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Large-eddy simulations (LES) of a turbulent unforced jet at 𝑅𝑒 “ 50, 000 and 𝑀 𝑗 “ 0.4,
and jets forced at azimuthal wavenumbers 𝑚 “ 0, 𝑚 “ ˘1, 𝑚 “ ˘2 and 𝑚 “ ˘6 are performed.
The objective of this study is to characterize the nonlinear interactions that are initiated by
the forcing. To achieve this, we used the bispectral mode decomposition (BMD) technique,
which is tailored to extract flow structures associated with triadic interactions. Azimuthal
wavenumber triads are investigated using the cross-spectral variant of BMD. Axisymmetric
forcing generates peaks at the forcing frequency and its harmonics in the 𝑚 “ 0 component
only, whereas non-axisymmetric forcing generates peaks at different azimuthal wavenumbers.
The latter aspect is investigated using cross-BMD. Forcing the jet at 𝑚 “ ˘1, the only odd-𝑚
forcing case considered, creates a cascade of triads that generates peaks at the forcing frequency
and its odd harmonics at odd azimuthal wavenumbers and even harmonics at even azimuthal
wavenumbers. Forcing the jet at 𝑚 “ ˘𝑚 𝑓 azimuthal wavenumbers produces peaks at the odd
harmonics in the odd integer multiples of 𝑚 𝑓 and at even harmonic frequencies in the even
integer multiples of 𝑚 𝑓 .

I. Introduction
The reduction of jet noise is an important objective for the aviation community. The pioneering work by Crow and

Champagne [1] identified the presence of large-scale coherent structures in turbulent jets, and these coherent structures
or wavepackets are the primary sources of aft-angle noise [2]. Following Crow and Champagne [1], harmonically-forced
jets have been the subject of numerous studies, for example, [3–8]. The actuation of the jet has varied over a wide
range of frequencies and forcing amplitudes. At low amplitudes of forcing, the jets exhibit a linear response. As the
forcing amplitude increases, it triggers nonlinear interactions in jets. High levels of forcing and the resulting nonlinear
interactions of coherent structures have rarely been explored. Previous studies [9–11] have investigated the nonlinear
response to high amplitude forcing in jets, and most have focussed on initially-laminar jets.

Harmonic forcing induces a phase-locking mechanism that simplifies the eduction of coherent structures. Most
studies that involve the excitation of a jet employ axisymmetric forcing. Only a few studies have investigated the effect
of non-axisymmetric forcing, such as [12–16]. Cohen and Wygnanski [12] and Long and Petersen [13] forced the jet at
the same frequency but opposite wavenumbers to demonstrate that the jet loses its azimuthal symmetry, producing
elliptical and square cross-sections. Samimy et al. [15] forced the jet at various azimuthal wavenumbers and found that
𝑚 “ ˘1-forcing provides the maximum mixing enhancement and shortest potential core length. Wu and Huerre [17]
hypothesized that the interaction of a helical conjugate pair with 𝑚 “ ˘1 generates a slowly modulating mean-flow
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distortion. They further show that this interaction radiates low-frequency sound to jet angles between 45˝-60˝. Using
numerical simulations, Suponitsky et al. [18] reported similar findings.

In this work, we perform LES of unforced and forced turbulent subsonic jets at a Reynolds number, 𝑅𝑒 “

𝜌 𝑗𝑈 𝑗𝐷{𝜇 𝑗 “ 50, 000, and Mach number, 𝑀 “ 𝑈 𝑗{𝑐8 “ 0.4, where 𝜌 is the density, 𝑈 the mean flow velocity, 𝜇 the
dynamic viscosity, 𝑐 the speed of sound, and the subscripts 𝑗 and 8 denote the jet and free-stream conditions. The jets
are forced harmonically at a non-dimensional frequency of 𝑆𝑡 𝑓 “ 𝑓 𝐷{𝑈 𝑗 “ 𝜔𝐷{2𝜋𝑈 𝑗 “ 0.4 and different azimuthal
wavenumbers, 𝑚 “ 0, 𝑚 “ ˘1, 𝑚 “ ˘2, and 𝑚 “ ˘6 near the nozzle lip. The objective of this work is to characterize
the nonlinear interactions triggered by the excitation of the jet. To accomplish this, we employ the bispectral mode
decomposition (BMD) technique proposed by Schmidt [19]. BMD extracts the spatial flow structures generated through
triadic interactions and identifies the most dominant triads in the flow by maximizing the spatially-integrated bispectrum.
BMD has been used to investigate the triadic interactions in various flow configurations, such as laminar-turbulent
transition on a flat plate [20], forced jets [21, 22], swirling flows [23], bluff body wakes [24], and wake of an airfoil [25].
Forcing the jet harmonically also generates phase-dependent coherent structures that are slaved to the forcing which can
be extracted by the cyclostationary spectral proper orthogonal decomposition (CS-SPOD) [26].

