated spatial structures.

Quadratic nonlinearities arise from the convective term of the Navier-stokes equation, which leads to three-wave
coupling or triadic interactions. A triad is a set of three wavenumbers (or frequencies) that form a triangle, i.e., they
satisfy the following condition

k ˘ p ˘ q “ 0, (1)
𝑓1 ˘ 𝑓2 ˘ 𝑓3 “ 0. (2)

These triadic interactions play a vital role in the energy cascade of turbulent flows [11–13]. Researchers have employed
bispectral analysis to study these interactions [14–17]. The bispectrum, an extension of the power spectrum to third
order, is calculated through a double Fourier transform of third-order moments. It measures the quadratic phase coupling
only at a single spatial point, thereby characterizing triadic interaction locally. However, our objective extends beyond
this local analysis; we aim to identify coherent structures associated with triadic interactions. To this end, we employ
the bispectral mode decomposition (BMD) proposed by Schmidt [18]. BMD identifies the most dominant triads and
their corresponding coherent structures by maximizing the spatially integrated bispectrum. BMD has been used to
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investigate the triadic interactions in various flow configurations, such as laminar-turbulent transition on a flat plate
[19, 20], forced jets [21–23], swirling flows [24, 25], bluff body wakes [26], and wake of an airfoil [27].

Nonlinear dynamics in jets have predominantly been studied in two contexts: transitional flows and harmonically
forced jets. Transitional flows have been the focus of studies examining the nonlinear interaction between the fundamental
and subharmonic wave [28–30]. Meanwhile, studies on forced jets have examined nonlinear effects on mean flow
deformation [31, 32], azimuthal symmetry breaking [33, 34] and the formation of periodic and chaotic attractors [35, 36].
Here, our focus is exclusively on non-resonant flows, intending to shed light on the nonlinear wave coupling that is still
present, albeit in lower magnitude. Furthermore, we will analyze the direction of energy transfer between different
azimuthal wavenumbers. The paper is organized as follows. In section II, the BMD methodology is discussed. Results
are presented in section III, and the paper is summarized in section IV.

II. Cross-Bispectral mode decomposition (C-BMD)
We employ the cross-bispectral mode decomposition, recently developed by [18], to identify the spatially coherent

structures arising from the triadic interactions in turbulent flows. Here, we provide a brief overview of the method. The
reader is referred to Schmidt [18] for further details of the derivation and mathematical properties of the method.

Given a statistically stationary flow field, let q𝑖 “ qp𝑡𝑖q denote the mean subtracted snapshots, where 𝑖 “ 1, 2, ¨ ¨ ¨ 𝑛𝑡
are 𝑛𝑡 number of snapshots. For spectral estimation, using the Welch’s approach the dataset is first segmented into
𝑛blk overlapping blocks with 𝑛fft snapshots in each block. The neighbouring blocks overlap by 𝑛ovlp snapshots with
𝑛ovlp “ 𝑛fft{2. The 𝑛blk blocks are then Fourier transformed in time and all Fourier realizations of the 𝑙-th frequency,
qp 𝑗q

𝑙
, are arranged in a matrix,

Q̂𝑙 “

”

q̂p1q

𝑙
, q̂p2q

𝑙
, ¨ ¨ ¨ , q̂p𝑛blkq

𝑙

ı

. (3)

The auto-bispectral matrix is then computed as

B “
1
𝑛blk

Q̂𝐻
𝑘˝𝑙WQ̂𝑘`𝑙 , (4)

where Q̂𝐻
𝑘˝𝑙

“ Q̂˚
𝑘

˝ Q̂˚
𝑙

and W is the diagonal matrix containing the spatial quadrature weights. The auto-bispectral
density matrix measures the interactions between different frequenices at the same azimuhtal wavenumber. To estimate
the interactions between the azimuthal wavenumber triad, [𝑚1, 𝑚2 ,𝑚3], where 𝑚1 ` 𝑚2 “ 𝑚3, we construct the
cross-bispectral matrix

B𝑐 “
1
𝑛blk

`

Q̂˚
𝑘

˝ R̂˚
𝑙

˘

WŜ𝑘`𝑙 . (5)

