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ABSTRACT OF THE DISSERTATION

Numerical simulation and spectral modal analysis of nonlinear dynamics and acoustics in
turbulent jets

by
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Professor Oliver T. Schmidt, Chair

Turbulent jets are canonical flows that occur when fluid emerges from an orifice into the

surrounding environment, such as the jet from aircraft engines. As the fluid emerges from the

nozzle, it forms an unstable shear layer that grows very rapidly, forming large-scale coherent

structures, which are the main sources of aft-angle jet noise. The mechanism behind the generation

of jet noise is still not fully understood. Further insights into characteristics of coherent structures

can aid our understanding of turbulence, and in modeling and controlling various mechanisms.

The main foci of this work are: (i) performing high-fidelity numerical simulations of turbulent

jets and extracting physical insights from coherent flow structures, and (ii) developing techniques
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that extract these flow structures from the large dataset generated by these simulations.

In recent years, spectral proper orthogonal decomposition (SPOD) has emerged as a major

tool for extracting coherent structures. In the first part, we extend SPOD for low-rank recon-

struction, denoising, prewhitenening, frequency–time analysis, and gappy-data reconstruction.

Two approaches for flow-field reconstruction are proposed, a frequency-domain approach, and

a time-domain approach. A SPOD-based denoising strategy is also presented, which achieves

significant noise reduction while facilitating drastic data compression. A convolution-based

strategy is proposed for frequency-time analysis that characterizes the intermittency of spatially

coherent flow structures. When applied to the turbulent jet data, SPOD-based frequency–time

analysis reveals that the intermittent occurrence of large-scale coherent structures is directly

associated with high-energy events. Lastly, a new algorithm, gappy-SPOD, is developed that

leverages the space-time correlation of SPOD modes to estimate missing data. Even for highly

chaotic flows with up to 20% missing data, our method facilitates that structures associated with

different time scales are well-estimated in the missing regions. For the cases considered here, it

outperforms established techniques such as gappy-POD and Kriging.

In the second part, we investigate the nonlinear dynamics and controllability of coherent

structures by actuating them. Large-eddy simulations (LES) of two unforced and four forced

jets at Re “ 50,000 and M j “ 0.4 were performed. The two unforced jets include an initially

laminar and a turbulent jet. All four forced jets are turbulent and are forced at the azimuthal

wavenumbers m “ 0, m “ ˘1, m “ ˘2, and m “ ˘6. The unforced and forced jets were validated

with companion experiments. Compared to the turbulent jet, the initially laminar jet develops

later but at a faster rate, which is a result of the vortex pairing in the shear layer. The emphasis of

the analysis is on characterizing the vortex pairing and the associated nonlinear energy transfer.

Here, for the first time, we evaluate the spectral energy budget based on the leading modes of

the SPOD. Our analysis reveals that energy flows from the fundamental to its subharmonic,

resulting in the growth of the subharmonic. These results provide evidence for a previously
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suggested parametric resonance mechanism. In the forced jets, we examine the effect of forcing

using a recently proposed method, bispectral mode decomposition (BMD), which extracts flow

structures associated with nonlinear triadic interactions. We use BMD to construct a cascade

of triads and find that the most dominant triads arise due to fundamental self-interaction and

second-harmonic-fundamental difference interaction. Furthermore, our analysis of the far-field in

the unforced and m “ 0-forced jets sheds light on the crucial role of difference-interactions in the

generation of jet noise.
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Chapter 1

Introduction

1.1 Motivation: Jet noise

Jets are one of the canonical flows that have been of significant interest to fluid dynamics

researchers. They belong to the class of free shear flows that arise when a fluid emerges from

a nozzle into the ambient surroundings. A circular jet transitions from laminar to turbulent at a

Reynolds number of approximately 2000. The Reynolds number is a non-dimensional number

defined as the ratio of the inertial forces to the viscous forces, Re “ ρUD{µ, where ρ is the

density, U is the velocity, D is the diameter, and µ is the dynamic viscosity. Turbulent jets have

a wide range of practical applications, from industrial processes such as mixing and cooling

to environmental phenomena like ocean currents and atmospheric turbulence. Understanding

the complex dynamics of turbulent jets is therefore essential in a variety of fields, including

engineering, physics, and atmospheric science. Many of the jets encountered in nature are

turbulent. One such example is a jet emanating from aircraft engines. The reduction of jet noise

is an important objective for the aviation community, as excessive noise can cause temporary or

permanent hearing loss. The primary motivation for studying turbulent jets, other than scientific

curiosity, is to identify the mechanisms behind the generation of jet noise.
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Lighthill’s eighth power law states that turbulence-generated sound intensity is directly

proportional to the eighth power of airspeed (Lighthill, 1954). One way to reduce jet noise is by

decreasing jet exit velocity, which can be achieved by increasing the bypass ratio of turbofan jet

engines. Commercial turbofan jet engines have already increased their bypass ratio, but there are

design limitations to further increase it. To address this issue, passive and active strategies have

been developed to modify the flow. Passive strategies involve nozzle shape modifications such as

chevrons and tabs, while active strategies involve adding mass or energy to excite flow instabilities

or generate new flow structures. However, these control devices are often designed empirically

and lack a mechanistic understanding that limits their scalability and improvement. In order to

develop effective control strategies for jet noise, it is crucial to have a thorough understanding of

the mechanisms that generate it. As noted by Jordan and Colonius (2013), there are still gaps in

our understanding of jet noise that need to be filled in order to complete the “jigsaw puzzle” of

this complex phenomenon. This dissertation aims to contribute to this effort by identifying and

characterizing the sources and mechanisms of jet noise.

1.2 Sources of jet-noise: Large-scale coherent structures

Jet-noise can be categorized as near-field or far-field noise (Bowes et al., 2009), with the

former referring to noise in the aircraft’s vicinity and the latter to long-range noise beyond the

airfield perimeter. Historically, attention has been focused on far-field noise due to its significant

environmental impact during various flight conditions. Jordan and Colonius (2013) define the

far-field region as a zone far from the vortical, turbulent motions where the wave equation can

be approximated through linearization, and the wave field can be described as spherical waves

originating from a point. Now, there is overwhelming evidence that far-field noise originates from

the near-field of the jet, with the large-scale coherent structures in the shear layer being primarily

responsible for jet noise production (Crow and Champagne, 1971).
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The general process for jets appears to follow this sequence: The high-speed jet generates a

shear layer in the immediate vicinity of the orifice. This shear layer is unstable and grows quickly,

creating ring vortices that further pair up downstream and result in mixing and entrainment (List,

1982, Moore, 1977). The large-scale vortices that exhibit a puff -like structures are the sources of

jet noise (Crow and Champagne, 1971). The pioneering works by Crow and Champagne (1971)

and Brown and Roshko (1974) were the earliest to report the presence of large-scale coherent

structures in turbulent jets and shear layers, respectively. Mollo-Christensen (1967) described

them as intermittent spatial structures, or wavepackets, present in the mixing layer. These

wavepackets were identified as the main source of aft-angle noise Jordan and Colonius (2013).

The acoustic radiation of wavepackets is highly directive and concentrated in the downstream

direction. The directive emission shows an exponential decay at high polar angles θp, or low

jet inlet angle φ j “ 2π ´ θp, correspondingly. This pattern was termed superdirective radiation

by Crighton and Huerre (1990). Cavalieri et al. (2012) have shown that the axisymmetric mode

of the subsonic jets exhibits super-directivity. Tam et al. (2008) suggest that the jet noise in the

downstream direction is associated with the large scales, whereas, in the sideline directions, it is

associated with small-scale turbulence.

Wavepackets and their role in the generation of jet noise have been studied extensively

using various methods of linear stability analysis and other perturbation formulations. Global

stability analyses (Nichols and Lele, 2011, Schmidt et al., 2016), solutions to the parabolized

stability equations (Gudmundsson and Colonius, 2011, Rodriguez et al., 2013, Rodrı́guez et al.,

2013, Sinha et al., 2014) and the one-way Navier-Stokes equations (Rigas et al., 2017) have

consistently identified Kelvin-Helmholtz (KH) instability waves and associated them with down-

stream radiation patterns. Numerical evidence for upstream travelling acoustic wave patterns

in global modes has been presented by Nichols and Lele (2011) and Schmidt et al. (2017b).

Similarly, multi-directive radiation patterns that include sideline and upstream radiation have been

identified using resolvent analysis (Jeun and Nichols, 2018a, Jeun et al., 2016). The validity of
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classical linear stability theory and resolvent analysis applied to mean flows has been confirmed

by comparison with empirical modes obtained from high-fidelity simulation data using spectral

proper orthogonal decomposition (Schmidt et al., 2018, Towne et al., 2018) and conditional

space-time proper orthogonal decomposition (Schmidt and Schmid, 2019). According to the

two-source modeling paradigm (Tam et al., 2008), jet noise in the sideline direction is associ-

ated with scales of dimensions much smaller than the jet diameter, referred to as small-scale

turbulence by the authors. In accordance with the observation of upstream radiation patterns in

modal solutions, as described above, Papamoschou (2018) showed that stochastic wavepacket

models predict far-field noise at both low and high angles. Hence, even in subsonic and ideally

expanded jets where mechanisms leading to upstream propagation of energy may be absent

(Edgington-Mitchell, 2019), these results underpin the notion that large-scale coherent structures

significantly contribute to the sideline and upstream radiation.

In recent years, there has been an upsurge in studies investigating the coherent structures

present in turbulent jets, such as those conducted by Schmidt et al. (2018), Tissot et al. (2017a),

Towne et al. (2018), ?. Three prominent structures have been identified and extracted from these

studies: KH-wavepackets, Orr-wavepackets, and streaks. The discovery of KH-wavepackets dates

back to the works of Brown and Roshko (1974) and Winant and Browand (1974). These structures

are reminiscent of convective instability, where a growing wave becomes neutral and decays

eventually (Crighton and Gaster, 1976). Through resolvent analysis, researchers (Jeun et al.,

2016, Schmidt et al., 2018) have demonstrated that KH wavepackets are initiated in the initial

shear layer and are the most amplified structures from the nozzle’s exit to the end of the potential

core, i.e., 0 ď x ď 6. In contrast, Orr-wavepackets and streaks correspond to non-modal instability

waves. Orr-wavepackets are tilted structures that make an acute angle with the direction of the

mean flow (Schmidt et al., 2018, Tissot et al., 2017a). They originate from the Orr mechanism, in

which vortical structures are initially tilted opposite to the mean shear and are then aligned with

the mean flow upon advection. As the tilt angle decreases from an obtuse angle to 90˝, there is
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algebraic energy growth of the fluctuations, followed by an energy decay when the angle is further

reduced to ă 90˝ (Jiménez, 2018, Lesshafft et al., 2019). Lastly, streaks are elongated regions

of streamwise velocity and are formed due to the lift-up mechanism. Streamwise vortices eject

high-speed fluid from the core of the jet and sweep low-speed fluid from the radially outward

regions, resulting in the formation of streaks. The transient analyses of Jiménez-González and

Brancher (2017) and Nogueira et al. (2019) reveal that the perturbations in the form of streamwise

vortices will undergo the largest growth and evolve into streamwise elongated streaks.

In this thesis, turbulent jets at different Mach numbers are investigated to identify the

most energetic patterns of acoustic radiation to the far-field. Radiation patterns to specific jet inlet

angles are isolated and the source regions of these beams are traced back to the hydrodynamic-

near field. Essentially, the goal is to identify the location of the source of acoustic radiation in

different directions. Our findings have two main implications: (i) KH-wavepackets are the most

significant sources of jet noise, and (ii) the sources of sideline and downstream radiation are

closely connected.

1.3 Modal decompositon techniques

Turbulent flows are characterized by randomness. These flows exhibit an order within

the randomness, consisting of coherent structures. These coherent structures play a vital role in

our understanding of turbulence that helps in modeling and control of various mechanisms, for

example, mitigating jet noise. The role of these structures at different scales becomes even more

significant in flows at higher Reynolds numbers. The extraction of coherent structures and the

curse of dimensionality (see, e.g., Meneveau et al., 1992) in the analysis of large turbulent flow

data has led to the development of a number of modal decomposition techniques (Holmes et al.,

2012).

The primary uses of modal decomposition techniques are to identify the essential features
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of the flow and to represent the data in a lower-dimensional space. Most of these techniques seek

modes that lie in the span of the snapshots that constitute the time-resolved data, and adhere to

certain mathematical properties that define the decomposition. Arguably the most widely used

technique is the proper orthogonal decomposition (POD), introduced by Lumley (1967, 1970).

A specific flavor of POD, the computationally inexpensive method of snapshots (Aubry, 1991,

Sirovich, 1987), decomposes the flow field into spatial modes and temporal coefficients. Its

modes optimally represent the data in terms of its variance, or energy, and are coherent in space

and at zero time lag. The POD is useful because it can capture a significant portion of energy in a

small number of modes, and these modes are orthogonal to each other. Consequently, the POD

has been widely used in model reduction, such as POD-based Galerkin models (Aubry et al.,

1988, Noack et al., 2003, Rowley and Dawson, 2017). However, the information contained in

each POD mode is a combination of different time scales, which makes it harder to interpret the

underlying physics of the problem.

Another popular method is dynamic mode decomposition (DMD, Schmid, 2010), which

is rooted in Koopman theory (Rowley et al., 2009) and assumes an evolution operator that maps

the flow field from one snapshot to its next. The DMD modes are characterized by a single

frequency and linear amplification rate. DMD decomposes the flow field into spatial modes and

temporal coefficients, similar to POD, but unlike POD, it operates on the snapshots of the data and

does not require the modes to be orthogonal to each other. DMD seeks modes that have a coherent

spatiotemporal structure and evolve in time at a fixed frequency, which makes it particularly

useful for studying systems that exhibit periodic or quasi-periodic behavior. The technique has

been applied to a wide range of problems in fluid mechanics, such as turbulence (Schmid, 2010,

Towne et al., 2018), flow control (Dawson et al., 2016, Proctor et al., 2016, Rowley et al., 2009),

stratified flows (Nidhan et al., 2019, Ohh and Spedding, 2022), and reactive flows Schmid (2011).

We refer to the review by Schmid (2022) for details on dynamic mode decomposition and its

variants.
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Spectral proper orthogonal decomposition (SPOD) is the frequency-domain variant of

POD and computes modes as estimates of the eigenvectors of the cross-spectral density (CSD)

matrix. At each frequency, SPOD yields a set of orthogonal modes, ranked by energy. The

mathematical framework underlying SPOD was first outlined by Lumley (1967, 1970). Early

implementations of SPOD include Arndt et al. (1997), Citriniti and George (2000), Delville (1994),

Glauser and George (1992), Glauser et al. (1987), Picard and Delville (2000) and Gordeyev and

Thomas (2000). For statistically stationary flows, Towne et al. (2018) have demonstrated that

SPOD combines the advantages of POD, namely optimality and orthogonality, and DMD, namely

temporal monochromaticity. SPOD also decouples the different time -scales of the flow which is

helpful for understanding the flow dynamics and deriving non-empirical models. A number of

studies showed that the dominant dynamics is often accurately captured by only a few modes

(Citriniti and George, 2000, Glauser et al., 1987, Jung et al., 2004, Nidhan et al., 2020, 2022,

Schmidt et al., 2018, Towne et al., 2018). Experimentally, Glauser et al. (1987), Citriniti and

George (2000) and Jung et al. (2004) showed that a large fraction of the kinetic energy is contained

in the first three SPOD modes. Recently, Schmidt et al. (2018) applied SPOD to high-fidelity

simulation data of turbulent jets in the subsonic, transonic, and supersonic regimes. The authors

give a detailed account of the Kelvin-Helmholtz and the Orr-type instability mechanisms that

dominate the initial shear-layer and the region downstream of the potential core, respectively.