The paper is organized as follows. In section II, the BMD methodology is discussed. In section III, the simulations
are validated against companion experiments. In section IV, the results are presented and the work is summarized in
section V.

II. Bispectral mode decomposition
BMD is a technique that can be understood as an extension of classical bispectral analysis to multidimensional and

multivariate data. The bispectrum is defined as the double Fourier transform of the third moment of a time signal. For a
time series, 𝑦p𝑡q with zero mean, the bispectrum is

𝑆𝑦𝑦𝑦p 𝑓1, 𝑓2q “

ż ż

𝑅𝑦𝑦𝑦p𝜏1, 𝜏2q𝑒´𝑖2𝜋p 𝑓1𝜏1` 𝑓2𝜏2q𝑑𝜏1𝑑𝜏2, (1)

where 𝑅𝑦𝑦𝑦p𝜏1, 𝜏2q “ 𝐸r𝑦p𝑡q𝑦p𝑡 ´ 𝜏1q𝑦p𝑡 ´ 𝜏2qs is the third moment of 𝑦p𝑡q, and 𝐸r¨s is the expectation operator. The
bispectrum is a signal processing tool for one-dimensional time series which only measures the quadratic phase coupling
locally. On the contrary, BMD is a modal decomposition technique that identifies the spatially coherent structures
associated with the triadic interactions.

For a fluctuating flow field q𝑖 “ qp𝑥, 𝑡𝑖q, where 𝑖 “ 1, 2, ¨ ¨ ¨ 𝑛𝑡 , BMD maximizes the integrated point-wise
bispectrum

𝑏p 𝑓𝑘 , 𝑓𝑙q “ 𝐸

„
ż

Ω

q̂˚p𝑥, 𝑓𝑘q ˝ q̂˚p𝑥, 𝑓𝑙q ˝ q̂p𝑥, 𝑓𝑘 ` 𝑓𝑙q𝑑𝑥

ȷ

. (2)

Here, q̂ is the temporal Fourier transform of q computed using the Welch approach [27], Ω is the spatial domain of
interest, p¨q˚ denotes the complex conjugate, and ˝ denotes the Hadamard (or element-wise) product.

Next, all the Fourier realizations at frequency 𝑓𝑘 are arranged into a matrix, Q̂𝑘 “

”

q̂p1q

𝑘
, q̂p2q

𝑘
, ¨ ¨ ¨ , q̂p𝑛𝑏𝑙𝑘q

𝑘

ı

. The
auto-bispectral matrix is then computed as

B “
1

𝑛𝑏𝑙𝑘
Q̂𝐻

𝑘˝𝑙WQ̂𝑘`𝑙 , (3)

where Q̂𝐻
𝑘˝𝑙

“ Q̂˚
𝑘

˝ Q̂˚
𝑙

and W is the diagonal matrix containing the spatial quadrature weights. Owing to the
non-Hermitian nature of the bispectral matrix, we obtain the complex mode bispectrum by solving the optimization
problem

𝜆1p 𝑓𝑘 , 𝑓𝑙q “ arg max
ˇ

ˇ

ˇ

ˇ

a˚
1 Ba1

a˚
1 a1

ˇ

ˇ

ˇ

ˇ

, (4)

for the optimal expansion coefficients a1, by determining the numerical radius of B. For further details on computing
the mode bispectrum, the reader is referred to Schmidt [19]. Finally, the bispectral modes and the cross-frequency fields
are recovered as

𝝓
p1q

𝑘`𝑙
“ Q̂𝑘`𝑙a1, and (5)

𝝓
p1q

𝑘˝𝑙
“ Q̂𝑘˝𝑙a1, (6)
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Fig. 1 Comparison of the experiment with the LES simulations: (𝑎-𝑐) unfoced jet; (𝑑) forced jet. Profiles of the
mean (𝑎) and RMS (𝑏) streamwise velocity on the centerline. Power spectral density (𝑐, 𝑑) of the streamwise
velocity at 𝑥 “ 2 and 𝑟 “ 0. The experiment (blue line) is compared to the simulations (red line). Black dashed
line represents 𝑈{𝑈 𝑗 “ 0.95 and its intersection with the mean streamwise velocity indicates the length of the
potential core. 𝑆𝑡 “ 𝑆𝑡 𝑓 “ 0.4 corresponds to the forcing frequency (red dotted line) [22].

respectively. By construction, the bispectral modes and cross-frequency fields have the same set of expansion coefficients.
The complex mode bispectrum, 𝜆1, measures the intensity of the triadic interaction and the bispectral mode, 𝝓𝑘`𝑙 ,
represents the structures that results from the nonlinear triadic interaction.