Here, Q̂𝑘 , R̂𝑙 , Ŝ𝑘`𝑙 , comprises of all the Fourier realizations at the 𝑘-th frequency of the azimuthal wavenumber 𝑚1,
the 𝑙-th frequency of the azimuthal wavenumber 𝑚2, and the p𝑘 ` 𝑙q-th frequency of the azimuthal wavenumber 𝑚3,
respectively. Owing to the non-Hermitian nature of the bispectral matrix, the optimal expansion coefficients, a1 are
obtained by maximising the absolute value of the Rayleigh quotient of B𝑐

a1 “ arg max
}a}“1

ˇ

ˇ

ˇ

ˇ

a˚B𝑐a
a˚a

ˇ

ˇ

ˇ

ˇ

. (6)

The complex mode bispectrum is then obtained as

𝜆1p 𝑓𝑘 , 𝑓𝑙q “

ˇ

ˇ

ˇ

ˇ

a˚
1 B𝑐a1

a˚
1 a1

ˇ

ˇ

ˇ

ˇ

. (7)

Finally, the leading-order bispectral modes and the cross-frequency fields are recovered as

𝝓
p1q

𝑘`𝑙
“ Ŝ𝑘`𝑙a1, and (8)

𝝓
p1q

𝑘˝𝑙
“

`

Q̂𝑘 ˝ R̂𝑙

˘

a1, (9)

respectively. By construction, the bispectral modes and cross-frequency fields have the same set of expansion coefficients.
This explicitly ensures the causal relation between the resonant frequency triad, ( 𝑓𝑘 , 𝑓𝑙 , 𝑓𝑘 ` 𝑓𝑙), where Q̂𝑘 ˝ R̂𝑙 is the
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Figure 1 Spatial field of the nonlinear energy transfer: (𝑎) total; (𝑏) azimuthal wavenumber triad, r𝑚1, 𝑚2, 𝑚3s “

r0, 0, 0s.

cause and Ŝ𝑘`𝑙 is the effect. The complex mode bispectrum, 𝜆1, measures the intensity of the triadic interaction and
the bispectral mode, 𝝓𝑘`𝑙 , represents the structures that results from the nonlinear triadic interaction. Another useful
quantity is the interaction map, defined as

𝝍𝑘,𝑙 “ |𝝓𝑘˝𝑙 ˝ 𝝓𝑘`𝑙|. (10)

This interaction map identifies the spatial regions of activity of the triadic interaction for the frequency triad, p 𝑓𝑘 , 𝑓𝑙 , 𝑓𝑘`𝑙q

and wavenumber r𝑚1, 𝑚2, 𝑚3s. In this study, we differentiate between the frequency and azimuthal wavenumber triads
using the notation p¨, ¨, ¨q and r¨, ¨, ¨s, respectively.

III. Results
The large eddy simulation (LES) data of an isothermal subsonic turbulent jet, at a Mach number 𝑀 𝑗 “ 𝑈 𝑗{𝑐8 “ 0.4

and a Reynolds number 𝑅𝑒 “ 𝜌 𝑗𝑈 𝑗𝐷{𝜇 𝑗 “ 450, 000 computed by Brès and Lele [37] is considered. Here, 𝜌 is the
density, 𝑈 velocity, 𝐷 nozzle diameter, 𝜇 dynamic viscosity and 𝑐 speed of sound. The simulations were carried out
using the compressible flow solver ‘Charles’ on an unstructured grid using a finite-volume method. The reader is
referred to [38, 39] for further details on the numerical method, meshing, and subgrid-models. The LES database
consists of 20000 snapshots sampled at an interval of Δ𝑡𝑐8{𝐷 “ 0.2 acoustic time units. Data interpolated on a
cylindrical grid spanning 𝑥, 𝑟 P r0, 30s ˆ r0, 6s was used in this analysis. The flow is non-dimensionalized by the
nozzle exit values, namely velocity by 𝑈 𝑗 , pressure by 𝜌 𝑗𝑈

2
𝑗
, length by the nozzle diameter 𝐷, and time by 𝐷{𝑈 𝑗 .