SPOD has also been used to analyze a number of turbulent flows, including jets (Arndt et al.,

1997, Gamard et al., 2004, Jung et al., 2004, Pickering et al., 2020, Schmidt et al., 2018), the wake

behind a disk (Ghate et al., 2020, Johansson and George, 2006a, Johansson et al., 2002, Nidhan

et al., 2020), pipe flows (Hellström et al., 2015, 2016, Hellström and Smits, 2014, 2017), and

channel flows (Muralidhar et al., 2019). Recently it has also been extended for frequency-time

analysis, gappy data reconstruction, and low-order modelling (Chu and Schmidt, 2021). In this

work, we will show how SPOD can be extended for different applications. We will also employ

SPOD to extract the dominant dynamics of the flow.
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Another technique of interest is bispectral mode decomposition (BMD). In this dissertation,

we excite the jets harmonically, which results in peaks at the forcing frequency and its harmonics.

We employ BMD to characterize the nonlinear triadic interactions that are triggered by the forcing.

Bispectral mode decomposition, proposed by Schmidt (2020), extracts the flow structures that

are generated through triadic interactions. It identifies the most dominant triads in the flow by

maximizing the spatially-integrated bispectrum. Furthermore, it picks out the spatial regions of

nonlinear interactions between the coherent structures. BMD has been used to characterize triadic

interactions in various flow configurations, such as laminar-turbulent transition on a flat plate

(Goparaju and Gaitonde, 2022), forced jets (Maia et al., 2021a, Nekkanti et al., 2022), swirling

flows (Moczarski et al., 2022), bluff body wakes (Nekkanti et al., 2023), and the wake of an

airfoil (Patel and Yeh, 2023). Later in this work, we will also generalize this to the convective

term in the Navier-Stokes equations to identify the direction of non-linear energy transfer.

The techniques discussed so far are inherently data-driven, i.e., they are based on op-

timizing second or third-order statistics. On the other hand, modal decomposition techniques,

such as global linear stability analysis (Nichols and Lele, 2011) and resolvent analysis (McKeon

and Sharma, 2010), take into account the linearized form of the governing equations. Global

linear stability analysis converts the linearized equations of motion (initial-value problem) into

an eigenvalue problem with respect to the base flow. The solution to this eigenvalue problem

provides information on the spectrum of the linearized Navier-Stokes operator as t Ñ 8. The

resolvent operator, also based on the linearized equations, serves as a transfer function between

the nonlinear forces and the corresponding responses. There exists a connection between SPOD

and resolvent analysis. Towne et al. (2018) have shown that the SPOD modes and resolvent

response modes are identical if the resolvent forcing modes are uncorrelated. For a comprehensive

summary of various modal techniques, we refer the reader to the reviews by Taira et al. (2017)

and Rowley and Dawson (2017).
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1.4 Contribution and outline

The contributions of this thesis are divided into two parts. The first part focuses on

the development of modal decomposition techniques, and the second part investigates the flow

physics of turbulent jets. A summary of the contributions to these two aspects is listed below,

which also serves as an outline for the remainder of the thesis.

1.4.1 Development of modal decomposition techniques for turbulent flows

In chapter 2 (Nekkanti and Schmidt, 2021a), we extend SPOD to four different applica-

tions: low-rank reconstruction, denoising, frequency–time analysis, and prewhitening. These

are demonstrated on large-eddy simulation data of a turbulent jet. We propose two approaches,

a frequency-domain and a time-domain approach, for low-rank reconstruction. The former is

accomplished by a using direct inversion of the SPOD algorithm whereas the latter is based

on the projection of the time series data onto the modes. We further present a SPOD-based

denoising strategy that is based on hard thresholding of the SPOD eigenvalues. The proposed

strategy achieves significant noise reduction while facilitating drastic data compression. Finally, a

convolution-based strategy is proposed to compute the time-continuous expansion coefficients,

which yields a spectrogram that characterizes the temporal evolution of spatially coherent flow

structures. In contrast to standard methods of frequency–time analysis such as wavelet transform,

this method characterizes the intermittency of the spatially coherent flow structures.

Chapter 3 (Nekkanti and Schmidt, 2023), focuses on the development of a new algorithm

to reconstruct gaps or missing data in the flow field. Experimental measurements often suffer

from gaps or other types of undesired artifacts. To reconstruct flow data in the compromised or

missing regions, a data completion method based on spectral proper orthogonal decomposition is

developed. The algorithm leverages the temporal correlation of the SPOD modes with preceding

and succeeding snapshots, and their spatial correlation with the surrounding data at the same
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time instant. For each gap, the algorithm first computes the SPOD of the remaining, unaffected

data. In the next step, the compromised data are projected onto the basis of the SPOD modes.

This corresponds to a local inversion of the SPOD problem and yields expansion coefficients

that permit the reconstruction in the affected regions. This local reconstruction is successively

applied to each gap. After all gaps are filled in, the procedure is repeated in an iterative manner

until convergence. This method is demonstrated on two examples: direct numerical simulation

of laminar flow around a cylinder and time-resolved PIV data of turbulent cavity flow obtained

by Zhang et al. (2019). Randomly added gaps that correspond to 1%, 5%, and 20% of data loss

are considered. Even for 20% data corruption and in the presence of measurement noise in the

experimental data, the algorithm recovers 97% and 80% of the original data in the corrupted

regions of the simulation and PIV data, respectively. Our method outperforms other established

methods such as gappy POD and Kriging.

1.4.2 Investigating the flow physics of turbulent jets

In chapter 4 (Nekkanti and Schmidt, 2021b), we investigate the directivity of three large-

eddy simulations of turbulent jets at Mach 0.7, 0.9, and 1.5. The most energetic patterns of

acoustic radiation are extracted using the far-field pressure 2-norm. Specialization of the norm to

the far field is accomplished through localized spatial weighting. Radiation patterns to specific jet

inlet angles are isolated by further restricting the spatial weighting to small rectangular regions in

the far field. We find that the most energetic radiation pattern for all cases and relevant frequencies

is a single superdirective acoustic beam in the downstream direction. The source region of these

beams is traced back to the end of the potential core for low frequencies and the shear-layer region

for higher frequencies. In the sideline direction, to low jet angles, the acoustic patterns consist of

beams that propagate upstream or perpendicular to the jet axis. The sideline radiation patterns

originate from the same source locations as the dominant superdirective beams. We also find that

the sideline radiation is directly linked to directive downstream radiation. Up until now, it has
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been suggested by Tam et al. (2008) that the downstream radiation arises from the large-scale

structures, whereas the sideline radiation is caused by the fine-scale structures. In contrast to this,

our findings reveal that the large-scale coherent structures are the sources of both the sideline and

downstream radiation.

In chapter 5 (Nekkanti et al., 2022), we perform large-eddy simulations of a turbulent

unforced jet at Re “ 50,000 and M j “ 0.4, and jets forced at azimuthal wavenumbers m “ 0,

m “ ˘1, m “ ˘2 and m “ ˘6. We validate the LES with the companion experiments at the

Institut Pprime. The objective of this study is to characterize the nonlinear interactions that are

initiated by the forcing. To achieve this, we used the bispectral mode decomposition (BMD)

technique, which is tailored to extract flow structures associated with triadic interactions. The

analysis reveals that triadic interactions in both forced and unforced jets are most prevalent in

a well-defined region near and downstream of the closure of the potential core. Axisymmetric

forcing generates peaks at the forcing frequency and its harmonics in the m “ 0 component

only, whereas non-axisymmetric forcing generates peaks at different azimuthal wavenumbers.

The latter aspect is investigated using cross-BMD. Forcing the jet at m “ ˘1, the only odd-m

forcing case considered, creates a cascade of triads that generates peaks at the forcing frequency

and its odd harmonics at odd azimuthal wavenumbers and even harmonics at even azimuthal

wavenumbers. Forcing the jet at m “ ˘m f azimuthal wavenumbers produces peaks at the odd

harmonics in the odd integer multiples of m f and at even harmonic frequencies in the even

integer multiples of m f . A BMD analysis of far-field pressure sheds light on the previously

reported observation that difference-interactions are more efficient radiators of jet noise than the

sum-interactions.

In chapter 6, we perform large-eddy simulations of a turbulent and initially-laminar

jet. Compared to the turbulent jet, the initially-laminar jet develops later but at a faster rate,

resulting in a shorter potential core length and a hump in the RMS velocity along the centerline.

We find that this is due to a stronger vortex-pariing in the shear-layer of the initially-laminar

11



jets. Here, our focus is on characterizing the vortex-pairing and the associated energy transfer.

During this process, two sets of vortex pairing occur (i) two vortices of St “ 1.76 pair to form

an St “ 0.88 vortex, and (ii) two St “ 0.88 vortices pair to form an St “ 0.44 vortex. Using local

stability theory, we identify the fundamental as the most unstable frequency, which is St “ 1.76.

Next we compute the spectral energy budget, based on the leading modes of the spectral proper

orthogonal decomposition, which reveals that energy is transferred from the fundamental to its

subharmonic, resulting in the growth of the subharmonic. This transfer was found to be caused by

the most dominant triads of (St1,St2,St3) = (1.76,-0.88,0.88) and (0.88,-0.44,0.44). Our results

are consistent with previous work by Monkewitz (1988), which demonstrated that the transfer

was due to a resonance mechanism between the fundamental and subharmonic frequencies.
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Part I

Development of modal decomposition

techniques for turbulent flows
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Chapter 2

Extension of SPOD for different

applications: Low-rank reconstruction,

denoising, frequency-time analysis, and

prewhitening

2.1 Introduction

In the past, SPOD has been used to analyze a number of turbulent flows, including jets

(Arndt et al., 1997, Gamard et al., 2002, 2004, Gordeyev and Thomas, 2000, 2002, Iqbal and

Thomas, 2007, Jung et al., 2004, Nekkanti and Schmidt, 2021b, Pickering et al., 2020, Schmidt

et al., 2018, Tinney et al., 2008a,b), the wake behind a disk (Ghate et al., 2020, Johansson and

George, 2006a,b, Johansson et al., 2002, Nidhan et al., 2020, Tutkun et al., 2008), pipe flows

(Hellström et al., 2015, 2016, Hellström and Smits, 2014, 2017), and channel flows (Muralidhar

et al., 2019). Several studies have shown that a significant amount of energy is captured by the

first few modes at each frequency. For jets and disk wakes, Glauser et al. (1987), Citriniti and
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George (2000), Jung et al. (2004), Johansson and George (2006b), Tinney et al. (2008b) have

shown that the leading mode and first three modes capture at least 40%, and 80% of the total

energy, respectively. The above studies have on common that SPOD modes and eigenvalues are

interpreted directly as physical structures and energies. The applications shown in this work,

however, require a full or partial reconstruction of the data in the time domain (often after a

manipulation of the expansion coefficients in the frequency domain). Partial reconstructions of

the flow field from SPOD were previously shown by Citriniti and George (2000), Tinney et al.

(2008b), and more recently, by Ghate et al. (2020). We demonstrate low-rank reconstruction

using two approaches. One is by inverting the SPOD algorithm, which was previously employed

by Citriniti and George (2000) in a similar manner, and for which we present an alternative means

of computation based on convolution in the time domain. The other one is by taking an oblique

projection of the data on the SPOD modes. The advantages and disadvantages of both approaches

for different applications are discussed.

The first of these applications is denoising. Most experimental flow field data exhibit

measurement noise that hampers the physical analysis. The computation of spatial derivatives

required for quantities like the vorticity or strain rate, for example, leads to particularly large

errors. Another difficulty is that physically relevant small-scale structures may be concealed

by the noise. The most wide-spread experimental technique for multi-dimensional flow field

measurement is particle image velocimetry (PIV). Common techniques to remove noise from PIV

data include spatial filtering (Discetti et al., 2013), temporal filtering based on Fourier truncation,

and POD-based techniques (Brindise and Vlachos, 2017, Raiola et al., 2015). Spatial filters are

typically based on Gaussian smoothing (Discetti et al., 2013). Different temporal filters such as

median filters (Son and Kihm, 2001), Hampel filters (Fore et al., 2005), Wiener filters (Vétel et al.,

2011), and band-pass filters (Sciacchitano and Scarano, 2014) have been used for denoising PIV

data. A comparison of different spatial and temporal filters is presented, for example, in Vétel

et al. (2011). As an alternative to these standard techniques, POD reconstruction has been used as
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a means of denoising through mode truncation. Low-dimensional reconstructions from standard

POD have been applied for this purpose to flows past a backward-facing step (Kostas et al., 2005),

arterial flows (Brindise et al., 2017, Charonko et al., 2010), turbulent wakes (Raiola et al., 2015),

and vortex rings (Brindise and Vlachos, 2017, Stewart and Vlachos, 2012). In this contribution,

we demonstrate the use of SPOD for denoising on surrogate data obtained by imposing high

levels of additive Gaussian noise on simulation data. We demonstrate that SPOD-based denoising

combines certain advantages of temporal filters and standard POD-based denoising.

Due to their chaotic nature, turbulent flows are characterized by high levels of intermit-

tency. A common tool for the analysis of intermittent behaviour is frequency-time analysis, that is,

the representation of the frequency content of a time signal as a function of time. This representa-

tion is particularly well-suited to identify events such as short-time interval of high or low energy,

and identify their wave characteristics, i.e., frequencies or wavenumbers. Frequency-time analysis

can be performed using several different signal-processing tools such as wavelet transforms (WT)

(Farge, 1992), the short-time Fourier transform (STFT) (Cohen, 1995), the S-transform (Stockwell

et al., 1996), the Hilbert-Huang transform (Huang et al., 1998), and the Wigner-Ville distribution

(Boashash, 1988). Short-time Fourier and wavelet transforms are arguably the most widely used

techniques in fluid mechanics. Frequency-time diagrams obtained from these methods are gener-

ally referred to as spectrograms, or as scalograms for wavelet transforms. STFT performs Fourier

transforms on consecutive short segments of a time signal. It has been used, for example, in the

analysis of blood flows (Izatt et al., 1997, Zhang et al., 2003), magnetohydrodynamics (Bale et al.,

2005), aerodynamics (Samimy et al., 2007a), and physical oceanography (Brown et al., 1989).

The wavelet transform is based on the convolution of the time signal with a compact waveform,

the so-called mother wavelet, that is scaled to represent different frequencies. Typical applications

of the WT are found in atmospheric science (Gu and Philander, 1995), oceanography (Meyers

et al., 1993), and, most importantly for the present work, turbulence research (Farge, 1992). In the

latter context, they have been used to extract coherent structures (Farge et al., 2001, 1999), and
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analyze their intermittency (Camussi, 2002, Camussi and Guj, 1997, Onorato et al., 2000). All

methods mentioned above are signal-processing techniques that are applied to one-dimensional

data. Here, we expand on the ideas of Schmidt et al. (2017a) and Towne and Liu (2019), and

analyse the intermittency of the entire flow field. The underlying idea is that the global dynamics

of the entire flow field can be described in terms of a limited set of statistically prevalent, most

energetic coherent flow structures. For statistically stationary flows, such structures are distilled

by the SPOD, and their temporal dynamics are described by the SPOD expansion coefficients.

Since SPOD is a frequency-domain technique, this idea leverages the fact that each SPOD mode

is associated with a single frequency. Based on the two reconstruction techniques mentioned

above, we apply analyze and compare two variants of SPOD-based frequency-time analysis. The

frequency-domain approach relies on direct inversion of the SPOD algorithm and was previously

demonstrated by Towne and Liu (2019). This approach, however, becomes computationally

intractable even for moderate-sized, two-dimensional data. We show that this problem can be

avoided by the convolution-based approach introduced herein.

Prewhitening is post-processing technique for trend detection that is commonly used in the

atmospheric and geophysical sciences. It was first proposed by von Storch (1995). Prewhitening

was used, for example, for the detection of trends in temperature and precipitation data (Zhang

et al., 2001), rainfall (Lacombe et al., 2012), teleconnections (Rodionov, 2006), and hydrological

flows (Khaliq et al., 2009, Serinaldi and Kilsby, 2015). Technically, prewhitening is achieved by

a filtering operation that results in a flat power spectrum to remove serial correlations. We show

two different SPOD-based ways to achieve this goal in the frequency domain.