In this study, we use the cross-spectral variant of BMD to measure the interaction between different azimuthal
wavenumbers. Here, the azimuthal wavenumber triplets will be represented using r¨, ¨, ¨s and all the frequency triads
will be represented using p¨, ¨, ¨q.

III. Validation of LES
The experiments of the isothermal subsonic jets were performed at the “JET100” low Mach number jet facility at

Institut PPRIME, Poitiers, France. The experiments were carried out for a jet Mach number 𝑀 𝑗 = 0.05, and Reynolds
number of 𝑅𝑒 “ 50000. The boundary layer is tripped inside the nozzle by a carborundum strip located 2.5𝐷 upstream
from the nozzle exit. The turbulent jet is forced by eight loudspeakers that are equally distributed around the nozzle
lipline (𝑟{𝐷 “ 0.5). The loudspeakers generate synthetic jets through an annular gap of width 0.01𝐷. For further
details of the experimental setup, the reader is referred to Maia et al. [28, 29, 30].

We perform large-eddy simulations of subsonic jets using the compressible flow solver “Charles” developed
at Cascade Technologies [31, 32]. Charles solves the spatially filtered compressible Navier–Stokes equations on
unstructured grids using a density-based finite-volume method. The LES combines the Vreman sub-grid model [33]
with the wall-model by Bodart and Larsson [34, 35]. The reader is referred to Brès et al. [31, 32] for further details on
the numerical method and validation on jet flows.

The validation of the LES case for the present case follows the previous studies. In particular, the mesh used by
Brès et al. [32] is modified to accommodate the new nozzle geometry and refined in the vicinity of the synthetic jet
actuators. The total grid size is 16.6 million control volumes. The LES is conducted for the experimental Reynolds
number, whereas the Mach number is artificially increased to 𝑀 𝑗 “ 0.4. Effects of compressibility are still small in this
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regime and the very small time steps associated with the incompressible limit are avoided.
The LES results for the unforced jet are compared to the experiments in figure 1. The mean and RMS streamwise

velocities on the centerline and lipline are reported in Fig. 1(𝑎,𝑐) and 1(𝑏,𝑑), respectively. In Fig. 1(𝑎), the mean
streamwise velocities along the centerline of the experiment and the simulation are almost indistinguishable within
the first ten jet diameters. The corresponding potential core length, indirectly defined as �̄�p𝑥 “ 𝑥𝑐q “ 0.95𝑈 𝑗 is
𝑥𝑐 « 6.2. The RMS velocity along the centerline, shown in Fig. 1(𝑐), matches well for the first six jet diameters and is
underpredicted by about 10% further downstream. Clearly visible in the simulation results are grid transitions that were
similarly observed by Brès et al. [32]. It was confirmed in the same work that increasing the resolution mitigates these
transitions. More importantly, Brès et al. [32] also showed that both nozzle-exit turbulent statistics and far-field noise
predictions were accurate for the lower resolution simulations that exhibit grid transitions.

For the forced simulations, we follow Heidt et al. [36] and model the effect of the loudspeaker actuators as an
acoustic forcing in the annular region along the lip line, 0.50 ď 𝑟 ď 0.51, as

𝑝p𝑟q “ 1 ´ 40000p𝑟 ´ 0.505q2, (7a)
𝑢𝑥p𝑟, 𝑡q “ 𝐴𝑝p𝑟q cos

`

𝑚 𝑓 𝜃
˘

sin
`

2𝜋𝑆𝑡 𝑓 𝑡
˘

, (7b)
𝑢𝑟 “ 𝑢𝜃 “ 0, (7c)
𝜌 “ 𝜌8 ` 𝜌8𝑢𝑥{𝑐8, (7d)
𝑝 “ 𝑝8 ` 𝜌8𝑐8𝑢𝑥 . (7e)

The amplitude, 𝐴, was manually adjusted to match the experimental observations. Here, 𝑆𝑡 𝑓 “ 0.4 is the forcing
frequency. Fig. 1(𝑐,𝑑) shows the power spectral densities of the centerline streamwise velocity at 𝑥 “ 2 for the unforced
and axisymmetrically forced jets. The comparison between experiment and simulation are excellent for the unforced jet
seen in Fig. 1(𝑐). The best agreement for the forced case was obtained for 𝐴 “ 0.4 and is shown in Fig. 1(𝑑). Both
the peaks at the forcing frequency and its harmonics, as well as the number of active harmonics and the underlying
broadband spectrum, are well predicted.