Frequencies are reported in terms of the Strouhal number 𝑆𝑡 “ 𝑓 𝐷{𝑈 𝑗 . We focus our analysis to the most energetic
wavenumbers, 𝑚 “ 0, 1, 2, 3, 4, and frequencies, St3 P r´2, 2s, within the domain 𝑥{𝐷 P r0, 20s and 𝑟{𝐷 P r0, 3s. The
higher wavenumbers and frequencies are important near the nozzle’s exit and will be considered wherever relevant.

Quadratic nonlinearities arise from the convective term in the Navier-Stokes equation. Corresponding they contribute
to the turbulent kinetic energy through the nonlinear transport term [40] given by:

𝑇𝑛𝑙 “ ´
1
2

B

B𝑥𝑖
𝑢1
𝑖
𝑢1
𝑗
𝑢1
𝑖
. (11)

The nonlinear energy transfer for an azimuthal wavenumber triad, r𝑚1, 𝑚2, 𝑚3s, is given as

𝑇
r𝑚1 ,𝑚2 ,𝑚3s

𝑛𝑙
“ ´R

«

𝑢̂˚
𝑗
p𝑚3q𝑢̂𝑖p𝑚1q

B𝑢̂ 𝑗

B𝑥𝑖
p𝑚2q

ff

. (12)

Figure 1 shows the spatial field for the total nonlinear transfer and the wavenumber triad [0,0,0]. Red and blue
colors represent positive and negative energy transfer from the mean flow to the fluctuations. The total nonlinear energy
transfer, 𝑇𝑛𝑙 , reveals that all nonlinear interactions occur in the shear layer and are concentrated around the lip line
(𝑟 “ 0.5) within the first five jet diameters. On the other hand, the nonlinearity generated due to the self-interaction of
the axisymmetric component is concentrated near the centerline beyond the end of the potential core. Later, in figure 4,
we will demonstrate that the nonlinear activity near the nozzle’s exit is due to higher wavenumber interactions, and the
nonlinear activity at the end of the potential core results from interactions between lower azimuthal wavenumbers.

We now perform BMD to identify the dominant triadic interactions. BMD is computed for blocks containing
𝑛fft “ 256 snapshots with 50% overlap, resulting in a total number of 𝑛blk “ 158 blocks. For best practices on spectral
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Figure 2 Cross-bispectra of twelve azimuthal wavenumber triads, r𝑚1, 𝑚2, 𝑚3s. Here the magnitude of the
complex cross-bispectral measure, |𝜆1|, is presented.
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Figure 3 Cross-bispectra summed by magnitude: (𝑎) over all frequency triads; (𝑏) over diagonals of slope -1
such that 𝑆𝑡1 ` 𝑆𝑡2 “ 𝑆𝑡3.

estimation parameters, we refer to [41–44]. The cross-bispectra for twelve dominant azimuthal triads are shown in 2. The
high-intensity regions (false red color) signify the dominant triads that arise from the interactions of two frequencies. All
twelve cases exhibit broadband behavior, with the most intense interactions occurring at low frequencies. Similarly, in
the wavenumber space, the intensity decreases for higher azimuthal wavenumber interactions, as seen in [0,3,3], [1,3,4],
and [2,2,4]. A band is observed along 𝑆𝑡3 “ 0 for [0,0,0], [1,-1,0], and [2,-2,0] triads, which is due to spectral leakage,
and caution is advised while making interpretations. The cross-bispectrum for the azimuthal triads, [0,0,0], [1,-1,0] and
[2,-2,0] exhibit a four-fold symmetry about the lines, 𝑆𝑡1 “ 𝑆𝑡2 and 𝑆𝑡1 “ ´𝑆𝑡2, whereas the azimuthal triads [1,1,2]
and [2,2,4] are symmetric about the line 𝑆𝑡1 “ 𝑆𝑡2. Other triads triads do not exhibit any obvious symmetries.