The remainder of this paper is organized as follows. § 2.2 describes the two techniques

for SPOD-based flow field reconstruction. In § 2.2.2.2, we demonstrate these techniques on

numerical data of a turbulent jet. The four different applications, SPOD-based low-dimensional

reconstruction, denoising, frequency-time analysis, and prewhitenening are demonstrated in § 2.3,

§ 2.4, § 2.5, and § 2.6, respectively. § 2.7 summarizes this work.
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2.2 Methodology

2.2.1 Spectral proper orthogonal decomposition (SPOD)

In the following, we provide an outline of a specific procedure of computing the SPOD

based on Welch’s method (Welch, 1967) and emphasize aspects that are important in the context

of data reconstruction. Refer to the work of Towne et al. (2018) for details of the derivation and

mathematical properties and Schmidt and Colonius (2020) for a practical introduction to the

method.

Given a fluctuating flow field qi “ qptiq, where i “ 1, ¨ ¨ ¨ ,nt , that is obtained by subtracting

the temporal mean q̄ from each snapshot of the data, we start by constructing a snapshot matrix

Q “ rq1,q2, ¨ ¨ ¨ ,qnt s. (2.1)

Note that multi-dimensional data is cast into the form of a vector qi of length n, corresponding to

the number of variables times the number of grid points. The instantaneous energy of each time

instant, or snapshot, is expressed in terms of a spatial inner product

}q}
2
x “

〈
q,q

〉
x “

ż

Ω

q˚
px1, tqWpx1

qqpx1, tqdx1, (2.2)

where W is a positive-definite Hermitian matrix that accounts for the component-wise weights,

Ω the spatial domain of interest, and p.q˚ denotes the complex conjugate. The common form

of space-only POD is obtained as the eigendecomposition of QQ˚W and yields modes that are

optimal in terms of equation (2.2). SPOD, however, specializes POD to statistically stationary

processes and seeks modes that are optimal in terms of the space-time inner product

}q}
2
x,t “

〈
q,q

〉
x,t “

ż 8

´8

ż

Ω

q˚
px1, tqWpx1

qqpx1, tqdx1dt. (2.3)
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For statistically stationary data, it is natural to proceed in the frequency domain and solve the POD

eigenvalue problem for Fourier transformed two-point space-time correlation matrix, that is, the

cross-spectral density matrix. To estimate the CSD, the data is segmented into nblk overlapping

blocks with nfft snapshots in each of them.

Qpkq
“

”

qpkq

1 ,qpkq

2 , ¨ ¨ ¨ ,qpkq
nfft

ı

(2.4)

If the blocks overlap by novlp snapshots, the j-th column in the k-th block is given by

qpkq

j “ q j`pk´1qpnfft´novlpq`1. (2.5)

Each block is considered as a statistically independent realization of the flow under the ergodic

hypothesis. The motive behind the segmentation of data is to increase the number of ensemble

members. In practice, a windowing function is applied to each block to reduce spectral leakage.

In this study, we use the symmetric hamming window

wpi ` 1q “ 0.54 ´ 0.46cos
ˆ

2πi
nfft ´ 1

˙

for i “ 0,1, ¨ ¨ ¨ ,nfft ´ 1. (2.6)

Following best practices established by Harris (1978), we only apply windowing for overlapping

blocks to avoid excessive loss of information at the boundaries, i.e, if novlp ‰ 0. Subsequently,

the weighted temporal discrete Fourier transform,

q̂pkq

j “ F
!

wp jqqpkq

j

)

, (2.7)

is performed on each windowed block to obtain the Fourier-transformed data matrix,

Q̂pkq
“

”

q̂pkq

1 , q̂pkq

2 , ..., q̂pkq
nfft

ı

, (2.8)
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where q̂pkq

i denotes the k-th Fourier realization at the i-th discrete frequency. Next, we reorganize

the data by frequency. The matrix containing all realizations of the Fourier transform at the l-th

frequency reads

Q̂l “

”

q̂p1q

l , q̂p2q

l , ...q̂pnblkq

l

ı

. (2.9)

From this form, the SPOD modes, Φ, and associated energies, λ, can be computed as the

eigenvectors and eigenvalues of the CSD matrix Sl “ Q̂lQ̂˚
l . In practice, the number of spatial

degrees of freedom, n, is often much larger than number of realizations. In that case, it is more

economical to solve the analogous eigenvalue problem

1
nblk

Q̂˚
l WQ̂lΨl “ ΨlΛl (2.10)

for the coefficients ψ that expand the SPOD modes in terms of the Fourier realizations. In terms

of the column matrix Ψl “ rψ
p1q

l ,ψ
p2q

l , ¨ ¨ ¨ψ
pnblkq

l s, the SPOD modes at the l-th frequency are

recovered as

Φl “
1

?
nblk

Q̂lΨlΛ
´1{2
l . (2.11)

The matrices Λl “ diagpλ
p1q

l ,λ
p2q

l , ¨ ¨ ¨ ,λ
pnblkq

l q, where by convention λ
p1q

l ě λ
p2q

l ě ¨¨ ¨ ě λ
pnblkq

l , and

Φl “ rϕ
p1q

l ,ϕ
p2q

l , ¨ ¨ ¨ ,ϕ
pnblkq

l s contain the SPOD energies and modes, respectively. By construction,

the SPOD modes are orthogonal in the space-time inner product, equation (2.3). At any given

frequency, the modes are also orthogonal in the spatial inner product, equation (2.2).

2.2.2 Data reconstruction

In §2.2.2.1, we show how the data can be reconstructed in the frequency-domain, that is,

the inversion of the SPOD. An alternative approach based on (oblique) projection in the time

domain is presented in §2.2.2.2. Whether one approach or the other is preferred depends on the
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specific application. Detailed discussions for each application under consideration in this work

can be found in §2.2.2.2. We will use the term frequency-domain if the expansion coefficients are

computed using the inversion of the SPOD problem, equation (2.13), and time-domain if oblique

projection, equation (2.19), is used.

2.2.2.1 Reconstruction in the Frequency Domain

The common feature of the different applications of the SPOD considered in this study is

that they require truncation or re-weighting of the SPOD basis. In practice, this is achieved by

modifying the expansion coefficients. The original realizations of the Fourier transform at each

frequency can be reconstructed as

Q̂l “ ΦlAl, (2.12)

where Al is the matrix of expansion coefficients,

Al “
?

nblkΛ
1{2
l Ψ˚

l “ Φ˚
l WQ̂l. (2.13)

Equation (2.13) shows that the expansion coefficients can either be saved during the computation

of the SPOD or be recovered later by projecting the Fourier realizations onto the modes. In

the following, we omit the frequency index l with the understanding that the SPOD eigenvalue

problem is solved at each frequency separately. From equation (2.12), it can be inferred that each

column of the matrix

A “

»

—

—

—

—

—

—

—

–

a11 a12 ¨ ¨ ¨ a1nblk

a21 a22 ¨ ¨ ¨ a2nblk

...
... . . . ...

anblk1 anblk2 ¨ ¨ ¨ anblknblk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.14)

contains the expansion coefficients that allow for the reconstruction of a specific Fourier realization

from the SPOD modes. Vice versa, the coefficients contained in each row of A can be used to
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Figure 2.1: Schematic representation of overlapping blocks, Hamming window, and the SPOD
parameters such as nt , nfft, novlp and nblk. The left, and right blocks are denoted using blue, and
red lines, respectively. The vertical line corresponds to the snapshot number 210, and the blue
and red circles indicate the corresponding value of the window function.

expand a specific SPOD mode in terms of the Fourier realizations. This can most easily be seen

by rewriting equation (2.12) as Φl “ 1
nblk

Q̂lA˚
l Λ

´1
l . The Fourier-transformed data of the k-th

block can be reconstructed as

Q̂pkq
“

»

–

˜

ÿ

i

aikϕ
piq

¸

l“1

,

˜

ÿ

i

aikϕ
piq

¸

l“2

, ¨ ¨ ¨ ,

˜

ÿ

i

aikϕ
piq

¸

l“nfft

fi

fl. (2.15)

The original data in the k-th blocks Qpkq can now be recovered using the inverse (weighted)

Fourier transform,

qpkq

j “
1

wp jq
F ´1

!

q̂pkq

j

)

. (2.16)

Reconstructing the time series from the reconstructed data segments concludes the inversion of

the SPOD.

A schematic of the windowing and blocking strategy is shown in figure 2.1. The use of

overlapping blocks leads to an ambiguity in the reconstruction as the i-th snapshot can either

be obtained from the k-th block as qpkq

j , or from the pk ` 1q-th block as qpk`1q

j`novlp´nfft
. Different

possibilities to remove this ambiguity are described in appendix 2.A. Based on this discussion,

snapshots are reconstructed as averages of two reconstructions from overlapping blocks, weighted
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by the relative value of their windowing function. Partial reconstructions in the frequency-domain

are readily achieved by zeroing the expansion coefficients of specific modes prior to applying the

inverse Fourier transform.

2.2.2.2 Reconstruction in the Time Domain

As an alternative to the reconstruction in the frequency domain, we present in the following

a projection-based approach in the time domain. This approach is computationally efficient, and

has the advantage that it can be applied to new data that was not used to compute the SPOD

and to individual snapshots. However, the time-domain reconstruction does not leverage the

orthogonality of the SPOD modes in the space-time inner product. Instead, it is based on an

oblique projection of the data onto the modal basis. We start by representing the data as a linear

combination of the SPOD modes as

Q « Φ̃Ã. (2.17)

The matrix Φ̃ contains the basis of SPOD modes at all frequencies. Arranging the basis vectors

by frequency first, we write

Φ̃ “

”

ϕ
p1q

1 ,ϕ
p2q

1 , ¨ ¨ ¨ ,ϕ
pnblkq

1 ,ϕ
p1q

2 ,ϕ
p2q

2 , ¨ ¨ ¨ ,ϕ
pnblkq

2 , ¨ ¨ ¨ ,ϕ
p1q
nfft ,ϕ

p2q
nfft , ¨ ¨ ¨ ,ϕ

pnblkq
nfft

ı

. (2.18)

Assuming that Φ̃ has full column rank, the matrix of expansion coefficient is obtained from the

weighted oblique projection

Ã “
`

Φ̃˚WΦ̃
˘´1

Φ̃˚WQ. (2.19)

The oblique projection is required as SPOD modes at different frequencies are not orthogonal in

the purely spatial inner product, x¨, ¨yx, defined in equation (2.2). We furthermore use a weighted

oblique projection based on the weight matrix W to guarantee compatibility with this inner
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product. Using the oblique projection, a single snapshot q “ qpx, tq is represented in the SPOD

basis as

q̃ “ Φ̃
`

Φ̃˚WΦ̃
˘´1

Φ̃˚Wq, (2.20)

and the entire data is recovered as

Q̃ “ Φ̃Ã. (2.21)

In the case where Φ̃ is rank deficient or ill-conditioned, Φ̃˚WΦ̃ is not invertible. For a generally

rank-r matrix, we perform the symmetric eigenvalue decomposition,

Φ̃˚WΦ̃ “ UDU˚, with U “ rU1 U2s , D “

»

—

–

D1 0

0 0

fi

ffi

fl

, (2.22)

where D1 “ diagpd1,d2, ¨ ¨ ¨ ,drq with d1 ě d2 ě ¨¨ ¨ ě dr ą 0 is the diagonal matrix of (numerically)

non-zero eigenvalues and U1 is the corresponding matrix of orthonormal eigenvectors. In some

applications, we desire a more aggressive truncation to rank k ă r. For full-rank reconstructions,

we use a truncation threshold of dk
d1

“ 10´6 in this work. Denoted by

Ãtku “ UtkuD´1
tku

U˚
tkuΦ̃

˚WQ (2.23)

is the rank-k approximation of Ã, where Dtku “ diagpd1,d2, ¨ ¨ ¨ ,dkq and Utku “ ru1,u2, ¨ ¨ ¨ ,uks.

In the truncated basis, UtkuD´1
tku

U˚
tku

approximates
`

Φ̃˚WΦ̃
˘´1. In the following, we demonstrate

how the above and other truncation and partial reconstruction strategies can be used to achieve a

number of objectives in the processing of flow data.

24



Applications of SPOD: Low-rank reconstruction, denoising,

frequency-time analysis, and prewhitening

In this section, four different uses of SPOD-based applications are introduced and demon-

strated on the example of a turbulent jet. The theoretical background of each applications is

presented in the context of the jet. In particular, low-dimensional reconstruction is discussed in

§2.3, denoising in §2.4, frequency-time analysis in §2.5, and prewhitening in §2.6 respectively.

We consider the LES data of an isothermal subsonic turbulent jet, the Reynolds number,

Mach number and temperature ratio are defined as Re “ ρ jU jD{µ j “ 0.45 ˆ 106, M j “ U j{c j “

0.4 and Tj{T8 “ 1.0, respectively, where ρ is the density, U velocity, D nozzle diameter, µ

dynamic viscosity, c speed of sound, and T temperature. The subscripts j and 8 refer to the jet

inlet and free-stream conditions, respectively. We use the large-eddy simulation data computed

by Brès and Lele (2019). The simulation was performed using the compressible flow solver

‘Charles’ (Brès et al., 2017) on an unstructured grid using a finite-volume method. The reader

is referred to Brès et al. (2018, 2019) for further details on the numerical method. The LES

database consists of 10,000 snapshots sampled at an interval of ∆tc8{D “ 0.2 acoustic time units.

Data interpolated on a cylindrical grid spanning x,r P r0,30s ˆ r0,6s is used in this analysis. The

flow is non-dimensionalized by the nozzle exit values, namely, velocity by U j, pressure by ρ jU2
j ,

length by the nozzle diameter D, and time by D{U j. Frequencies are reported in terms of the

Strouhal number St “ f D{U j. For simplicity, and without loss of generality, we perform our

analysis only on the pressure field in what follows. Refer to Freund and Colonius (2009) for

analysis on different energy norms and POD modes of a jet. We further exploit the rotational

symmetry of the jet and consider individual azimuthal Fourier components. The helical (m “ 1)

component provides an example of complex data.

To determine the spectral estimation parameters for the SPOD, we follow the guidelines

provided in Schmidt and Colonius (2020) and Schmidt et al. (2018), which, in turn, follow

25



Figure 2.2: SPOD spectra of the turbulent jet for m “ 1. All eigenvalues (gray lines) and the
sum of all eigenvalues (red line), corresponding to the integral PSD, are shown. The normalized
cumulative energy content and the percentage of energy accounted by each mode as a function
of frequency are shown in (b) and (c), respectively. The solid and dashed white lines indicate
the number of modes required to retain 90% and 50% energy at each frequency.

26



standard practice in spectral estimation. The SPOD is computed for blocks containing nfft “ 256

snapshots with 50% overlap, resulting in a total number of nblk “ 77 blocks. A 50% overlap is

used to minimize the variance of the spectral estimate (Welch, 1967).

Since SPOD yields one set of eigenpairs per frequency, we may investigate the contri-

butions of different frequencies independently. The SPOD eigenvalues are represented in the

form of a spectrum, reminiscent to a power spectrum, in figure 2.2(a). Gray lines of decreasing

intensity connect eigenvalues of constant mode number and decreasing mode energy. The first,

most energetic mode is shown in magenta. The red line represents the sum of all eigenvalues

and corresponds to the power spectral density (PSD) integrated over the physical domain. This

line of the integral total energy can be compared to truncated sums of eigenvalues, that is, the

energy contained in reconstructions of different ranks. As the eigenvalues are sorted by energy,

the lines corresponding to the truncated sums of the leading 3 and 10 eigenvalues fall between

the leading-eigenvalue spectrum and the total energy curve. Figure 2.2(b) shows the normalized

cumulative energy content, independent of frequency. The first and the leading 10 modes contain

30% and 80% of the total energy, respectively. Figure 2.2(c) shows the percentage of energy

accounted for by each mode as a function of frequency. At low frequencies, the first few modes

contain a high percentage of energy, whereas the energy is more dispersed at higher frequencies.