IV. Results
Figure 2 shows the area-integrated power spectral densities (PSD) for the five most energetic azimuthal wavenumbers

𝑚 “ 0, 1, 2, 3, 4. The PSDs are integrated over the compressible energy norm. The azimuthal wavenumber 𝑚 “ 1
contains most of the energy for the unforced jet. For the axisymmetrically forced jet, we observe large peaks at the
forcing frequency and its harmonics in the wavenumber 𝑚 “ 0. The peaks at these harmonic frequencies indicate the
presence of triadic sum interactions. For the 𝑚 “ ˘1-, 𝑚 “ ˘2-, and 𝑚 “ ˘6- forced jets, peaks are observed at the
odd harmonics 𝑆𝑡 “ 𝑆𝑡 𝑓 , 3𝑆𝑡 𝑓 , ¨ ¨ ¨ , in the actuated azimuthal components, i.e., 𝑚 “ 1,𝑚 “ 2 and 𝑚 “ 6, respectively.
Peaks exist at the even harmonics (𝑆𝑡 “ 2𝑆𝑡 𝑓 , 4𝑆𝑡 𝑓 , 6𝑆𝑡 𝑓 , ¨ ¨ ¨ ) in 𝑚 “ 0, 2, 4 for the 𝑚 “ ˘1-forced jet, in 𝑚 “ 0, 4, 8
for the 𝑚 “ ˘2-forced jet, and in 𝑚 “ 0, 12, 24 for the 𝑚 “ ˘6-forced jet. These observations indicate that the triadic
interactions occur in both the frequency and azimuthal wavenumber space for non-axisymmetrically forced jets.

The mode bispectra for the 𝑚 “ 0 component of the unforced and forced jets are shown in Fig. 3. The high-intensity
regions (false red color) in the mode bispectra signify the dominant triads that arise from the interactions of two
frequencies. Different combinations of frequencies (𝑆𝑡1,𝑆𝑡2) interact to generate the same frequency (𝑆𝑡1 ` 𝑆𝑡2 =
constant) along the diagonals of slope -1 in the mode bispectrum. For the forced jet (figure 3 (𝑏)), a grid-like pattern is
observed with vertical, horizontal, and diagonal lines at the forcing frequency and its harmonics with local maxima at
the intersection of these lines. These local maxima represent the prominent triadic interactions. In particular the two
most dominant triads are (0.4,0.4,0.8) and (0.8,-0.4,0.4), denoted by circles in the figure inset. The latter triad indicates
a back-scatter effect where energy is supplied to the fundamental by the second harmonic. In the case of unforced jets, a
broadband behavior is observed, with the highest values concentrated at lower frequencies.

For non-axisymmetrically forced jets, peaks exist in multiple azimuthal wavenumbers, which indicates the interactions
between different azimuthal wavenumbers. Hence, we compute the cross-BMD to characterize these triadic interactions.
Fig. 4 shows the cross-mode bispectra for the 𝑚 “ ˘1 forced jet. Here, we show five azimuthal triplets, [𝑚1,𝑚2,𝑚3]
= [1,-1,0], [1,1,2], [2,1,3], [2,2,4], and [3,1,4], where 𝑚1 ` 𝑚2 “ 𝑚3. For the [1,-1,0] triplet, the cross-bispectra
is symmetric about the lines, 𝑆𝑡1 “ 𝑆𝑡2 and 𝑆𝑡1 “ ´𝑆𝑡2. For the triplets, [1,1,2] and [2,2,4], the cross-bispectra
is symmetric about the line 𝑆𝑡1 “ 𝑆𝑡2, whereas there is no symmetry for the triplets, [2,1,3] and [3,1,4]. These
symmetry lines are denoted using white dash-dotted lines. Fig. 4(𝑎) shows the interaction of helical component (𝑚 “ 1)
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Fig. 2 Integrated PSD of first five azimuthal wavenumbers, 𝑚 “ 0, 1, 2, 3, 4 for the four jets: (𝑎) unforced; (𝑏)
axisymmetrically forced; (𝑐) 𝑚 “ ˘1-forced; (𝑑) 𝑚 “ ˘2-forced; (𝑒) 𝑚 “ ˘6-forced jet. In (𝑒) 𝑚 “ 6, 12 are also
shown. PSD is integrated over the compressible energy norm.