Figure 3 shows the cross-bispectrum summed over all frequency triads and summed over diagonals of slope -1
such that 𝑆𝑡1 ` 𝑆𝑡2 “ 𝑆𝑡3. The former represents the total intensity of triadic interactions for a single azimuthal
wavenumber triad, while the latter denotes the intensity of the resulting frequency for a single wavenumber triad. Figure
3(𝑎) reveals that the four dominant azimuthal wavenumber triads are r1, 1, 2s, r0, 0, 0s, r2,´1, 1s, and r´1, 1, 0s. The
self-interaction of 𝑚 “ 1 resulting in 𝑚 “ 2 is the most significant triad. This is expected since 𝑚 “ 1 and 𝑚 “ 2 are
the most energetic components [45], and hence their triadic interaction results in the greatest cross-bispectra values. The
cross-bispectra, summed along diagonals, are shown in figure 3(𝑏) for the four dominant wavenumber triads. The four
curves decrease monotonically and exhibit behavior reminiscent of broadband nature. The triads [0,0,0], [1,-1,0], [1,1,2]
peak at St3 Ñ 0, whereas [2,-1,1] peaks at the first non-zero frequency, St3 « 0.05, as shown in the inset of figure
3(𝑏). Another interesting observation is that the summed cross-bispectrum is not symmetric about St3 “ 0 because
q𝑚, 𝑓1 ‰ q𝑚,´ 𝑓1 when 𝑚 ą 0. For St3 ě 1, the triad [1,1,2] exhibits the largest values, indicating that the strongest
triadic interactions lead to the azimuthal wavenumber 𝑚 “ 2 within this frequency range.

Next, we identify the regions where triadic interactions are most active. To achieve this, the weighted interaction
maps are summed over all frequency triads as

ř

𝑘,𝑙 𝜆1p𝑆𝑡𝑘 , 𝑆𝑡𝑙q|𝜙𝑘˝𝑙 ˝ 𝜙𝑘`𝑙|. Figure 4 shows the weighted interaction
maps for six azimuthal wavenumber triads. The top row highlights three out of the four dominant wavenumber triads,
while the bottom row illustrates interactions resulting in higher azimuthal wavenumbers. For dominant triads, the triadic
interactions are present in the shear layer and beyond the end of the potential. The region of nonlinear activity extends
farthest downstream for the [0,0,0] triad. Our findings are in agreement with Tissot et al. [46], demonstrating that
nonlinearity becomes pronounced downstream of the potential core’s end for the axisymmetric component. In the case
of interactions involving higher azimuthal wavenumbers, the region of nonlinear activity shifts upstream, closer to
the nozzle’s exit. This reiterates our observation from figure 1 that interactions of higher wavenumbers play a more
significant role in the nonlinearities closer to the nozzle’s exit.

Figure 5 displays the interaction maps for six representative frequency triads of the most dominant azimuthal
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Figure 4 Integral interaction maps,
ř

𝑘,𝑙 𝜆1p𝑆𝑡𝑘 , 𝑆𝑡𝑙q|𝜙𝑘˝𝑙 ˝ 𝜙𝑘`𝑙|, for azimuthal triads, r𝑚1, 𝑚2, 𝑚3s: (𝑎) [0,0,0];
(𝑏) [1,-1,0]; (𝑐) [1,1,2]; (𝑑) [1,2,3]; (𝑒) [2,2,4]; ( 𝑓 ) [5,5,10].

Figure 5 Interaction maps, |𝜙𝑘˝𝑙 ˝ 𝜙𝑘`𝑙|, of the azimuthal wavenumber triad [1,1,2] for different frequency
triads, p𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡3q: (𝑎) (0.15,-0.15,0.0); (𝑏) (0.15,0.15,0.0); (𝑐) (0.3,0.3,0.0); (𝑑) (0.5,0.5,1.0); (𝑒) (0.75,0.75,1.5);
( 𝑓 ) (1.0,1.0,2.0).

wavenumber triad [1,1,2]. This figure highlights the regions where nonlinear interactions are most active in frequency
space, contrasting with the wavenumber space shown in Figure 4. The interaction maps indicate that nonlinear
interactions between lower frequencies occur downstream. In contrast, for interactions involving higher frequencies, this
region of nonlinearity shifts upstream, closer to the nozzle’s exit. Overall, figures 4 and 5 indicate that the small-scale
structures are active upstream and large-scale structures are active downstream. This observation is not surprising, as
due to the spreading of the shear layer, structures with larger wavelengths are supported farther downstream than those
associated with smaller wavelengths.