The solid and dashed white lines indicate the number of modes required to retain 50% and 90%

of the total energy at each frequency.

The first and second modes at two representative frequencies are shown in figure 2.3. The

frequency St “ 0.5 corresponds to the maximum difference between first and second eigenvalues.

The leading mode at this frequency shows a Kelvin-Helmholtz wavepacket (Gudmundsson and

Colonius, 2011, Schmidt et al., 2018, Suzuki and Colonius, 2006) in the shear layer of the jet. A

similar, but a more compact wavepacket structure is observed at St “ 1.0. The suboptimal mode

at both frequencies exhibit a multi-lobed wavepacket structure, whose amplitude peaks in near

the end of the potential core at x « 6. The reader is referred to Schmidt et al. (2018) and Tissot
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Figure 2.3: SPOD modes at St “ 0.5 (a,b) and at St “ 1.0 (c,d). The leading modes are shown
in (a,c) and the suboptimal modes are shown in (b,d).

et al. (2017a) for a physical discussion of this observation and the link to non-modal instability.

In the present context, our preliminary interest is in the desirable mathematical property of the

SPOD that guarantee that the modes optimally represent the turbulent flow field in terms of the

space-time inner product, equation (2.3). In the following, different uses of low-dimensional

reconstructions that use SPOD modes as basis vectors are introduced and discussed.

2.3 Low-dimensional flow field reconstruction

Since SPOD seeks an optimal series expansion for each frequency, the choice of what

eigenpairs to include in a low-dimensional reconstruction is not obvious. Here we first discuss

the most elementary way of truncation based on the frequency-wise optimality property, that is, a

certain number of modes is retained at each frequency. We refer to this as a nmodes ˆ nfreq-mode

reconstruction, where nmodes is the number of modes retained at each frequency, and nfreq “
nfft
2 `1

is the number of positive frequencies, including zero. If all modes are linearly independent, the

overall rank of the reconstructions is then given by the total number of basis vectors, nmodesnfreq.

Following the discussion in §2.2, we present two means of obtaining an SPOD-based

low-dimensional reconstruction:
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Figure 2.4: Low-dimensional reconstruction of the jet data: frequency-domain reconstruction
(a,b), and time-domain reconstruction on the (c,d) in terms of the space-time norm (a,c) and the
spatial norm (b,d). The original data (blue lines), shown for reference, is compared to the full
reconstructions using all modes, and reconstructions using 10ˆ129, 3ˆ129, and 1ˆ129 modes.
Summed SPOD mode energies are shown as dashed lines. Vertical dotted blue and red lines in
(b,d) indicate the left and right blocks in the reconstruction (see figure 2.1).

1. in the frequency domain (see §2.2.2.1) using equation (2.16), and

2. in the time domain (see §2.2.2.2) using equation (2.23).

The frequency-domain approach directly follows from the mathematical definition of the

SPOD, and was previously used by Citriniti and George (2000), Johansson and George (2006b),

Jung et al. (2004), Tinney et al. (2008a). The time-domain approach can be viewed as the most

general approach that can be applied to any given modal basis. It is not specific to SPOD, but

commonly used for low-order modeling.
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In the following, we first compare different low-dimensional reconstructions in terms of

their block-wise and snapshot-wise energy in figure 2.4. It follows from equation (2.3), that the

energy of a single block is

}q}
2
x,t “

〈
q,q

〉
x,t “

ż

∆T

ż

Ω

q˚
px1, tqWpx1

qqpx1, tqdx1dt, (2.24)

where ∆T “ rt1`pk´1qpnfft´novlpq, tnfft`pk´1qpnfft´novlpqs is the time interval of the k-th block. The

spatial norm (2.2) measures the energy present in each snapshot. Both the block-wise and

snapshot-wise pressure norms are computed for both reconstruction approaches. The evolution

of the space-time norm is shown for the entire database in figure 2.4(a,c). For the spatial norm,

we focus on the first 768 snapshots in figure 2.4(b,d). This segment corresponds to 5 blocks and

exhibits dynamics that are representative of the rest of the data.

Low-dimensional reconstructions using 1ˆ129, 3ˆ129, 10ˆ129 modes and the recon-

struction using all modes are presented in figure 2.4. The dimension of the modal bases directly

reflects their ability to capture the pressure norms of the data. The full-dimensional reconstruc-

tions in the frequency and time domain recover the data completely. Notably, the dynamics

in space-time norm are accurately captured, even by the 1ˆ129-mode reconstruction. For a

fixed number of modes, the time domain approach captures more energy and provides a better

approximation of the data than the frequency domain approach. Take as an example the 10 ˆ 129

basis: the time-domain reconstruction accurately approximates for the full data (figure 2.4(c,d)),

which is notably under-predicted by frequency-domain reconstruction (figure 2.4(a,b)). This

difference can be understood by considering the SPOD energy content of the reconstruction.

The dashed lines in figure 2.4(a,b) denotes this energy, which is given by the sum of first nmodes

eigenvalues over all frequencies. As expected, the space-time and spatial norm of the different

reconstructions fluctuate about the sum of the eigenvalues. Higher energies are obtained by the

time-domain reconstruction in figure 2.4(c,d) as the modal expansion coefficients obtained via
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Figure 2.5: Low-dimensional reconstruction in the frequency-domain with truncation correction:
(a) space-time norm; (b) spatial norm. Parts (a) and (b) correspond to figure 2.4(a) and (b),
respectively, but with a correction for the truncated modes. The correction is facilitated by
adding the energies of the truncated modes (given by their SPOD eigenvalues).

oblique projection are not bound to specific frequencies. In what follows, we will see again and

again that this flexibility of the expansion coefficients of the time-domain approach leads to an

overall better reconstruction. This additional degree of freedom can be leveraged to obtain an

accurate reconstruction of the flow dynamics. It is, in fact, the optimality property of the oblique

projection, equation (2.23), that guarantees that the time-domain approach yields the best possible

approximation in a least-square sense. For example, the 1ˆ129 time-domain reconstruction

seen in figure 2.4(d) is sufficient to capture the dynamics of the original data accurately. From

figure 2.4(b), it can be seen that the frequency-domain reconstruction significantly over-predicts

the pressure norm during the first 32 snapshots. This effect only occurs for the two out-most

blocks, which do not posses neighbouring blocks in one direction. In appendix 2.A (figure 2.A.2),

we show by comparison with rectangular window that this error is a result of the Hamming

window. The presence of the windowing-effect in the first and last blocks is equally reflected in

the space-time norm, see figure 2.4(a).

Figure 2.5 demonstrates that the frequency-domain approach accurately recovers the mode

energies given by the SPOD eigenvalues. By adding the residual energy contained in the truncated
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Figure 2.6: Instantaneous pressure field: (a) original flow field is shown; (b,d, f ,h) recon-
structions in the frequency domain; (c,e,g,i) reconstructions in the time domain. Flow fields
reconstructed using 1ˆ129 modes, 3ˆ129 modes, 10ˆ129 modes, and all modes are shown in
(b,c), (d,e), ( f ,g), and (h,i), respectively. Contours in (a-i) are reported on the same color axis.

eigenvalues, both the space-time norm (figure 2.5(a)) and the spatial norm (figure 2.5(b)) can be

collapsed to the total energy. The remaining differences are largely due to the windowing effect.

Figure 2.6 compares a single time instant of the original data in (a) with reconstructions

of increasing fidelity in the frequency (left) and the time domain (right). Both the 1ˆ129-

mode reconstructions shown in figure 2.6(b,c) capture the dominant wavepackets. However, the

frequency-domain reconstruction lacks the detail of the time-domain reconstruction. The higher

accuracy of the time-domain reconstruction can be explained by its less stringent nature. As

the leading SPOD modes often represent a spatially highly confined structure, other structures

associated with the same frequency cannot be represented by the frequency-domain reconstruction.

The KH-type wavepacket seen in figure 2.3(c) is a good example of such a confined structure. This
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Figure 2.7: Comparison between SPOD eigenvalue spectra of the original data (blue lines) and
1ˆ129-mode reconstructions (red lines): (a) frequency-domain; (b) time-domain. Solid, dashed,
and dotted lines denote the first, second, and third modes, respectively.

difference between the approaches also explains the better reconstruction of the integral energy in

the time domain, as previously observed in figure 2.4. The higher-dimensional versions for both

approaches shown in figure 2.6(d-g) yield increasingly more detailed and accurate reconstructions.

Both approaches yield reconstructions that are indistinguishable from the original data when all

modes are used (see figure 2.6(h,i)).

We infer from figures 2.4 to 2.6 that reconstruction in the time-domain provides a better

estimate of the flow field than the frequency-domain version. To understand this observation,

figure 2.7 reports the SPOD eigenspectra of the 1ˆ129-mode reconstructions and compares them

to those of the full data. Only the leading three eigenvalues are shown for clarity. The leading

eigenvalue of the frequency-domain reconstruction in figure 2.7(a) approximately follows the

full data with some discrepancies at lower frequencies. No such discrepancies are observed

for the time-domain reconstruction in figure 2.7(b); in fact, the leading eigenvalue spectra are

indistinguishable. Contrast this observation with the expectation that a 1ˆnfreq frequency-domain

reconstruction should exactly reproduce the leading-mode eigenspectrum, and that all higher-

eigenvalue spectra are expected to be zero. In the context of figure 2.A.3 in appendix 2.A, we
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Figure 2.8: Two-norm error of the pressure field reconstructed with different rank approxima-
tion: (red lines with squares) reconstruction in the frequency domain; (blue lines with circles)
reconstruction in the time domain.

show that this is an effect of windowing that is not observed when using a rectangular window.

The time-domain reconstruction, on the other hand, accurately approximates the first, and, to some

degree, the leading suboptimal eigenvalue spectra. This again demonstrates the higher accuracy

of the time-domain reconstruction that results from the higher flexibility of the expansion.

To quantify the accuracy of the two approaches, figure 2.8 compares their 2-norm errors

as a function of the number of basis vectors (modes). For both the methods, the error reduces

significantly as the number of modes retained per frequency increases from one to ten. For a fixed

number of modes, the time-domain reconstruction is consistently more accurate. Recall that this

is guaranteed by the optimality property of the oblique projection. It is, in fact, observed that the

error of the time-domain reconstruction approaches machine precision for 40 or more modes per

frequency. For the frequency-domain approach this only occurs for the full reconstruction using

all modes.
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Figure 2.9: SPOD of data subjected to additive Gaussian white noise: (a) SPOD spectrum (black
lines), leading SPOD eigenvalue of the original data (red dashed line), threshold of 5 ˆ 10´5

(blue line), and the leading SPOD eigenvalue of the denoised data (magenta dashed line); (b)
leading SPOD mode at St “ 0.5; (c) fifth SPOD mode at St “ 0.5; (d) leading SPOD mode at
St “ 1.5.

2.4 Denoising

After using SPOD truncation for low-dimensional approximation above, we now explore

its potential for denoising. We will show that additive noise is captured by certain parts of the

spectrum, and that truncation of these parts leads to efficient denoising. This strategy is most

efficiently implemented in the frequency domain. The local-in-time optimality of the time-domain

approach is a hindrance in this context as it tends to reconstruct the noise. On the contrary, the

one-to-one correspondence between modes and frequencies of the frequency domain approach

leads to efficient denoising.

As the arguably most common type of noise occurring in experimental environments, we

demonstrate denoising on additive Gaussian white noise. In particular, we add Gaussian white

noise that has a standard deviation equal to the spatial mean of the standard deviation along the

lipline (r “ 0.5) of the pressure data. This scenario mimics, for example, heavily contaminated

particle image velocimetry data in which the variance of the noise is of the same order as the

variance of the physical phenomena of interest. The SPOD eigenvalue spectrum of this noisy data
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is shown in figure 2.9(a). Most noticeably, the addition of noise has introduced a noise floor at

λ « 4 ¨ 10´5, effectively cutting off the spectrum at St « 1.5. Information above this frequency

lies below the noise floor and is not directly accessible. The leading eigenvalue of the original data

(red dashed line) is shown for comparison. It lies well below the leading eigenvalue of the noisy

data, which is elevated due to the energy contained in the added noise. To illustrate the ability

of SPOD to differentiate between spatially correlated, physical structures and noise, examples

of modes that are above and below the noise floor are compared in figure 2.9(b-d). The leading

mode at St “ 0.5 (figure 2.9(b)) clearly reveals the K-H wavepacket and is indistinguishable

from the corresponding mode of the original data shown in figure 2.3(a) above. The fifth mode

at St “ 0.5 (figure 2.9(c)) and the leading mode at St “ 1.5 (figure 2.9(d)), on the contrary, are

heavily contaminated by noise. The noise floor in the SPOD spectrum is found to be a very good

indicator of this distinction. We hence propose a denoising-strategy based on hard-thresholding

of the spectrum. In this example, we pick a threshold of 5 ˆ 10´5 (blue line), slightly above the

noise floor. To address the effect of the truncation on the SPOD spectrum, we report the leading

SPOD eigenvalue of the denoised data (magenta dashed line) in the same figure. It coincides

with the leading eigenvalue of the noisy data up to the point where it intersects with the threshold

limit, beyond which it falls off sharply, giving it the characteristics of a low-pass filter. A closer

analysis of the truncated and original spectra reveals that the denoised field contains only 2.6%

energy of the noisy field, but that it contains 92.7% energy of the original flow field. Another

positive side effect is that only 74 out of 9933 modes (nfreq ˆ nblk) have been retained, resulting

in a space saving of 99.26%. These significant space savings are an advantage over standard

denoising strategies based on low-pass filtering.

A representative instantaneous snapshots of the original data is compared to its noisy and

denoised counterparts, and to the result of standard low-pass filtering in figure 2.10. The standard

low-pass filter uses the cut-off frequency of St “ 0.8 of the SPOD approach (inferred from figure

2.9) in the truncation of the long-time Fourier transform. A higher threshold, and its associated
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Figure 2.10: Comparison of noisy and denoised instantaneous pressure fields: (a) original; (b)
data with additive Gaussian white noise; (c) SPOD-based denoised flow field; (d) low-pass
filtered flow field. Denoising is achieved by rejecting all SPOD eigenpairs with λ ă 5 ˆ 10´5.
This hard threshold is indicated in figure 2.9.

cut-off frequency, was found to lead to more aggressive filtering that can partially remove relevant

flow structures. A threshold below the noise floor, on the other hand, leads to unsatisfactory noise

rejection. In practice, a good trade-off between noise rejection and preservation of physically

relevant flow structures is achieved by using the SPOD spectrum as a gauge to choose a threshold

slightly above the noise floor. A comparison of the denoised data in figure 2.10(c,d) with the

noisy data in figure 2.10(b) shows that significant noise reduction was achieved in all parts of the

domain using both strategies. The resulting denoised flow fields clearly reveal the flow structures

present in the original data. By visual inspection of the filtered pressure fields shown in figures

2.10(c) and 2.10(d), the SPOD-based strategy appears somewhat more efficient at removing the

noise.