Fig. 3 BMD spectra: (𝑎) unforced turbulent; (𝑏) axisymmetrically forced turbulent jet.
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Fig. 4 Cross-BMD spectra that shows the interaction of the azimuthal wavenumbers triads, [𝑚1, 𝑚2, 𝑚3], for
the forced 𝑚 “ ˘1 jet: (𝑎) [1,-1,0]; (𝑏) [1,1,2]; (𝑐) [2,1,3]; (𝑑) [2,2,4]; (𝑒) [3,1,4]. The symmetry lines are denoted
by white dash-dotted lines.

and its conjugate to generate the axisymmetric component. The most dominant frequency triads are (0.4,0.4,0.8),
(1.2,-0.4,0.8), (0.4,-0.4,0.0) and their symmetric counterparts, for example, (-0.4,1.2,0.8), and (0.4,-1.2,-0.8). Similarly
the self-interaction of the helical component generates peaks at the same frequency triads. For the azimuthal triplet,
[2,1,3], the dominant frequency triads are (0.8,-0.4,0.4), (0.8,0.4,1.2), and (-0.8,1.2,0.4). As previously observed in Fig.
2, the odd azimuthal wavenumbers exhibit peaks at odd harmonics and the even azimuthal wavenumbers exhibit peaks
at the even harmonics, and the different possible triadic interactions are

if 𝑚1, 𝑚2 are odd, p2𝑛1 ` 1q𝑆𝑡 𝑓 ` p2𝑛2 ` 1q𝑆𝑡 𝑓 “ 2p𝑛1 ` 𝑛2 ` 1q𝑆𝑡 𝑓 𝑚3 is even, (8)
if 𝑚1, 𝑚2 are even, p2𝑛1q𝑆𝑡 𝑓 ` p2𝑛2q𝑆𝑡 𝑓 “ 2p𝑛1 ` 𝑛2q𝑆𝑡 𝑓 𝑚3 is even, (9)

if 𝑚1 is odd, 𝑚2 is even, p2𝑛1 ` 1q𝑆𝑡 𝑓 ` p2𝑛2q𝑆𝑡 𝑓 “ p2p𝑛1 ` 𝑛2q ` 1q𝑆𝑡 𝑓 𝑚3 is odd, (10)

where, 𝑛1, 𝑛2 P Z are integers. Equations (8)-(10) show that the interaction of two odd or two even wavenumbers
always generate peaks at the even harmonics, t2𝑆𝑡 𝑓 , 4𝑆𝑡 𝑓 , ¨ ¨ ¨ u, whereas the interaction of an odd and even wavenumber
generate peaks at the odd harmonics, t𝑆𝑡 𝑓 , 3𝑆𝑡 𝑓 , 5𝑆𝑡 𝑓 , ¨ ¨ ¨ u. The most significant frequency triads for the azimuthal
triplets, [2,2,4], and [3,1,4] are (1.6,-0.8,0.8), and (0.4,0.4,0.8) which confirm this observation. Note that, the high
intensity of the frequency (0,0,0) is ignored while considering the dominant triads because it is an artifact of the spectral
leakage of BMD.

The back-scatter phenomenon is not limited to axisymmetrically forced jets but is also present in non-axisymmetrically
forced ones. In the case of 𝑚 “ ˘1 forced jets, the back-scatter effect is observed in the azimuthal triplet [2,-1,1] at the
frequency triad (0.8,-0.4,0.4), which is not shown here for brevity. In this phenomenon, the second harmonic frequency
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2𝑆𝑡 𝑓 of the azimuthal wavenumber 2𝑚 𝑓 supplies energy back to the fundamental mode, i.e., the mode corresponding to
the frequency St 𝑓 and azimuthal wavenumber 𝑚 𝑓 .

Fig. 5 Cross-BMD spectra that shows the interaction of the azimuthal wavenumbers triads, [𝑚1, 𝑚2, 𝑚3], for
the forced 𝑚 “ ˘2 jet: (𝑎) [2,-2,0]; (𝑏) [2,2,4]; (𝑐) [4,2,6].

Fig. 6 Cross-BMD spectra that shows the interaction of the azimuthal wavenumbers triads, [𝑚1,𝑚2,𝑚3], for the
forced 𝑚 “ ˘6 jet: (𝑎) [6,-6,0]; (𝑏) [6,6,12]; (𝑐) [12,6,18].