A. Role of triadic interactions in the formation of streaks
Figure 6 shows the bispectral modes due to the interaction between 𝑚 “ ˘1, St “ ˘0.3, leading to four possible

interactions: (i) r1, 1, 2s, p0.3, 0.3, 0.6q; (ii) r1, 1, 2s, p0.3,´0.3, 0.0q; (iii) r1,´1, 0s, p0.3, 0.3, 0.6q;(iv) r1,´1, 0s,

Figure 6 Real component of the fluctuating streamwise velocity of the cross-bispectral mode for three frequency
triads and three azimuthal wavenumber triads. Top (𝑎,𝑏) and bottom (𝑐,𝑑) rows show the azimuthal wavenumber
triads r1, 1, 2s, and r1,´1, 0s, respectively. The left and right columns depict the frequency triads, p0.3, 0.3, 0.6q,
and p0.3,´0.3, 0.0q, respectively. Contours (■■■) are given by ˘||𝜙1 : 𝑢𝑥 ||8 of each mode.
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p0.3,´0.3, 0.0q. We specifically chose 𝑚 “ ˘1 and St “ ˘0.3 because it exhibits the largest resolvent gain [45].
In both azimuthal wavenumber triads, constructive self-interference of St “ 0.3 generates structures resembling KH
wavepackets, while destructive self-interaction of St “ 0.3 produces elongated structures localized beyond the end of
the potential core. Notably, the structure in figure 6(𝑏) resembles a large-scale streaky structure, suggesting that the KH
mode of 𝑚 “ 1, St “ 0.3 interacts with its conjugate 𝑚 “ 1, St “ ´0.3, giving rise to streaks. These observations are
inline with a number of previous studies in free shear flow and jets that have postulated the creation of vortices, that
ultimately give rise to streaks, via the interaction of KH modes ([32, 47, 48].

Figure 7 Real component of the fluctuating streamwise velocity of the cross-bispectral mode for three frequency
triads and three azimuthal wavenumber triads. Top (𝑎-𝑐), middle (𝑑- 𝑓 ), and bottom (𝑔-𝑖) rows show the azimuthal
wavenumber triads r1, 1, 2s, r1, 2, 3s and r2, 2, 4s, respectively. The left, center, and right columns depict the
frequency triads, (0.05,´0.05, 0.0), (0.4,´0.4, 0.0), and (0.8,´0.8, 0.0), respectively. Contours (■■■) are given
by ˘0.5||𝜙1 : 𝑢𝑥 ||8 of each mode.

We further investigate the role of triadic interactions in the formation of streaks. Figure 7 shows the bispectral modes
for three azimuthal wavenumber triads: r1, 1, 2s, r1, 2, 3s, and r2, 2, 4s, and three frequency triads: p0.05,´0.05, 0.0q,
p0.4,´0.4, 0.0q, and p0.8,´0.8, 0.0q. Streaks are azimuthally non-uniform structures and are not present in the
axisymmetric component (𝑚 “ 0). Additionally, Pickering et al. [49] demonstrated that 𝑚 “ 2, 3, and 4 are the
most significant contributors to streaks. Therefore, we choose the dominant azimuthal triads, which results in these
wavenumbers. All nine modes display an elongated region in blue false color, indicating the presence of streaks. Streaks
are located beyond the end of the potential core for interactions at lower frequencies, while at higher frequencies, they
appear at a more upstream location. Similarly, higher azimuthal wavenumbers triads generate streaks at a more upstream
location. This finding is in accordance with Pickering et al. [49], where they show that the most energetic azimuthal
wavenumber contributing to streaks scales as 𝑚max „ 1{𝑥 ` 1.

Figure 8 Magnitude of three velocity components of the cross-bispectral mode for the frequency triad, (0.4,-
0.4,0.0) and the wavenumber triad, [1,1,2]: (𝑎) 𝑢𝑥; (𝑏) 𝑢𝑟 ; (𝑐) 𝑢𝜃 .

A salient feature of the streaky structures is that the amplitude of the streamwise velocity is significantly higher
than the radial and azimuthal velocities. To confirm this, the magnitude of the velocity components for the bispectral
mode corresponding to the wavenumber triad, r1, 1, 2s, and frequency triad p0.4,´0.4, 0.0q are shown in figure 8. It is
clear that the magnitude of the streamwise velocity is greater, quantitatively by a factor of 3, than the other two velocity
components. This confirms that the structures in figure 7 are indeed streaks.