For a more quantitative assessment, we compare the denoised flow fields in terms of two

quantities. First, their signal-to-noise ratio (SNR) along the lipline, and second, the relative error

between the denoised snapshots and the original data. The SNR is defined as

SNR “
Psignal

Pnoise
“

σ2
signal

σ2
noise

, (2.25)

where P is power and σ standard deviation. We further define the integral (over the physical
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Figure 2.11: Comparison of the two denoising strategies: (a) signal to noise ratio (SNR) along
the lipline (r “ 0.5) for the noise added flow field (black line), SPOD-based denoised flow
field (red lines), and the low-pass filtered flow field (blue line); (b) error of the noisy data,
SPOD-based denoised data, and the low-pass filtered data. The amplitude of the additive noise
was adjusted such that the average SNR along the lipline is one.

domain) error as

error “
}q ´ q̌}x

}q}x
, (2.26)

where q and q̌ are the original and the denoised flow fields, respectively. Figure 2.11(a) compares

the SNR along the lipline at r “ 0.5 for the noisy and the denoised flow fields. Both methods

are able to increase the signal-to-noise ratio over large parts of the domain. The low-pass filter

performs better for x À 10, and the SPOD-based filter beyond that point. For x À 2.5, the SPOD-

filtered pressure field exhibits a marginally lower SNR than the unfiltered data. We find that this

is the results of the aggressive truncation of high-frequency components by the SPOD-based

filter. A result that is almost identical to that of the low-pass filter can be achieved by lowering

the λ-threshold (a similar value for both methods is used here for consistency). Figure 2.11(b)

compares the time traces of the errors of the noisy and the two denoised flow fields. The error

of the noisy data serves as a reference, and it is observed that both methods significantly reduce

this error. The SPOD-based approach performs consistently better than the low-pass filter. This

result is consistent with the visual observation of the denoised fields in figure 2.10(c,d). Note that
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the threshold is an adjustable parameter in both methods. In practice, we find that by adjusting

this parameter qualitatively very similar results can be obtained by both methods. This, however,

leaves the SPOD-based approach with the advantage of significant data reduction.

2.5 Frequency-time analysis

Intermittency, that is the occurrence of flow events at irregular intervals, is an inherent

feature of any turbulent flow. A common approach for the characterization of intermittent

behaviour is frequency-time analysis. Arguably the most widespread tools of frequency-time

analysis are wavelet transforms and short-time Fourier transform. Their outcomes are scalograms

and spectrograms, respectively, that indicate the presence of certain scales (WT) or frequency

components (STFT) at certain times. Both methods are signal-processing techniques that are

applied to 1-D time series, and therefore only quantify intermittency locally. As an alternative

to this local perspective, we demonstrate how SPOD expansion coefficients can be used to

study intermittency of the spatially coherent flow structures represented by the modes. Below,

frequency-time analyses based on both time-domain and frequency-domain reconstructions are

introduced and compared.

2.5.1 Time-domain approach

We first consider the time-domain approach, in which the expansion coefficients obtained

via oblique projection readily describe the temporal behaviour of each mode. The amplitudes

of the expansion coefficients computed from equation (2.19), |
řnmodes

j“1 ãp jqp fl, tq|, hence yield

the desired frequency-time representation for the leading nmodes. The expansion coefficients are

calculated using the full basis, i.e, ϕ̃ in equation (2.18) consists of all modes at all frequencies.

Subsequently, we only consider the expansion coefficients of the leading nmodes modes at each

frequency. An alternative approach is to perform the oblique projection using a reduced basis
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Figure 2.12: SPOD-based frequency-time diagrams obtained using the time-domain approach:
(a) first 10 modes at each frequency; (b) leading mode at each frequency. The SPOD of the
pressure field is considered.

that consists of only the leading nmodes modes at each frequency. We find that the first approach

is preferable in the context of frequency-time analysis and is explained in the appendix 2.B

(see figure 2.B.1). The frequency-time diagrams for nmodes “ 10, and 1, are shown in figure

2.12(a), and (b), respectively. The leading 10 modes correspond approximately to 80% of the

total energy as shown in figure 2.2(b). Most of the energy is concentrated at low frequencies,

St À 0.2, as expected from the eigenvalue spectrum in figure 2.2. The eigenvalue spectrum

provides a statistical representation of the structures that are coherent in space and time, whereas

the frequency-time diagrams provide a temporal information of these structures. Bright yellow

spots indicate high similarity of the instantaneous flow field with the leading mode in (b). These

regions also correspond to high energy events as we will show in figure 2.14.

2.5.2 Convolution-based approach

A direct way of using SPOD for frequency-time analyses is in terms of the SPOD

expansion coefficients. Since each block is associated with a finite time interval, this approach

requires the computation of the SPOD using an overlap of novlp “ nfft ´ 1 to obtain time-resolved

coefficients (Towne and Liu, 2019). This approach assumes that the value of the expansion

coefficient obtained from a finite time segment (block) represents the instantaneous frequency
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Figure 2.13: SPOD-based frequency-time diagrams obtained using the convolution approach:
(a) first 10 modes at each frequency; (b) leading mode at each frequency. The SPOD of the
pressure field is considered. The cyan box in (b) is centered around the global maximum of the
instantaneous energy at t “ 1380, analysed in figures 2.14 and 2.15(c,d) below.

content at the center of the time segment. A limitation of this approach is its high memory

requirement (3.6 TB for the present example). As an alternative, we propose a computationally

tractable way of calculating time-continuous expansion coefficients based on the convolution

theorem. Applying the convolution theorem to the inverse SPOD problem yields

apiq
l ptq “

´

pφ
piq
l e´i2π fltq f q

¯

ptq “

ż

∆T

ż

Ω

´

φ
piq
l pxq

¯˚

Wpxqqpx, t ` τqwpτqe´i2π flτdxdτ, (2.27)

where f indicates the convolution between the time evolving SPOD mode and the data, that

takes into the account the windowing function, wpτq, and the weight matrix W. In practise this

convolution is computed by expanding the SPOD mode in time as φ
piq
l e´i2π flt and convolving

it over the data one snapshot at a time. In this step, we leverage the orthogonality property of

the SPOD mode in the space-time inner product, which allows us to compute the expansion

coefficient one at a time. If the SPOD was computed using an overlap of nfft-1, then the expansion

coefficients, apiq
l , obtained from equation (2.27) and equation (2.13) are mathematically identical.

Here, the underlying idea is to apply the continuously-discrete convolution integral to the SPOD

mode computed with a significantly lower overlap to make it computationally feasible. We

confirmed that the frequency-time diagrams of the expansion coefficients obtained using equation
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Figure 2.14: Temporal evolution of the pressure 2-norm in the vicinity of its global maximum
at t “ 1380. The convolution approach, based on equation (2.27), is compared to the time-
and frequency-domain approaches, previously shown in figure 2.4(b,d). The 1ˆ129-mode
reconstructions are shown.

(2.27) for an overlap of 50% are virtually indistinguishable to those obtained from equation (2.13)

for an novlp “ nfft ´ 1 (shown in the appendix 2.C, figure 2.C.1). This is to be expected since

the convergence of the SPOD modes does not improve significantly for overlap over 50%. In

practice, the convolution integral in equation (2.27) is most efficiently computed using the FFT.

Frequency-time diagrams of the expansion coefficients for the convolution approach are

shown in figure 2.13. Figure 2.13(a), and (b) show the contribution of the leading 10 modes, and

the leading mode, respectively. These frequency-time diagrams appear less detailed compared to

the frequency-time diagrams of the time-domain approach. In the context of figure 2.15, however,

we will show that figures 2.12 and 2.13 basically contain the same information. For now, it is

sufficient to note that the convolution and time-domain approaches detect the same trends. Take as

an example, the high energy events occurring at low frequency in the time ranges, 550 À t À 590

and 1370 À t À 1400, in the spectrograms of figure 2.12(b) and 2.13(b).
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2.5.3 Comparison of methods and interpretation of results

Next, we investigate if the high similarity between the instantaneous flow field and the

modes indicates high energy. Figure 2.14 shows the temporal evolution of the pressure 2-norm

for the original data, low-dimensional 1ˆ129-mode reconstructions using the time-domain,

frequency-domain and the convolution approaches. The pressure 2-norm of the data is highly

underpredicted by the time-domain approach that uses a full basis (nblkˆ129), but is able to

capture the major trends of the original data. The time-domain reconstruction performed using a

modal basis of 1ˆ129 is also shown for comparison. This accurately follows the spatial norm

of the original data, except for an offset, similar to figure 2.4(d). The frequency-domain curve

also shows a similar trend. In addition, the spatial norm of the 1ˆ129-mode reconstruction

using the convolution approach is shown. It follows the trend of the original data and attains

its global maximum at the same time instant. Minor differences between the convolution (time-

continuous) and frequency-domain (50% overlap) approaches are expected, see appendix 2.C.

All curves in figure 2.14 peak at the time of maximum instantaneous energy, previously indicated

in figure 2.13(b). This indicates that a high similarity between the instantaneous flow field and

the leading mode implies high overall energy. We highlight that this finding is not self-evident as

the leading SPOD mode represents the most energetic flow structure in a purely statistical sense.

The important physical insight hence is that the intermittent occurrence of large-scale coherent

structures is directly associated with high-energy events.

To understand the qualitative differences of the frequency-time diagrams in figure 2.12

and 2.13, we now look at the expansion coefficients of the two approaches. Figure 2.15 compares

the expansion coefficient of the leading mode, obtained by the time-domain and convolution

approaches. As an example, the expansion coefficient at St « 0.50 is shown in figure 2.15(a).

It is centered around its global maximum, in the time interval 1000 ď t ď 1300. We observe

that the time traces of the expansion coefficients obtained from the two approaches show similar

trends. In particular, the local peaks occur at similar locations, with both curves exhibiting the
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Figure 2.15: Oblique projection and convolution-based expansion coefficients of the leading
mode at St “ 0.5 (top) and St “ 0.05 (bottom): (a,c) time traces in the vicinity of their global
maximum (black dashed line); (b,d) cross-correlation of the expansion coefficients obtained
using the two different approaches. The black dash-dotted line denotes the weighted moving
mean of the time-domain expansion coefficient. The moving mean uses as weights the same
Hamming windowing function as the SPOD.
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global maximum at t “ 1150 (black dashed line). Compared to the time-domain approach, the

convolution curve is smoother and resembles a moving average of the time-domain curve (black

dash-doted line). For optimal comparison with the convolution approach, the moving average

is computed by weighting the time-domain curve by the Hamming window in equation (2.6)

and averaging it 256 points. To further quantify the relation between the expansion coefficients

of the two approaches, we show the cross-correlation coefficient in figure 2.15(b). The cross-

correlation coefficient confirms the observation that the expansion coefficients obtained from the

two approaches are similar, by demonstrating a cross-correlation coefficient of 0.77 at 0-time

lag (τ “ 0). We have confirmed that this correspondence holds in general. In figure 2.15(c)

and 2.15(d), for example, the same trends are observed for the expansion coefficients at the

lower frequency of St “ 0.05 over the time interval previously shown in figure 2.14 above. From

figure 2.15, we infer that the intermittency of the coherent structures can be captured using both

approaches.

After establishing the correspondence between the time-domain and convolution ap-

proaches, we now compare the spectral characteristics of the two approaches. The PSDs of the

expansion coefficients associated with the leading mode at St “ 0.2, 0.5, and 1.0, for the time

and convolution-domain approaches are shown in figure 2.16 (a). As expected the PSDs peak

at the frequency of the corresponding mode for both approaches. The expansion coefficients

computed in the convolution approach exhibit a much narrower peak than those in the time-

domain approach. Note that, we cannot expect a sharp spectral peak even for the convolution

approach due to spectral leakage and the modulation of the wave amplitude as seen in figure 2.15.

Figure 2.16(c) compares the PSDs of the leading mode and the 10 leading modes at St “ 0.5,

which underlines the dominance of the leading mode at this particular frequency. The expansion

coefficients are presented in terms of the spectral energy content in figure 2.16(b) and (d). As

the expansion coefficients are uncorrelated, and their expected value is the equal to SPOD modal
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Figure 2.16: Spectral analysis of the expansion coefficients for the time-domain and convolution
approaches: (a) PSD of the individual expansion coefficients of the leading SPOD mode at
St “ 0.2, 0.5 and 1.0; (b) expected values of the expansion coefficients of the leading mode; (c)
PSD of the expansion coefficients of the leading mode and sum of the first 10 leading modes
(line with squares) at St “ 0.5; (d) expected value of the expansion coefficients for the sum of
the first 10 modes. In (b) and (d), the leading, sum of leading 10, and sum of all eigenvalues are
shown for comparison.
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Figure 2.17: Contributions of individual modes to the reconstructed flow field: (a) instantaneous
pressure field; (b) contribution of φp1q for St=0.5, and (c) for St=0.05; (d,e) comparison of the
real part of the pressure field along the lipline (r “ 0.5) for St=0.5 and St=0.05, respectively.
The instantaneous flow field at t “1150 (see figure 2.15) is shown. Contours in (a,b,c) are
reported on the same color axis.

energy,

E
!

apiq
f ap jq

f

)

“ λ
piq
f δi j, (2.28)

it is expected that the convolution approach accurately approximates the eigenvalue spectrum. The

blue and magenta lines are almost coincident in figure 2.16(b,d), thus confirming this conjecture.

For the time-domain approach, the expected value for the sum of first 10 modes approximates

the total integral PSD for all but the low frequencies St ě 0.2 in figure 2.16(d). On considering

only the first eigenvalue, the time-domain approach under predicts the eigenvalue spectrum for

St ď 1.0, (figure 2.16(b)). Note that, this observation does not contradict the observations made

in context of figure 2.4, as the expansion coefficients are obtained from a full basis here, but from

a smaller basis in figure 2.4(d).

After examining the properties of the expansion coefficients, we focus on the spatial

composition of the reconstructed flow field in terms of contributions from individual modes in
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figure 2.17. The time instant of high energy, previously marked in figure 2.15, is chosen as

an example. The contribution of the leading SPOD modes at two representative frequencies,

St “ 0.5, and 0.05, to the original flow field is shown in figure 2.17. Figure 2.17(b) and (c) show

the modes weighted by their expansion coefficient, ap1qφp1q at the corresponding time instant and

these two frequencies. Close to the nozzle exit the LES flow field clearly exhibits a KH-type

instability wave. The leading mode at St “ 0.5, closely resembles this structure. Similarly, the

dominant wave pattern with a large wavelength (« 5) observed in the flow field, is represented

by the mode at St “ 0.05 in a location downstream of the potential core (12 À x À 20). The real

part of the pressure field along the lipline (r “ 0.5) is compared with the contributions of the

leading modes at St “ 0.5, and St “ 0.05 in figure 2.17(d), and (e), respectively. It can be seen

that the phases of the pressure field and the mode at St “ 0.5 are aligned in the region where the

mode attains its maximum. Weaker but similar kind of phase alignment is also observed for low

frequency, St “ 0.05, despite the disturbed nature of the wavepacket in the region, 12 À x À 20.

For the flow field at the current time instant, this also explains that the contribution of the leading

mode at St “ 0.05 is lower than St “ 0.5, where the KH wavepacket dominates the flow field.

These observations confirm that the maximum in the frequency-time diagrams indicate close

resemblance of the instantaneous flow field with the corresponding SPOD modes. Since the SPOD

modes are the most energetic structures it is not surprising that the maxima in the frequency-time

diagrams indicate the intervals of high energy. Furthermore, as the leading SPOD modes are

spatially coherent and contain the most energy at each frequency, we infer that SPOD-based

frequency-time analysis can be used to gauge the intermittency of large-scale coherent structures.

Here, for brevity, only the convolution approach is shown, but we note that these conclusions also

hold for the time-domain approach.
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Figure 2.18: SPOD-based prewhitening: (a,b) rescaled SPOD spectra; (c,d), instantaneous
pressure fields using definitions (2.30) and (2.31), respectively. Red lines indicate the sum of all
eigenvalues, that is, the integrated PSD. All lines in (a) collapse due to the scaling. The original
SPOD eigenvalue spectrum can be seen in figure 2.2(a).

2.6 Prewhitening

As mentioned in §2.1, prewhitening is a filtering operation that results in a flat power

spectrum, and is commonly used for trend detection in atmospheric and geophysical applications.

The goal hence is to use SPOD to scale the data to have the same energy at all frequencies. We

propose to achieve this goal by re-scaling the expansion coefficients of the reconstruction in the

frequency-domain. The frequency-domain is chosen for the same reasons as for denoising in §2.4.