Figures 5 and 6 show the cross-BMD spectra for the azimuthal triplets, [2,-2,0], [2,2,4] and [4,2,6] in the 𝑚 “ ˘2-
forced jet, and [6,-6,0], [6,6,12] and [12,6,18] in the 𝑚 “ ˘6-forced jet, respectively. As shown in Fig. 2, the
non-axisymmetric forcing affects only those azimuthal wavenumbers that are integer multiples of the forcing azimuthal
wavenumber. Specifically, the 𝑚 “ ˘2-forced jet excites the azimuthal wavenumbers, t¨ ¨ ¨ ,´4,´2, 0, 2, 4, ¨ ¨ ¨ u,
while the 𝑚 “ ˘6-forced jet excites the azimuhtal wavenumbers, t¨ ¨ ¨ ,´12,´6, 0, 6, 12, ¨ ¨ ¨ u. In the 𝑚 “ ˘2 forced
case, the peaks (0.4,0.4,0.8), (0.4,-0.4,0.0), and (1.2,-0.4,0.8) in 𝑚 “ 0 arise from the interactions between 𝑚 “ 2
and 𝑚 “ ´2 at the forcing frequency and its odd harmonics. Local maxima at the same triads are observed for the
self-interaction of 𝑚 “ 2 to generate the 𝑚 “ 4 component. In the [4,2,6] triplet, even harmonics in 𝑚 “ 4 interact
with odd harmonics in 𝑚 “ 2 to generate odd harmonics in the 𝑚 “ 6 component. Similarly, for the 𝑚 “ ˘6 forced jet,
the dominant azimuthal triplets are [6,-6,0], [6,6,12], and [12,6,18]. The first two triplets generate even harmonics,
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t0, 0.8, 1.6, ¨ ¨ ¨ , u, while the third triplet exhibits peaks at odd harmonics, t0.4, 1.2, 2.0, ¨ ¨ ¨ u. The spectra in figures
5(𝑎) and 6(𝑎) are symmetric about the lines 𝑆𝑡1 “ ˘𝑆𝑡2, and the spectra in 5(𝑏) and 6(𝑏) are symmetric about the line
St1 “ St2. The spectra in the 5(𝑐) and 6(𝑐), on the other hand, are asymmetric.

The observations of figures 4, 5, and 6 suggest the following trends for a general 𝑚 “ ˘𝑚 𝑓 -forcing:
1) Even harmonics t0, 2St 𝑓 , 4St 𝑓 , ¨ ¨ ¨ u are generated from azimuthal triplets of the form rp2𝑘1q𝑚 𝑓 , p2𝑘2q𝑚 𝑓 , 2p𝑘1 `

𝑘2q𝑚 𝑓 s and rp2𝑘1 ` 1q𝑚 𝑓 , p2𝑘2 ` 1q𝑚 𝑓 , 2p𝑘1 ` 𝑘2 ` 1q𝑚 𝑓 s , where 𝑘1, 𝑘2 P Z.
2) Odd harmonics tSt 𝑓 , 3St 𝑓 , 5St 𝑓 , ¨ ¨ ¨ u arise from azimuthal triads of the form rp2𝑘1 ` 1q𝑚 𝑓 , p2𝑘2q𝑚 𝑓 , p2p𝑘1 `

𝑘2q ` 1q𝑚 𝑓 s.
3) The cross-BMD spectrum of the triads r𝑚 𝑓 ,´𝑚 𝑓 , 0s exhibits four-fold symmetry about the lines St1 “ ˘St2.
4) The cross-BMD spectrum of the triads r𝑚 𝑓 , 𝑚 𝑓 , 2𝑚 𝑓 s exhibits two-fold symmetry about the line St1 “ St2.
5) The spectra of other triads, such as r2𝑚 𝑓 , 𝑚 𝑓 , 3𝑚 𝑓 s, are asymmetric.
Next, we will understand how the actuation of the jet results in the abovementioned triads. To begin, we express the

Navier-Stokes equation in the following form:

dq
d𝑡

“ Lq ` Qpq, qq. (11)

Here, L represents the linear operator, and Q denotes the quadratic nonlinearities. By taking the Reynolds decomposition,
qpx, 𝑡q “ q̄pxq ` q1px, 𝑡q, and substituting it into the equation (11), we obtain:

dq1

d𝑡
“ Lq̄q1 ` Qpq1, q1q (12)

where, Lq̄ “ L ` Qpq̄, ¨q ` Qp¨, q̄q. When the jet is forced at an angular frequency of 𝜔 𝑓 and azimuthal wavenumbers
˘𝑚 𝑓 , the complex representation of the boundary forcing in equation (7b) is expressed as:

q1
𝑓 9

´

𝑒´𝑖p𝜔 𝑓 𝑡´𝑚 𝑓 𝜃q ` 𝑒´𝑖p𝜔 𝑓 𝑡`𝑚 𝑓 𝜃q
¯

` c.c. (13)

At the 𝑛-th harmonic angular frequency, 𝑛𝜔 𝑓 , the temporal Fourier decomposition of the equation can be written as