In turbulent wall-bounded flows, the generation of streaks through the lift-up mechanism is widely accepted [50–52].
This mechanism entails counter-rotating vortices elevating the low-speed fluid while bringing down the high-speed
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fluid, leading to streak formation. Recent studies by Pickering et al. [49], Nogueira et al. [53] have demonstrated the
existence of a lift-up mechanism in jets as well. Lift-up is considered a linear non-modal mechanism, here, we consider
the effect of nonlinearity. The linear non-modal instability assumes an inviscid, incompressible, parallel flow, i.e.,
U “ p𝑈,𝑉,𝑊q “ p𝑈p𝑟q, 0, 0q. By linearizing the momentum equations, we obtain,

B𝑢𝑥

B𝑡
` 𝑢𝑟

B𝑈

B𝑟
“ 0 (13)

On including the nonlinear terms, this is modified to

B𝑢𝑥

B𝑡
`𝑢𝑟

B𝑈

B𝑟
`𝑢𝑖

B𝑢𝑥

B𝑥𝑖
“ 0, (14)

where 𝑢𝑖 is the fluctuating velocity, and 𝑈 is the temporally averaged mean flow. Left multiplying by 𝑢˚
𝑥 and taking the

temporal mean gives
B|𝑢𝑥 |2

B𝑡
“ ´𝑢˚

𝑥𝑢𝑟
B𝑈

B𝑟
´ 𝑢˚

𝑥𝑢𝑖
B𝑢𝑥

B𝑥𝑖
. (15)

This equation reveals that shear production and the nonlinear transfer contribute to the intensity of streaks, whereas in the
absence of nonlinearity, shear production is the only contributor. For the streak mode corresponding to 𝑚 “ 2, 𝑆𝑡 “ 0,
equation (15) becomes

B|𝑢̂𝑥 |2

B𝑡
“ ´R

»

—

—

—

–

𝑢̂˚
𝑥 𝑢̂𝑟

B𝑈

B𝑟
looomooon

𝑃𝑥𝑟

` 𝑢̂˚
𝑥

̂
𝑢𝑖

B𝑢𝑥

B𝑥𝑖
looomooon

𝑇𝑥´𝑛𝑙

fi

ffi

ffi

ffi

fl

p𝑚“2,𝑆𝑡“0q

. (16)

where R denotes the real part, 𝑃𝑥𝑟 and 𝑇𝑥´𝑛𝑙 represent the shear production and the nonlinear transfer term contributing
to the intensity of streamwise velocity.

Figure 9 Contribution of the shear production (𝑎) and nonlinear transfer (𝑏) to the streaky structures in 𝑚 “ 2.

Figure 9 illustrates the contribution of shear production and the nonlinear term to the intensity of the streamwise
velocity for the streak mode at 𝑚 “ 2. We observe that the magnitudes of the nonlinear and linear terms, i.e., shear
production, are similar. However, these terms have opposite signs, suggesting that shear production supplies energy to
the streaky structures, while nonlinearities extract energy from them. This figure reveals that nonlinear interactions
also play a significant role in streak formation and the corresponding lift-up mechanism, highlighting the need for their
consideration in future studies.

B. Energy cascade
Figure 10 shows the normalized turbulent kinetic energy (TKE) and bispectrum as a function of streamwise location.

The TKE is computed at each spatial location and then integrated radially for each azimuthal wavenumber. The
bispectrum is computed by performing BMD on different streamwise planes. Finally, at each streamwise location,
the TKE and bispectrum are normalized by total TKE and total bispectrum,

ř

𝑚,𝑆𝑡 𝑏p𝑥, 𝑚, 𝑆𝑡q. A similar trend is
observed for both the TKE and bispectrum. Near the nozzle exit, higher azimuthal wavenumbers are more energetic and
exhibit greater triadic activity. As the flow evolves downstream, the energy and bispectral measure is concentrated at
lower azimuthal wavenumbers. The similar trend observed between figure 10(𝑎) and (𝑏) suggests that the azimuthal
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Figure 10 Normalized TKE (𝑎) and bispectrum (𝑏) as a function of streamwise location and azimuthal
wavenumber.

wavenumber involved in the strongest nonlinear interactions is also the most energetic. Previous studies [9, 54, 55]
show that the frequency of the dominant wavepackets scales as 1{𝑥. Analogously, we observe that the most dominant
azimuthal wavenumber decreases with 𝑥.