We leverage the fact that expansion coefficients are uncorrelated, and that their expected value is

the equal to SPOD modal energy,

E
!

apiq
f ap jq

f

)

“ λ
piq
f δi j. (2.29)
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We propose two different scalings,

c

ř

f

ř

i
λ

piq
f

b

λ
piq
f

apiq
f (scaling 1), and (2.30)

1
c

ř

i
λ

piq
f

apiq
f (scaling 2) (2.31)

to scale the integral mode energy, that is, the sum of all eigenvalues, to one at each frequency.

Both methods achieve this goal, but result in different relative scalings of individual SPOD

modes. Figure 2.18(a) and 2.18(b) show the effect of the two scalings on the SPOD eigenvalue

spectrum. The reconstructed flow fields obtained from the expansion coefficients scaled using

equations (2.30) and (2.31) are shown in 2.18(c) and 2.18(d), respectively. Note that equation

(2.30) collapses all eigenvalues in figure 2.18(a) to the same value. Scaling 2, on the contrary,

preserves both the mode hierarchy and the relative energy content. In comparison to the original

flow field shown in figure 2.6(a), prewhitening emphasizes high-frequency structures in the

shear-layer, whereas it de-emphasizes the highly energetic large-scale structures associated with

low frequencies downstream of the potential core. This portrayal of the flow field might appear

unfamiliar; we emphasize that the objective of prewhitening is not physical interpretation, but

pattern identification. Here, for example, the prewhitened pressure fields bring to light the trapped

acoustic modes in the potential core. These modes have only recently been described in detail

(Schmidt et al., 2017b, Towne et al., 2017). Previously, they remained largely unnoticed in

the analysis of jet data because of their low energy content. An important difference between

SPOD-based prewhitening and classical local, point-wise prewhitening techniques is that the

SPOD-based approach preserves the spatial coherence of the flow structures identified by the

SPOD modes.
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2.7 Summary and Conclusions

Different applications of SPOD including low-rank reconstruction, denoising, prewhiten-

ing, and frequency-time analysis are demonstrated on the example of LES data of a turbulent jet.

A fundamental building block for these applications is the capability to reconstruct the original

data from the SPOD. In the frequency domain, this can be accomplished by inverting the SPOD

problem (see, e.g., Citriniti and George, 2000). We demonstrate that this inversion can be com-

puted either directly in the frequency-domain, or using a convolution-based strategy. The latter

approach becomes a necessity in the context of frequency-time analysis, where the corresponding

SPOD problem becomes intractable. As an alternative to frequency-domain reconstruction, we

introduce a time-domain approach that is based on the oblique projection of the data onto the

SPOD modes. A reduced-order model based on SPOD that uses oblique projection was recently

devised by ?.

Here, we show the complete recovery of the data using all modes and compare to low-

dimensional reconstructions. The low-dimensional reconstructions from both approaches accu-

rately capture the integral energy of the segmented data (in the space-time norm). However, the

time-varying dynamics (in the purely spatial norm) are only captured by the low-dimensional

reconstructions in the time-domain. For a fixed number of modes, the time-domain approach

captures more of the energy (in both norms). On the downside, the association of the SPOD

modes with a single frequency is lost. Instantaneous pressure fields reconstructed in the frequency-

domain, on the contrary, preserve this monochromatic property of the SPOD modes, but may lack

the finer details of the flow field reconstructions in the time-domain. The main advantage of the

frequency-domain approach is that it conserves the orthogonality property and the frequency-

mode correspondence of the SPOD. The main advantage of the time-domain approach is its

optimality in reconstructing the instantaneous flow field with the least possible number of modes.

After establishing the advantages and disadvantages of both approaches, we demonstrate
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SPOD-based denoising as an application of the frequency-domain approach. As expected, noise is

mainly captured by higher SPOD modes at low frequencies and all modes at high frequencies. As

a best practice, we propose a hard threshold above the noise floor that is identified from the SPOD

eigenvalue spectrum. Significant noise reduction is achieved. At the same time, a substantial

amount of energy of the original flow field is retained. Compared to a standard low-pass filter,

SPOD-based denoising has the additional advantage of drastic space savings.

Finally, we demonstrate how SPOD-based frequency-time analysis can be used to analyse

the intermittency of turbulent flows. Established means of frequency-time analysis such as

wavelets transforms are signal-processing techniques that are applied to 1-D time signals. The

alternative, SPOD-based approach demonstrated here, provides a global perspective in which

spectrograms characterize the temporal evolution of the spatially coherent flow structures repre-

sented by the SPOD modes. The SPOD-based frequency-time analysis requires the computation

of time-varying expansion coefficients at each time instant, and is computationally intractable

in the frequency-domain. This problem is mitigated by the convolution-based strategy, which is

mathematically equivalent in the limit of the intractable continuously-discrete (in time) SPOD

problem. This convolution-based approach is compared to the projection-based approach in the

time domain. The expansion coefficients calculated from both methods show similar trends.

We further demonstrate that a moving average of the spectrogram obtained via oblique projec-

tion resembles the spectrogram obtained from the convolution approach. For consistency, the

moving time average is directly based on the SPOD windowing. The main advantage of the

frequency-domain, and therefore the convolution approach, is that it retains the orthogonality

property and mode-frequency correspondence of the SPOD. The frequency-time analysis of the

jet data confirms the highly intermittent nature of this turbulent flow. In accordance with the

SPOD eigenvalue spectrum, it is found that most of the energy is concentrated at low frequencies,

St À 0.2. A comparison of the total flow energy as a function of time with the spectrograms

shows that high energy events are directly linked to the presence of flow structures resembling
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the leading SPOD modes. We highlight that this behaviour is not necessarily expected as the

SPOD modes represent the most energetic structures only in a statistical sense. From previous

work (Schmidt et al., 2018), it is well-known that SPOD modes often isolate certain, prevailing

physical phenomena. SPOD-based frequency-time analysis hence provides additional physical

insight by indicating time intervals during which a particular mechanism is active.

Based on the results, we recommend the use of the time-domain approach for low-rank

reconstruction of individual snapshots, and the frequency-domain approach for denoising and

frequency-time analysis. For the latter application the proposed convolution strategy facilitates

efficient computation of the time-continuous expansion coefficients. A Matlab code for the

convolution-based frequency-time analysis is freely available online.
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Appendix

2.A Effect of different parameters on the flow field reconstruc-

tion

Segmentation of the data is a crucial step in spectral estimation. Following the original

work by Welch (1967), we use an overlap of 50% between blocks to minimize the variance of the
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Figure 2.A.1: Errors of different ways to compute the frequency-domain reconstruction for
1ˆ129, 3ˆ129 and 10ˆ129 modes: (a) 2-norm; (b) spatial norm (equation (2.2)). Analogous to
figure 2.5, the residual energy of the truncated modes is subtracted for comparison.

spectral estimate, see §2.2.2.2 above. The use of overlapping segments, however, results in an

ambiguity for the reconstruction, which we may compute as:

1. the left (previous) block,

2. the right (following) block,

3. the average of the left and right reconstructions,

4. either the left or right reconstruction based on the higher windowing weight,

5. the average of the left and right reconstructions weighted by the relative value of hamming

window,

6. the average of the left and right reconstructions weighted by the relative distance to the

centers of the overlapping blocks.

Figure 2.A.1 compares the errors of low-dimensional reconstructions using 1ˆ129, 3ˆ129,

and 10ˆ129 modes for all the six possibilities. It is found that the reconstruction based on the

window-weighted average of the left and right reconstructions produces the smallest error. Based
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on this finding, this option is used for the frequency-domain reconstruction throughout the paper.

Using the window-weighted average approach, the i-th snapshot is reconstructed as,

qi «
qpkq

j wp jq ` qpk`1q

j´novlp
w

`

| j ´ novlp|
˘

wp jq ` w
`

| j ´ novlp|
˘ , (2.32)

where j= i ´ pk ´ 1qpnfft ´ novlpq, i P r1,nts, j P r1,nffts and k P r1,nblks. From figure 2.4 (in

particular 2.4(b)), it becomes apparent that these distinctions only matter for truncated series

reconstructions; full-dimensional reconstructions are generally accurate.

The sudden jumps in the local energy of the reconstruction observed in figure 2.4 are

a windowing effect. We demonstrate this by comparison with reconstruction using rectangular

windows and no overlap in figure 2.A.2. The low-dimensional reconstructions using 1ˆ129,

3ˆ129, and 10ˆ129 modes, and all modes are shown. Many observations made in the context

of figure 2.4, also hold here: the dimension of the modal bases is directly proportional to its

ability to capture the pressure norm of the data, and for a fixed number of modes, the time-domain

results in a better approximation of the data than the frequency-domain approach. The most

notable difference can be seen between figure 2.A.2(b) and 2.4(b). The windowing effect in the

frequency-domain reconstructions is absent if the rectangular window is used. Note in particular

the difference during the first few snapshots and near the locations of switching from one block to

another (vertical dotted black lines). Despite this advantage in the context of frequency-domain

reconstructions for small nmodes, rectangular windowing is generally not recommended because

of spectral leakage (Schmidt and Colonius, 2020).

Analogous to figure 2.7, we report in figure 2.A.3 the SPOD eigenspectra of the 1ˆ129-

mode frequency and time-domain reconstructions for a rectangular window and novlp “ 0. The

SPOD eigenvalue spectra of the full data is also shown for comparison. Only the leading three

eigenvalues are shown for clarity. The leading eigenvalue of the frequency-domain and time-

domain reconstructions are indistinguishable from the leading eigenvalues of the full data. For the
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Figure 2.A.2: Low-dimensional reconstruction using a rectangular window: frequency-domain
reconstruction (a,b), and time-domain reconstruction on the (c,d) in terms of the space-time
norm (a,c) and the spatial norm (b,d). The original data (blue lines) is compared to the full
reconstructions using all modes, and reconstructions using 10ˆ129, 3ˆ129, and 1ˆ129 modes.
Summed SPOD mode energies are shown as dashed lines. Vertical dotted black lines in (b,d)
indicate the non-overlapping blocks. This figure is identical to figure 2.4, but for a rectangular
window and no overlap.
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Figure 2.A.3: Comparison between SPOD eigenvalue spectra of the original data (blue lines)
and 1ˆ129-mode reconstructions (red lines): (a) frequency-domain; (b) time-domain. Solid,
dashed, and dotted lines denote the first, second, and third modes, respectively. This figure is
identical to figure 2.7, but for a rectangular window and no overlap.

frequency-domain reconstruction, the higher eigenvalue spectra are zero to machine precision, as

expected. This indicates that the windowing-effect causes the elevation of the higher eigenvalue

spectra in figure 2.7(a). The time-domain reconstruction, on the other hand, is able to predict

the higher eigenvalues as explained in the context of 2.7(b). This implies that the time-domain

reconstruction is much less sensitive to the choice of windowing function.

2.B Projection-based frequency-time analysis: effect of choice

of basis and correspondence to convolution-based approach

Oblique projection-based frequency time analysis is dependent on the choice of modal

basis. The two obvious choices of bases for the projection are

1. nmodesˆ129 modes, i.e., only those SPOD modes used in the analysis,

Φ̃ “

”

ϕ
p1q

1 ,ϕ
p1q

2 , ¨ ¨ ¨ ,ϕ
p1q
nfft

ı

, or
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Figure 2.B.1: SPOD-based frequency-time analysis obtained using the time-domain approach
with 1ˆ129-modal basis: (a) frequency-time diagram of the leading mode at each frequency;
(b) PSD of the individual expansion coefficients of the leading SPOD mode at St “ 0.5 for
the time-domain approach with the 1ˆ129 basis (blue line) and nblkˆ129 basis (red line); (c)
cross-correlation of the expansion coefficient in the time-domain approach using the 1ˆ129
basis (blue line) and the nblkˆ129 basis (red dotted line) with the convolution approach.
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2. nblkˆ129 modes, i.e., all available SPOD modes,

Φ̃ “

”

ϕ
p1q

1 ,ϕ
p2q

1 , ¨ ¨ ¨ ,ϕ
pnblkq

1 ,ϕ
p1q

2 ,ϕ
p2q

2 , ¨ ¨ ¨ ,ϕ
pnblkq

2 , ¨ ¨ ¨ ,ϕ
p1q
nfft ,ϕ

p2q
nfft , ¨ ¨ ¨ ,ϕ

pnblkq
nfft

ı

.

Due to the non-orthogonality of these modes in the spatial norm, these two choices will result in

different outcomes. Shown in figure 2.B.1(a) is the frequency-time diagram for nmodes=1, that

is a 1ˆ129-mode basis containing only the leading mode at each frequency. A fundamentally

different behaviour from that in figure 2.12 is observed. The diagram exhibits a banded structure,

and, in contrast to the reference diagram based on all SPOD modes, the majority of maxima is

not found in the low-frequency regime, St À 0.2. To understand this difference, the PSD of the

expansion coefficient associated with the leading mode at St “ 0.5 is shown in figure 2.B.1(b).

The expansion coefficient computed with the 1ˆ129-modal basis exhibits a much broader peak

than the one computed with full basis. This behaviour indicates a loss of the mode-frequency

correspondence for the heavily truncated basis. Next, both approaches are compared by taking the

convolution-based expansion coefficient as the reference. The cross-correlation of the expansion

coefficients from both approaches with the reference signal from the convolution approach are

shown in figure 2.B.1(c). The expansion coefficient computed using the 1ˆ129-modal basis

exhibits a much lower correlation with the reference. We conclude from this analysis that the

time-domain approach should be conducted using all SPOD modes, as it yields a more accurate

description of the intermittency of the coherent structure represented by the SPOD modes.

In figure 2.15, we demonstrated that the expansion coefficients computed from a moving

average of the time-domain approach resemble those from the convolution approach. For further

evidence, we show in figure 2.B.2 the frequency-time diagrams obtained by taking the moving

mean, at each frequency, of the time-domain diagram previously shown in figure 2.12. The

outcome should be compared to the frequency-time diagrams obtained using the convolution

approach, i.e., figure 2.13. It is observed that the frequency-time diagrams are qualitatively very
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Figure 2.B.2: SPOD-based frequency-time diagrams obtained using the moving mean of the
time-domain oblique projection based approach: (a) first 10 modes at each frequency; (b) leading
mode at each frequency. The moving mean uses as weights the same Hamming windowing
function as the SPOD.

similar. The effect of taking the moving average is mainly visible at higher frequencies, where it

leads to minor loss of detail. For qualitative flow analysis, we hence conclude that the moving

average of the time-domain approach can well be used to approximate the computationally much

more involved convolution approach.

2.C Frequency-domain approach based frequency-time analy-

sis: effect of overlap and correspondence to convolution-

based approach

Figure 2.C.1 demonstrates the similarity between the frequency-time diagrams obtained

using the convolution method and the frequency-domain approach. For the convolution method,

equation (2.27), a basis of precomputed SPOD modes with 50% overlap was used. To obtain

time-continuous expansion coefficients using the frequency-domain approach, we require novlp “

nfft ´ 1. As this is computationally intractable, the data (only here) was reduced to every third

grid point in the streamwise and radial directions. The time traces of the individual expansion

coefficients for St “ 0.05 and 1.0 are reported in 2.C.1(c,d).
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Figure 2.C.1: Comparison between two strategies for SPOD-based frequency-time analysis:
frequency-time diagrams for (a) the convolution approach (SPOD modes precomputed with 50%,
overlap), and (b) the frequency-domain approach using novlp “ nfft ´ 1; expansion coefficients
for (c) St “ 0.05, and (d) St “ 1.0.
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Chapter 3

Gappy spectral proper orthogonal

decomposition for reconstruction of missing

flow data

3.1 Introduction

Gappy data reconstruction techniques find wide use in the completion of partially missing

or otherwise compromised experimental data. The focus of this work is the estimation of missing

regions in long time series of spatially resolved, generally turbulent, statistically stationary flow

data. One of the most widely used experimental technique to acquire such data for turbulence

research (Westerweel et al., 2013) and geophysical flows (Doron et al., 2001), but also in the

automotive (Beaudoin and Aider, 2008, Conan et al., 2011) and aerospace industries (Willert,

1997), is particle image velocimetry (PIV, see e.g. Adrian and Westerweel (2011), Raffel et al.