𝑖𝑛𝜔 𝑓 q̂𝑛,𝑚 “ Lq̄q̂𝑛,𝑚 ` Q𝑛,𝑚, (14)

where,

Q𝑛,𝑚 “

$

&

%

ř

𝑙

ř

𝑝

Qpq̂𝑙, 𝑝 , q̂𝑛´𝑙,𝑚´𝑝q if 𝑛,𝑚 are even or 𝑛,𝑚 are odd

0 otherwise,
(15)

denotes the non-linear interactions that result in the 𝑛-th harmonic angular frequency and the 𝑚-th azimuthal wavenumber.
Here, in q̂𝑙, 𝑝 , the first subscript denotes the frequency index, and the second subscript denotes the azimuthal wavenumber
index.

For example, the triadic interactions that result in the second harmonic frequency can be written as:

Q2,0 “ Qpq̂1,˘1, q̂1,¯1q ` Qpq̂3,˘1, q̂´1,¯1q ` Qpq̂4,˘2, q̂´2,¯2q ` ¨ ¨ ¨ , (16)
Q2,˘1 “ 0, (17)
Q2,˘2 “ Qpq̂1,˘1, q̂1,˘1q ` Qpq̂3,˘3, q̂´1,¯1q ` Qpq̂4,˘4, q̂´2,¯2q ` ¨ ¨ ¨ , (18)
Q2,˘3 “ 0. (19)

Similarly for the third harmonic frequency,

Q3,0 “ 0, (20)
Q3,˘1 “ Qpq̂1,¯1, q̂2,˘2q ` Qpq̂2,˘2, q̂1,¯1q ` Qpq̂4,˘4, q̂´1,¯3q ` ¨ ¨ ¨ , (21)
Q3,˘2 “ 0, (22)
Q3,˘3 “ Qpq̂2,˘2, q̂1,˘1q ` Qpq̂4,˘4, q̂´1,¯1q ` Qpq̂5,˘5, q̂´2,¯2q ` ¨ ¨ ¨ . (23)
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(0.4,0.0,0.4)

(0.4,0.0,0.4)

(0.4,0.4,0.8)

(0.4,0.4,0.8)

(0.4,0.4,0.8)

(0.8,0.4,1.2)

(0.8,0.4,1.2)

[1,-1,0]

[-1,-1,-2]

[1,1,2]

[2,1,3]

[1,0,1]

(1.2,0.4,1.6)

(1.2,0.4,1.6)[1,1,2]

[1,-1,0]

m=1

m=-1

Fig. 7 Example of a forward cascade of triads for the 𝑚 “ ˘1-forced jet.

Equations (16) - (23) demonstrate that the even harmonics are present in the even integer multiples of 𝑚 𝑓 , while the
odd harmonics are present in the odd integer multiples of 𝑚 𝑓 . This process can be extended to higher harmonics. These
equations explain our findings made in context of figures 2, 4, 5, 6.

Fig. 7 shows the spatial structures involved in the cascade of triads for the 𝑚 “ ˘1-forced jet. The BMD modes in the
frequency range St 𝑓 ď St1 ď 3St 𝑓 and the azimuthal wavenumber range ´1 ď 𝑚1 ď 2 are visualized here. The forcing
initiates the cascade, where 𝑚 “ 1, St “ 0.4 and 𝑚 “ ´1, St “ 0.4 can undergo two possible interactions: (i) they can
interact with each other to generate the 𝑚 “ 0, St “ 0.8 mode through the wavenumber triad r𝑚1, 𝑚2, 𝑚3s “ r´1, 1, 0s

and the frequency triad pSt1, St2, St3q “ p0.4, 0.4, 0.8q; (ii) each of them can self-interact to result in 𝑚 “ 2, St “ 0.8 or
𝑚 “ ´2, St “ 0.8. The generated modes (second column from the left) then interact with fundamental forcing modes
to produce higher harmonics, such as the triad r2, 1, 3s, (0.8, 0.4, 1.2). Similarly, the cascade can be extended to higher
frequencies and azimuthal wavenumbers. The cascade for 𝑚3 ă 0 is symmetric to 𝑚3 ą 0 and is not shown for brevity.
Inspecting the modes reveals that the sum interactions in the frequency space create spatial structures with smaller
wavelengths, while the sum interactions in the azimuthal wavenumber space result in modes with a larger swirl. An
illustration of the cascade in the form of a directed acyclic graph is shown on the left in Fig. 7. Note that the cascade of
triads shown in Fig. 7 is one of the many possible pathways of energy transfer.