We now examine which azimuthal triads are dominant at different streamwise locations in figure 11. These are
identified by calculating the spatial triple correlation of velocity components for different azimuthal wavenumber triplets,
averaging over time, and selecting the triads with the highest values. The circle size represents the intensity of the triad.
The dotted line in magenta denotes the most energetic azimuthal wavenumber. Here, we do not focus on the triad [0,0,0]
in our analysis, as it does not offer insights into either inverse or forward energy cascades. The top and bottom rows
represent the spatial locations before and after the end of the potential core, respectively. At 𝑥 “ 1, 𝑚 “ 12 is the most
energetic component, and the strongest triad is [6,6,12] (excluding the [0,0,0] triad). As in figure 10, this suggests
that the most energetic wavenumber is also involved in the dominant nonlinear interactions. Moving downstream, the
strongest azimuthal triad transitions to [3, 3, 6] at 𝑥 “ 2, [2, 2, 4] at 𝑥 “ 3, [1, 1, 2] at 𝑥 “ 5, and 7. For 𝑥 ě 10,
the dominant azimuthal triads are [4, -2, 2] and [2, 2, 4]. At all spatial locations, we observe that the most dominant
triads are of the form r𝑚, 𝑚, 2𝑚s and r2𝑚,´𝑚, 𝑚s. The former represents a forward energy cascade, whereas the
latter denotes an inverse energy cascade. In the initial shear layer, the shift in the dominant triad from higher to lower
azimuthal components suggests an inverse energy cascade, and the increase from [1, 1, 2] to [2, 2, 4] beyond 𝑥 “ 10
suggests a forward energy cascade.

Next, the direction of energy transfer between the dominant triads of figure 11 is investigated. Figure 12 shows
the nonlinear energy transfer, 𝑇𝑛𝑙 , for the six triads, r12,´6, 6s, r6,´3; 3s, r4,´2, 2s, r6, 6, 12s , r3, 3, 6s, and r2, 2, 4s.
For a triad r𝑚1, 𝑚2, 𝑚3s, the red color denotes the energy transfer from 𝑚1 and 𝑚2 to 𝑚3 and the blue color denotes
the energy extracted from 𝑚3 by 𝑚1 and 𝑚2. The spatial fields in the top row display a region of positive nonlinear
transfer, followed by a region of negative energy transfer. In contrast, the energy transfer patterns in the bottom row
are opposite to those in the top row. However, both rows convey the same information. For example, the spatial field
corresponding to the r12,´6, 6s triad demonstrates energy transfer from 𝑚 “ 12,´6 to 6 until 𝑥 « 2.8, after which
there is a backscatter of energy from 𝑚 “ 6 to 𝑚 “ 12. Similarly, the r6, 6, 12s triad indicates that initially, 𝑚 “ 6
extracts energy from 𝑚 “ 12, but later, the energy transfers from 𝑚 “ 6 to 𝑚 “ 12. The triads in the middle and right
columns exhibit similar trends. These observations clearly show that the inverse energy cascade is active in the initial
shear layer, while the forward energy cascade becomes prominent at more downstream locations.

Most of the studies that have investigated the presence of the inverse energy cascade have been conducted in isotropic
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Figure 11 Dominant azimuthal triads at different spatial locations: (𝑎) 𝑥{𝐷 “ 1; (𝑏) 𝑥{𝐷 “ 2;(𝑐) 𝑥{𝐷 “ 3; (𝑑)
𝑥{𝐷 “ 5; (𝑒) 𝑥{𝐷 “ 7; ( 𝑓 ) 𝑥{𝐷 “ 10; (𝑔) 𝑥{𝐷 “ 13; (ℎ) 𝑥{𝐷 “ 16.