(1998)). Missing or corrupted regions in PIV measurements have many sources. Among them

are shadowing, that is, the partial obstruction of the laser sheet, reflections from objects, and

the inaccessibility of certain regions for the imaging system (Hart, 2000, Huang et al., 1997,
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Sciacchitano et al., 2012, Westerweel, 1994). Corrupted regions also arise from irregular seeding

or the absence of a sufficient number of tracer particles, for example, in recirculation zones.

Whereas the latter sources of errors are specific to PIV, other measurement techniques suffer from

similar problems. Atmospheric data obtained via satellite imagery, for example, often suffer from

partial obstruction due to cloud coverage (Alvera-Azcárate et al., 2005).

Standard mathematical techniques for approximating missing data include basic interpo-

lation and least-square estimation. Techniques devised specifically for the task of gappy data

reconstruction include optimal interpolation (Kaplan et al., 1998, Reynolds and Smith, 1994,

Smith et al., 1996) and Kriging (Oliver and Webster, 1990, Stein, 1999). Kriging, the more

popular method, uses a local or global interpolant that is evaluated at the missing points based on

local weighted averaging. An advantage of Kriging is that it is inherently capable of extrapolation,

i.e, it can reconstruct spatial gaps that are persistent in time. The use of proper orthogonal decom-

position (POD) in conjunction with least-squares estimation for data reconstruction was proposed

by Everson and Sirovich (1995). This original ‘gappy POD’ algorithm was later extended by

Venturi and Karniadakis (2004) and shown to outperform Kriging for the reconstruction of flow

data with up to 50% of gappyness. A computational efficient algorithm that does not require

the repeated solutions of least-squares problems was introduced by Gunes et al. (2006). Since

its introduction, gappy POD has been applied to various flows such as the flow past an airfoil

(Bui-Thanh et al., 2004, Willcox, 2006), cavity flow (Murray and Ukeiley, 2007), boundary layers

(Gunes and Rist, 2007, Raben et al., 2012), gas turbine combustors (Saini et al., 2016), and

arterial blood flow Yakhot et al. (2007). It has also become an essential component of several

model reduction strategies that use POD modes as their basis (Benner et al., 2015, Chaturantabut

and Sorensen, 2010). Another application is efficient sensor placement (Willcox, 2006, Yildirim

et al., 2009). In the ocean sciences, gappy POD was independently developed under the name of

data interpolating empirical orthogonal functions (DINEOF) by Beckers and Rixen (2003) and

was used to, for example, fill in observational sea surface temperature (Alvera-Azcárate et al.,
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2005, Beckers et al., 2006), Southern Oscillation Index (Kondrashov and Ghil, 2006), and surface

chlorophyll concentration data (Alvera-Azcárate et al., 2007, Taylor et al., 2013).

In this work, we propose an algorithm based on frequency-domain, or spectral proper

orthogonal decomposition (SPOD), for gappy data reconstruction. Even though the mathematical

foundations of SPOD were first laid out by Lumley (1970), the method was rarely used, with a

few notable exceptions like the work of Glauser et al. (1987), before its first application to very

large numerical data by Schmidt et al. (2018). In the same year, Towne et al. (2018) established

relationships to hydrodynamic stability theory and other modal decompositions. The proposed

‘gappy SPOD’ algorithm is fundamentally different from those of Everson and Sirovich (1995)

and Venturi and Karniadakis (2004), both algorithmically and in that it leverages both spatial and

temporal coherence. Note that space-only POD modes are only correlated at zero time lag, and

hence do not possess the latter property (Towne et al., 2018).

The chapter is structured as follows. A brief overview of SPOD and SPOD-based

reconstruction is given in §3.2. §3.3 describes the gappy SPOD algorithm. In §§3.4.1 and 3.4.2,

we demonstrate the algorithm on numerical simulation data of laminar cylinder flow and PIV

data of turbulent cavity flow, respectively. §3.5 compares the performance of the proposed gappy

SPOD algorithm to established gappy POD and Kriging methods. The performance for cases

involving sequences of missing snapshots and data that contains additive gaussian white noise are

analysed in §3.6, and §3.7, respectively. Finally, §3.8 summarizes this work. Parameter studies

on the effect of the spectral estimation parameters, as well as data length and SPOD convergence

are presented in 3.A, and 3.B, respectively.
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3.2 Methodology

3.2.1 Spectral Proper Orthogonal Decomposition

SPOD extracts monochromatic modes that optimally capture, depending on the choice

of norm, the flow’s energy. These modes are computed as the eigenvectors of the cross-spectral

density matrix. We use a specific SPOD algorithm that estimates the cross-spectral density

matrix based on Welch’s approach (Welch, 1967). The implementation of this approach entails

partitioning the entire time series into smaller segments that are interpreted as independent

realizations of the flow. Next, we briefly introduce the notation used in this work. For a detailed

mathematical derivation and the algorithmic implementation, the reader may refer to, for example,

Towne et al. (2018) or Schmidt and Colonius (2020).

We denote by

qi “ qptiq, i “ 1,2, ¨ ¨ ¨ ,nt , (3.1)

the ensemble of nt snapshots of the statistically stationary flow field with its mean removed. The

first step of the standard Welch approach is to segment the data into nblk overlapping blocks, each

containing nfft snapshots. If the blocks overlap by novlp snapshots, then the j-th column in the

k-th block is given by qpkq

j “ q j`pk´1qpnfft´novlpq`1, where k “ 1,2, ¨ ¨ ¨ ,nblk, and j “ 1,2, ¨ ¨ ¨ ,nfft.

Next, we compute a windowed temporal discrete Fourier transform and arrange all the Fourier

realizations of the l-th frequency, q̂p jq
l , into a matrix,

Q̂l “

”

q̂p1q

l , q̂p2q

l , ¨ ¨ ¨ , q̂pnblkq

l

ı

. (3.2)

The SPOD modes, Φl , and eigenvalues, Λl , are finally obtained as the eigenpairs of the weighted

CSD matrix Sl “ 1
nblk

Q̂lQ̂˚
l W, where W is a positive-definite Hermitian matrix that accounts for

the component-wise and numerical quadrature weights. For data with more spatial degrees of
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freedom than the number of snapshots, we solve the smaller eigenvalue problem,

1
nblk

Q̂˚
l WQ̂lΨl “ ΨlΛl, (3.3)

for the (unscaled) expansion coefficients, Ψl . The SPOD modes at the l-th frequency are recovered

as

Φl “
1

?
nblk

Q̂lΨlΛ
´1{2
l . (3.4)

The column vectors of Φl “ rϕ
p1q

l ,ϕ
p2q

l , ¨ ¨ ¨ ,ϕ
pnblkq

l s are the SPOD modes and the diagonal entries

of Λl “ diagpλ
p1q

l ,λ
p2q

l , ¨ ¨ ¨ ,λ
pnblkq

l q contain the mode energies. An important property of the SPOD

modes is their orthogonality in their weighted inner product,
〈
ϕ

piq
l ,ϕ

p jq
l

〉
“ ϕ

piq
l Wϕ

p jq
l “ δi j, at

each frequency. The associated norm is denoted by } ¨ }2.

3.2.2 Data reconstruction

The reconstruction of the original data is based on the inversion of the SPOD problem,

comprehensively discussed in Nekkanti and Schmidt (2021a). The Fourier realizations at each

frequency are reconstructed from the SPOD modes as Q̂l “ ΦlAl . Here, Al is the matrix of the

(scaled) expansion coefficients computed as

Al “
?

nblkΛ
1{2
l Ψ˚

l , or (3.5)

Al “ Φ˚
l WQ̂l. (3.6)

The expansion coefficients can be saved during the computation of SPOD using equation (3.5)

or recovered later by projecting the Fourier realizations onto the modes using equation (3.6).

Using the expansion coefficients aik contained in A at any given frequency, the k-th block can be

66



reconstructed as

Qpkq
“ F ´1

»

–

˜

ÿ

i

aikϕ
piq

¸

l“1

,

˜

ÿ

i

aikϕ
piq

¸

l“2

, ¨ ¨ ¨ ,

˜

ÿ

i

aikϕ
piq

¸

l“nfft

fi

fl, (3.7)

where F ´1 is the inverse windowed Fourier transform. Finally, the time series is reconstructed

from the data segments by computing the average of the reconstructions from overlapping blocks,

weighted by the relative value of their windowing function (Nekkanti and Schmidt, 2021a).

3.3 Algorithm

The gappy SPOD algorithm consists of three loops: in the local loop, a single gap is

converged by repeated reconstruction with continuously updated local expansion coefficients; in

the inner loop, this process is repeated for all gaps; in the outer loop, the global convergence of

the inner loops is assessed.

Algorithm: Gappy SPOD

1. Segment the time series into overlapping blocks and compute the temporal Fourier transform

of each block (if not computed in the previous iteration).

2. Proceed to the n-th gap and choose all the realizations of the Fourier transform that are not

affected by this gap.

3. Compute the SPOD from all the Fourier realizations that are not affected by this gap

(equations (3.3) and (3.4)) and store the corresponding expansion coefficients (equation

(3.5)). (For denoising, apply mode truncation; see 3.7.)

4. Compute the SPOD expansion coefficients for blocks affected by the n-th gap by projecting

their Fourier transforms onto the SPOD basis (equation (3.6)).
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5. Reconstruct the affected blocks by inverting the SPOD (equation (3.7)) from the expansion

coefficients computed in (iii) and (iv); replace the regions affected by the n-th gap.

6. (local loop) Go to (iv) to update the expansion coefficients now that the data is reconstructed

in the affected regions until the convergence criterion based on the change of reconstruction

of the n-th gap is met.

7. (inner loop) Set n Ð n ` 1 and go to (i) until all gaps are reconstructed.

8. (outer loop) Set n “ 1 and go to (i); repeat until convergence criterion based on change of

reconstruction between outer loop iterations is met.

The metrics used to gauge the error, as compared to the true solution, and the convergence

for the local and outer loops, as compared to the previous iteration within the respective loop, are

defined next.

3.3.1 Error and Convergence metrics

Define G as the index set corresponding to all gappy snapshots and Gn Ă G as the subset

of indices corresponding to the n-th gap. The following error and convergence metrics are used to

evaluate the efficacy of our method:

ei “

›

›

›
qg

i ´ q̃g
i

›

›

›

2

2
›

›

›
qg

i

›

›

›

2

2

(relative error of i-th snapshot), (3.8)

en “
ÿ

iPGn

ei (relative error of n-th gap), (3.9)

E “
ÿ

iPG

ei (global relative error), (3.10)

cn “
ÿ

iPGn

›

›

›
q̃gr j´1s

i ´ q̃gr js

i

›

›

›

2

2
›

›

›
q̃gr j´1s

i

›

›

›

2

2

(convergence of n-th gap). (3.11)
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Here, qg and q̃g are, respectively, the original and reconstructed data in the gappy regions only,

and superscript r js the iteration index. The calculation of the relative errors, equations (3.9) and

(3.10), requires knowledge of the original data, q. For demonstration purposes only, artificial gaps

were introduced in this study, and hence the relative errors can be computed. The convergence

metric defined in equation (3.11) does not require the true data and can be evaluated even for gappy

datasets. Throughout this paper, the thresholds used for convergence criteria are tol “ 10´8. We

will demonstrate later that this tolerance is very conservative in that the error has long converged

before the criterion is met for our examples.

3.3.2 Computational complexity

The computational cost of gappy SPOD is dominated by the matrix multiplications

in the local loops, i.e, step (vi) of the algorithm in §3.3. Welch’s algorithm outlined in §2

segments the dataset of size into nblk blocks. Here m is the product of the spatial degrees

of freedom and the number of variables. For flow data with a high spatial resolution, as the

two cases considered here, we can typically assume that m " nfft,nblk. The SPOD in step

(iii) requires the formation of the cross-spectral density matrix, its eigenvalue decomposition,

and the computation of the SPOD modes at each frequency. The time complexities of these

operations are pmn2
blkq, pn3

blkq, and pmn2
blkq, respectively. The total time complexity of step (iii)

is hence pmnfftn2
blkq. The time complexities of steps (iv) and (v) are pmnfftnblknblk,gapsq, and

pmnfftnblk,gaps log
`

nblk,gaps
˘

q, respectively, where nblk,gaps is the number of blocks that contain

gaps. The number of local loops required for the convergence of each gap is an a priori unknown

number nlocal. As each inner loop converges all gaps, which amounts to a time complexity

of pmngapsnfftnblkpnblk ` nlocalnblk,gapsqq. In practice, we find that nlocalnblk,gaps " nblk and the

estimate simplifies to pmngapsnfftnblknlocalnblk,gapsq. Finally, if the algorithm requires nouter outer

loops for convergence, then its total time complexity is pmnoutnlocalngapsnfftnblknblk,gapsq.
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Table 3.4.1: Parameters example databases and spectral estimation parameters.

Case Variables Re nx ny nz nt ∆t nfft novlp nblk

Cylinder DNS u,v 500 250 125 1 4096 0.06 256 128 31
Cavity PIV u,v 3.3 ˆ105 150 55 1 16000 6.25 ˆ 10´5s 256 128 124

3.4 Results

We demonstrate the reconstruction of missing data using the gappy SPOD reconstruction

method on two examples. The parameters of these example datasets are given in table 1. The first

example is direct numerical simulation (DNS) data of the canonical laminar flow past a cylinder.

This flow is a popular benchmark case that we will use to compare with established methods

such as gappy POD (Everson and Sirovich, 1995, Venturi and Karniadakis, 2004) and Kriging

(Oliver and Webster, 1990). The second example is the experimental data of a high Reynolds

number flow over an open cavity obtained from time-resolved particle image velocimetry (PIV)

measurements (Zhang et al., 2017, 2020). This data exemplifies realistic turbulent flow data and

is subject to measurement noise.

3.4.1 Example 1: Cylinder flow at Re=500

Figure 3.4.1: Instantaneous fluctuating flow field for flow around a cylinder at Re “ 500: (a)
streamwise velocity, u; (b) transverse velocity, v.

As a first example, we consider the flow around a cylinder at a Reynolds number Re “
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Figure 3.4.2: Randomly generated gaps in the flow past a cylinder: (a) 1% gappyness; (b) 5%
gappyness; (c) 20% gappyness. Red blocks indicate gaps. The streamwise (x-y) plane is plotted
aganist the snapshot index, i.

ρU8D{µ “ 500, where ρ is the density, U8 the incoming flow velocity, µ the dynamic viscosity,

and D the diameter of the cylinder. The coordinates are non-dimensionalized by D and velocities

by U8, respectively. This data was obtained by solving the two-dimensional incompressible

Navier-Stokes equations for the velocity field q “ ru,vs
T using the immersed-boundary solver by

Goza and Colonius (2017). The data was acquired after all transients have subsided. Instantaneous

flow fields of the streamwise velocity, u, and transverse velocity, v, are shown in figure 3.4.1.