Fig. 8 depicts the cascade of triads generated by the 𝑚 “ ˘6-forcing, similar to Fig. 7. The major difference is that
the azimuthal wavenumbers t¨ ¨ ¨ ,´2,´1, 0, 1, 2, ¨ ¨ ¨ u are replaced by t¨ ¨ ¨ ,´12,´6, 0, 6, 12, ¨ ¨ ¨ u, i.e., the odd and
even integers are replaced by the odd and even integer multiples of 6. The higher azimuthal forcing actuates the spatial
structures that are near the nozzle’s exit. The BMD mode resulting from the self-interaction of the forcing, [6,6,12]
and (0.4,0.4,0.8), is also localized to the vicinity of the nozzle’s lip. Though the overall trends are similar, the BMD
modes corresponding to the 𝑚 “ ˘6 forcing exhibit greater swirl compared to the modes of the 𝑚 “ ˘1 forcing. An
interesting observation is that the BMD modes associated with the frequency triads (0.4, 0.4, 0.8) and (1.2, 0.4, 1.6) in
the wavenumber triplet [6, -6, 0] resemble the modes associated with the same frequency triads in the wavenumber
triplet [1, -1, 0] for the 𝑚 “ ˘1-forced jet. This indicates that the different 𝑚 “ ˘𝑚 𝑓 forcings generate the same spatial
structures in the wavenumber triplet r𝑚 𝑓 ,´𝑚 𝑓 , 0s.

V. Summary and Conclusion
Large-eddy simulations of unforced and forced jets are performed and validated with companion experiments. The

jets are forced at a frequency of St “ 0.4 and azimuthal wavenumbers, 𝑚 “ 0, 𝑚 “ ˘1, 𝑚 “ ˘2, and 𝑚 “ ˘6. BMD
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m=1

m=-1

(0.4,0.0,0.4)

(0.4,0.0,0.4)

(0.4,0.4,0.8)

(0.4,0.4,0.8)

(0.4,0.4,0.8)

m=6

m=-6

[6,-6,0]

[-6,-6,-12]

[6,6,12]

[6,0,6]

[12,6,18]

[6,0,6]

(0.8,0.4,1.2)

(0.8,0.4,1.2)

(1.2,0.4,1.6)

(1.2,0.4,1.6)[6,6,12]

[6,-6,0]

Fig. 8 Example of a forward cascade of triads for the 𝑚 “ ˘6-forced jet.

and cross-BMD are performed to investigate the triadic interaction in the forced jets. The analysis reveals that the triadic
interactions due to the actuation occur only in the 𝑚 “ 0 component for the axisymmetrically forced jet, whereas the
triadic interactions occur across different azimuthal wavenumbers for the non-axisymmetrically forced jet. In the case
of the 𝑚 𝑓 “ 0 jet, the prominent azimuthal wavenumber triplet is [0, 0, 0]. The two most dominant triads are due to
the self-interaction of the forcing frequency, rSt 𝑓 , St 𝑓 , 2St 𝑓 s, and due to harmonic-fundamental difference interaction,
p2St 𝑓 ,´St 𝑓 , St 𝑓 q, that scatters energy back into the fundamental. On the other hand, for the non-axisymmetrically
forced jets, different wavenumber triplets are important, such as, r𝑚 𝑓 ,´𝑚 𝑓 , 0s, r𝑚 𝑓 , 𝑚 𝑓 , 2𝑚 𝑓 s, and r2𝑚 𝑓 , 𝑚 𝑓 , 3𝑚 𝑓 s.
The cascade of triads is initiated by the self-interaction of the fundamental frequency, pSt 𝑓 , St 𝑓 , 2St 𝑓 q in the wavenumber
triplets r𝑚 𝑓 ,´𝑚 𝑓 , 0s, r𝑚 𝑓 , 𝑚 𝑓 , 2𝑚 𝑓 s. The resulting triads then interact with the forcing modes to generate the odd
harmonic frequencies in the odd integer multiples of the wavenumber forcing. For instance, the odd harmonic frequency
3St 𝑓 at 3𝑚 𝑓 is created through the frequency triad p2St 𝑓 , St 𝑓 , 3St 𝑓 q and the wavenumber triad r2𝑚 𝑓 , 𝑚 𝑓 , 3𝑚 𝑓 s. The
cascade proceeds in a similar way to generate the even harmonics in the even integer multiples of the wavenumber
forcing. As an example, the 3St 𝑓 at 3𝑚 𝑓 interacts with 𝑆𝑡 𝑓 at 𝑚 𝑓 to generate the fourth harmonic frequency, 4St 𝑓 , in
the fourth integer multiple of the forcing wavenumber, 4𝑚 𝑓 .
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