Figure 12 Nonlinear transfer fields for different azimuthal triads, [𝑚1, 𝑚2, 𝑚3]: (𝑎) r12,´6, 6s; (𝑏) r6,´3; 3s;(𝑐)
r4,´2, 2s; (𝑑) r6, 6, 12s; (𝑒) r3, 3, 6s; ( 𝑓 ) r2, 2, 4s. Contours (■■■) are given by ´0.5 ď 𝑇𝑛𝑙{}𝑇𝑛𝑙}8 ď 0.5 of each
field.
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Figure 13 Rate for energy transfer, 𝜋p𝑚q, from the first 𝑚 azimuthal wavenumbers to higher 𝑚 at different
streamwise locations. An enlarged view of (𝑎) at 𝑥 “ 1 is shown in (𝑏).

turbulent flows, for example [56–58]. To quantify the energy transfer, following Plunian et al. [59], we use the metric

𝜋p𝑚q “
ÿ

|𝑚1|ď𝑚

R
”

pûp𝑚1qq
˚F ru ¨ ∇usp𝑚1q

ı

(17)

where, F r¨s denotes the Fourier transform. This metric represents the rate of energy transferred by the first 𝑚
wavenumbers to wavenumbers greater than 𝑚. A positive value of 𝜋p𝑚q indicates a forward cascade, where energy
is transferred from larger to smaller scales, while a negative value indicates an inverse cascade, where energy moves
from smaller to larger scales. Figure 13 illustrates the rate of energy transfer at various spatial locations. Near the
nozzle’s exit in the streamwise direction, there is an inverse energy cascade for lower azimuthal wavenumbers and a
forward energy cascade for higher azimuthal components. However, at more downstream locations, only a forward
energy cascade is observed, consistent with Figure 12. In figure 13 (𝑏), a zoomed-in view of 𝜋p𝑚q at 𝑥 “ 1 reveals that
wavenumbers 𝑚 ď 9 gain energy through the inverse cascade.

IV. Summary and Conclusions
In this study, the nonlinear interactions in a Mach 0.4 turbulent jet were analyzed for various frequency triads and

azimuthal wavenumber triads using BMD. The mode bispectrum exhibits a broadband-like nature for all azimuthal
wavenumber triads. The most significant azimuthal wavenumber triads are [1,1,2] and [0,0,0], indicating that the most
energetic wavenumbers are also engaged in the most intense triadic interactions. BMD modes demonstrated the presence
of streaks in the [1,1,2] triad. In particular, the KH-wavepacket at 𝑚 “ 1, 𝑆𝑡 “ 0.3 interacts with its conjugate at
𝑚 “ 1, 𝑆𝑡 “ ´0.3 to generate streaks. Streaks were also observed at other frequency- and wavenumber-triads, implying
that nonlinear interactions contribute to their formation. For interaction between lower frequencies, streaks are located
downstream, while for higher frequency interactions, streaks are located upstream. Streaks are formed in the regions
where the frequencies are active. We extend Ellingsen and Palm [50]’s work to include nonlinearities and find that the
nonlinear term plays a significant role in the intensity of streaks. This nonlinear term is comparable in magnitude to the
linear production term but has the opposite sign, suggesting that nonlinearities extract energy from streaks.

Interaction maps were employed to explore the spatial distribution of nonlinear interactions across various triads. It
was found that for interactions involving lower azimuthal wavenumbers, nonlinear activity congregates near the end of
the potential core, whereas for those with higher azimuthal wavenumbers, it concentrates in the shear layer closer to
the nozzle exit. Similarly, nonlinear activity is observed upstream for higher-frequency interactions and downstream
for lower-frequency interactions. Moreover, a local analysis was conducted to pinpoint the most dominant azimuthal
triads at different streamwise locations, revealing a transition from [12,-6,6] at 𝑥 “ 1 to [2,-1,1] at 𝑥 “ 5, and settling
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at [2,2,4] beyond 𝑥 “ 10. By computing the nonlinear transfer term, the direction of energy transfer was identified,
revealing an inverse energy cascade in the initial shear layer and a forward energy cascade downstream of the potential
core. These findings hold intriguing implications for flow control, suggesting that by suppressing the inverse energy
cascade in the shear layer, it is possible to diminish the energy of lower azimuthal components, such as 𝑚 “ 1 and 2,
potentially leading to a reduction in radiated sound.
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