The gappy SPOD reconstruction is demonstrated in three scenarios with 1%, 5%, and 20%

of missing data. Missing regions, or gaps, are artificially introduced to the data after the mean is

removed. The gaps are randomly seeded in space and time. Similarly, the spatial and temporal

extent of the gaps is randomly sampled. Figure 3.4.2 shows the spatio-temporal distribution of the

gaps for all three levels of gappyness. The gaps are allowed to extend over the entire field-of-view

71



Figure 3.4.3: Errors and convergence for 5% gappyness, see figure 3.4.2(b). The global relative
error is shown in (a). Inner (gap-wise) iterations are denoted by grey dotted lines and outer
iterations (sweeps over all gaps) as blue solid lines. Panels (b-d) show the gap-wise error and
convergence for three randomly selected gaps within the first outer loop.

and up to 300 snapshots. The gappy-SPOD algorithm reconstructs the data by filling gaps in

sequential order. Here, we number the gaps according to their first occurrence in time and have

verified that the final error upon convergence is insensitive to the order by which the algorithm

handles the gaps. Figure 3.4.2(c) shows the extreme example of 20% gappyness in which every

block contains missing data. Following best practices for SPOD (Schmidt and Colonius, 2020),

the data is segmented into 31 blocks with 256 snapshots and 50% overlap. The effect of the

parameter nfft is investigated in 3.A. Additionally, in 3.6, we explore a case with 5% missing data

and entire snapshots, or short sequences of snapshots, missing from the data.

We start by exploring the 5% gappyness case, previously shown in figure 2(b). This case

consists of ngaps “ 20 randomly seeded and sized gaps. Figure 3.4.3 illustrates the local and
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global error s and the convergence of the algorithm. By ‘local’, we refer to the gap-wise iteration,

that is, steps (iv)-(vi) of the algorithm in §3.3, and by ‘global’ to the outer iteration loop over steps

(i)-(viii). Figure 3.4.3(a) shows the evolution of the global relative error as defined in equation

(3.10) as all gaps are converged to cn ď tol “ 1 ˆ 10´8 within each of the four outer loops. The

gap-wise convergence, cn, is defined by equation (3.11). The four outer loops required to achieve

global convergence are marked by the thick blue lines. Each of these outer iterations comprises

ngaps inner loops, indicated by the grey dotted lines. The global relative error is normalized

according to equation (3.10), and hence starts with one. The error non-strictly monotonically

decreases as the gaps are sequentially filled in. This is a desirable property, but we note that the

algorithm does not guarantee it. The amount by which each inner loop can reduce the global

relative error is dependent on the spatial location and temporal extent of the corresponding gap.

This explains the sharp drops at the beginning of some local iteration loops. At the end of the

first outer loop, the global relative error is already reduced to 1.3%, and its final value after

four outer loops is 7.7 ˆ 10´5. Notably, a large fraction of the reconstruction error reduction is

accomplished by the first outer loop. A quantitative comparison with other methods such as the

gappy-POD method by Venturi and Karniadakis (2004) is provided in section §3.5.

Panels 3.4.3(b-d) show the local relative errors and convergence for three representative

gaps during the first outer loop. The local relative error for all gaps decreases monotonically from

one to very small values of order 10´3. After the final outer iteration loop, the local relative errors

are of order 10´5. The tolerance of tol “ 1 ˆ 10´8, as indicated by blacked dash lines, guarantees

that the relative errors are all well converged.

Figures 3.4.4 and 3.4.5 compare the reconstructed, gappy, and original data for 5% of

missing data. Figure 3.4.4 shows the streamwise velocity fluctuations, u, and figure 3.4.5 the

transverse component, v. The same four time instances are shown in the four columns of both

figures. The first column corresponds to the time instant of the largest instantaneous reconstruction

error. The other three are randomly selected. Visual inspection of the reconstructed and original
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Figure 3.4.4: Reconstruction for 5% gappyness at four time instances: (a-d) gappy data; (e-h)
reconstructed data; (i-l) original data. False colors of the streamwise velocity fluctuations, u, are
on the same scale in all plots.

Figure 3.4.5: Same as figure 3.4.4 but for the transverse velocity fluctuations.
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data indicates that the gappy SPOD algorithm is able to accurately reconstruct the flow structures

in the affected regions. The relative errors for these four snapshots are ei “ 7 ˆ 10´5, 1ˆ10´5,

1ˆ10´5, and 2ˆ10´5, respectively. Figures 3.4.3-3.4.5 demonstrate that the algorithm performs

very well in both a qualitative and quantitative sense for this case.

Figure 3.4.6: Global relative error of the gappy SPOD algorithm: (a) 1% gappyness; (b) 20%
gappyness. The blue solid lines indicate the outer iterations.

We next study the performance of the algorithm for the more moderate case with 1% and

the more extreme case with 20% of missing data. Figure 3.4.6 shows the global relative errors

for these two cases. As in figure 3.4.3(a), outer loops are indicated by thick blue lines. The 1%-

and 20%-gappyness cases require two and 16 outer loops for convergence, respectively. The final

errors upon convergence are E = 9ˆ10´6, and 3ˆ10´2, respectively. As can be anticipated from

the very low error for the 1% case, the reconstructed velocity fields are visually indistinguishable

from the original DNS data, and we hence refrain from showing the reconstructions.

Figure 3.4.7 shows the side-by-side comparison for the most severe case with 20% of

gappyness and a final error of 3%. While the instantaneous flow fields are shown here, note

that the gaps extend over significant time periods, as can be seen in figure 3.4.2(c). Similar to

figure 3.4.4, the first column corresponds to the snapshot that exhibits the largest reconstruction

error. The remaining three time instants are arbitrarily selected. The spatial gaps in these four
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Figure 3.4.7: Same as figure 3.4.4, but for 20% gappyness.

snapshots correspond to 50%, 46%, 33%, and 40% of missing data, respectively. A comparison

of the reconstructed and original fields reveals some local discrepancies at the fringes of the

gaps, in particular where multiple gaps overlap. This is most notable in figure 3.4.7(e, f ). These

local discrepancies aside, the wake flow is accurately reconstructed terms of structure, phase

and amplitude. The reconstructions are almost indistinguishable from the original data for

the snapshots with 33% and 40% of missing data shown in figures 3.4.7(c,g,k) and 3.4.7(d,h,l),

respectively. Results for the transverse velocity component are very similar and omitted for brevity.

The relative errors are ei “ 7.9 ˆ 10´2, 1.7 ˆ 10´2, 2.5 ˆ 10´3, and 1.3 ˆ 10´3, respectively.

Considering that a large fraction of 20% of the data was missing, these errors are, arguably, low

and the overall flow dynamics are accurately recovered. A quantitative comparison with other

methods, later presented in §3.5, confirms this conjecture.

3.4.2 Example 2: PIV of turbulent cavity flow by Zhang et al. (2017, 2020)

Next, we consider the much more relevant and challenging example of experimental

turbulent flow over an open cavity. The Reynolds number based on the cavity depth is Re “

ρU8D{µ “ 3.3ˆ105, and the Mach number is M “ U8{c8 “ 0.6. Here, c8 is the speed of sound.
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Figure 3.4.8: Instantaneous fluctuating flow field of the turbulent flow over an open cavity at Re
= 3.3ˆ105 measured by Zhang et al. (2017, 2020): (a) streamwise velocity, u; (b) transverse
velocity, v. The x- and y-coordinates are non-dimensionalized by cavity depth D.

Time-resolved particle image velocimetry (TR-PIV) was performed to obtain the velocity field in

the center plane of an open cavity with a length-to-depth ratio of L{D “ 6 and a width-to-depth

ratio of W{D “ 3.85. A total number of 16,000 snapshots was obtained at a sampling rate of

16kHz. The coordinates are non-dimensionalized by depth D, but the velocity components are

reported in SI units. We refer to Zhang et al. (2019, 2017) and Zhang et al. (2020) for more

details on the measurement campaign and the experimental setup, respectively. The instantaneous

velocity field shown in figure 3.4.8 exemplifies, in stark contrast to the previous example, the

chaotic nature of the flow. This example also tests the algorithm’s performance in the presence of

measurement noise that is not easily distinguished from physical turbulence.

As for the cylinder flow example in §3.4.1, we consider three cases with 1%, 5%, and

20% of missing data. The gaps are shown in figure 3.4.9 and were randomly generated in the

same way as for the previous example. Taking into account the significantly larger length of the

data sequence, the maximum temporal extent of the gaps was increased to 600 snapshots. As

before, we choose nfft “ 256 and 50% overlap, resulting in a total number of 124 blocks. The

dependence of the results on nfft is investigated in 3.A. In the extreme example of 20% gappyness,

every block is affected by gaps.

As in figure 3.4.3, the inner workings of the algorithm for the cavity flow with 5% of

77



Figure 3.4.9: Randomly generated gaps for the turbulent flow over an open cavity: (a) 1%
gappyness; (b) 5% gappyness; (c) 20% gappyness. Red blocks indicate gaps. The streamwise
(x-y) plane is plotted over the snapshot index, i.

missing data are best understood from the relative errors and gap-wise convergence shown in

figure 3.4.10. Figure 3.4.10(a) shows that the algorithm requires two outer iteration loops to

satisfy the convergence criterion of tol “ 10´8. The first outer iteration reduces the global relative

error by 81%. The second outer loop does not further reduce the error by an appreciable amount,

and its final value remains at E “ 19%. In §3.5, we confirm that this value is lower than what

is achieved by other established methods. A notable difference to the laminar case, shown in

figure 3.4.3, is that the global relative error does not decay monotonically. The local relative

error and convergence for three representative gaps during the first outer loop are shown in figure

3.4.10(b-d). The relative error for all gaps decays to about 20%. An important observation is that

the gap-wise relative error always saturates before the convergence criterion of tol “ 10´8 is met.

This observation, again, serves as an a posteriori justification for this choice of tolerance.

Figures 3.4.11 and 3.4.12 show the instantaneous streamwise and transverse velocity
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Figure 3.4.10: Errors and convergence for 5% gappyness, see figure 3.4.9(b). The global relative
error is shown in (a). Inner (gap-wise) iterations are denoted by grey dotted lines and outer
iterations as blue solid lines. Panels (b-d) show the gap-wise error and convergence for three
randomly selected gaps within the first outer loop.

Figure 3.4.11: Reconstruction for the turbulent cavity flow with 5% gappyness at four time
instances: (a-d) gappy data; (e-h) reconstructed data; (i-l) original data. False colors of the
streamwise velocity fluctuations, u, are on the same scale in all plots.
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Figure 3.4.12: Same as figure 3.4.11, but for the transverse velocity fluctuations.

components for the gappy, reconstructed and original flow fields. Again, the first column is

the snapshot with the largest reconstruction error, and the other three are arbitrarily selected.

We observe that the reconstructions are very similar to the original flow field for all four time

instances. The corresponding relative errors are ei = 29%, 17%, 8%, and 22%, respectively. The

comparison of panels (e) and (i) in figures 3.4.11 and 3.4.12 shows that the salient flow features

are recovered by the algorithm, that is, despite the remaining error of 29%.

We next address the reconstruction of the two remaining cases with 1% and 20% of

gappyness. Figure 3.4.13 shows the global relative errors for these cases. Two and five outer

loops are required for convergence, and the final global relative errors are E “ 20.3% and 19.4%,

respectively. These values are very similar to that of the 5% case. This indicates that the

reconstruction is not sensitive to the percentage of missing data within the range considered here.

In each case, the reconstructions recover approximately 80% of the energy. This result is found in

contrast to the laminar cylinder flow case, where the global relative error proportionally increases

with the amount of missing data. As before we next inspect representative time instances for a

qualitative assessment of the performance.

The reconstructions are compared to the gappy and original flow fields for 1% and 20%

of missing data in figures 3.4.14 and 3.4.15, respectively. The reconstructions of the 1% case
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Figure 3.4.13: Global relative error of the gappy SPOD algorithm: (a) 1% gappyness; (b) 20%
gappyness. The blue solid lines indicate the outer iterations.

Figure 3.4.14: Reconstruction for the turbulent cavity flow with 1% gappyness at four time
instances: (a-d) gappy data; (e-h) reconstructed data; (i-l) original data. False colors of the
streamwise velocity fluctuations, u, are on the same scale in all plots.

are in very good agreement with the original data. For the 20% case shown in figure 3.4.15,

large parts of the field-of-view are missing. An animation of the snapshots in the vicinity of

the gaps (see supplemental material) further confirms that the gaps persist for a long time. The

percentages of missing data for the four time instances are 58%, 48%, 28%, and 23%, and the

corresponding relative errors are ei = 43.2%, 26.4%, 13.2%, and 16.6%. A comparison between

the reconstructed field-of-view in figure 3.4.15(e) and the reconstructed data in 3.4.15(i) shows

81



that the gappy SPOD algorithm was able to reconstruct large parts of the flow field. This puts

into perspective the reconstruction error of E “ 19.4% that might be perceived as large without

this qualitative assessment. Note that correlation-based reconstruction is always limited by the

physical length and time scales of the turbulent flow beyond which a reconstruction is not feasible.

Comparing the reconstructed to the original data for the three remaining time instances confirms

that the algorithm is capable of estimating many of the intricate details of the flow.

Figure 3.4.15: Reconstruction for the turbulent cavity flow with 20% gappyness at four time
instances: (a-d) gappy data; (e-h) reconstructed data; (i-l) original data. False colors of the
streamwise velocity fluctuations, u, are on the same scale in all plots.

3.4.3 Reconstruction of the turbulence statistics

After assessing the method’s performance in terms of the global reconstruction error and

with direct comparisons of original and reconstructed flow fields, we next focus on turbulence

quantities. In particular, we consider the turbulent kinetic energy (TKE), TKE = 1
2ppu1q2 ` pv1q2q,

and the Reynolds shear stress, τxy “ u1v1. The comparison of the original, gappy, and reconstructed

TKE fields for the 1%, 5%, and 20% cases are presented in figure 3.4.16. The cylinder and cavity

flows are shown in figure 3.4.16(a-g) and 3.4.16(h-n), respectively. For 1% and 5%, moderate
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Figure 3.4.16: Turbulent kinetic energy fields for the gappy, reconstructed and original data:
(a-g) cylinder flow; (h-n) the cavity flow. Contour levels are consistent between subplots (a-g)
and (h-n).

distortions are observed in the gappy data for both cases, and the reconstructed TKE fields are

almost indistinguishable from the original data. For 20%, a large fraction of TKE has been

removed, and the flow field is heavily distorted. The reconstructions shown in panels (g) and (n),

on the contrary, are smoother, recover large parts of the TKE, and compare well with the original

data.

For a more quantitative assessment, the area-integrated TKE error is presented in table

3.4.2. In accordance with figure 3.4.16, the TKE error after reconstruction is almost negligible

for 1% and 5% of missing data for the cylinder flow. The TKE error is also substantially lower

for the cavity flow. For 20% of missing data, the TKE error reduces from 34.7% to 4.5%, and
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Table 3.4.2: Area integrated TKE and Reynolds stress errors for the gappy and reconstructed
flow fields.

TKE error (%) Reynolds shear stress error (%)

Gappyness
Cylinder flow Cavity flow Cylinder flow Cavity flow

Before After Before After Before After Before After
1% 1.18% 3.40ˆ10´3 % 0.65% 0.19% 1.67% 0.02 % 0.65% 0.14%
5% 8.23% 3.49ˆ10´2 % 4.05% 1.3% 5.74% 0.18% 4.27% 1.02%

20% 34.72% 4.51% 21.96% 6.35% 25.25% 5.92% 24.59% 5.56%

from 22% to 6.4% for the two examples, respectively. These percentages correspond to « 7- and

4-fold reductions. The qualitative counterparts to these numbers are the TKE field comparisons

previously shown in figure 3.4.16(d,g) and 3.4.16(k,n), respectively. Also listed in table 3.4.2

is the area-integrated Reynolds shear stress error. Similar to the TKE error, the Reynolds shear

stress error has been reduced significantly by a factor of « 4 in both cases.

3.5 Comparison with other methods

Finally, we compare the performance of the gappy SPOD method to the established

methods of gappy POD by Everson and Sirovich (1995) and Venturi and Karniadakis (2004)

(referred to as gappy POD-ES and -VK in the following), and Kriging. For local Kriging, the

exponential correlation model results, in agreement with Saini et al. (2016), in lower errors than

the more standard Gaussian model. The more successful model is implemented in the MATLAB

toolbox DACE (Lophaven et al., 2002) that was used for our comparisons. The same tool was

used by Venturi and Karniadakis (2004), Raben et al. (2012), and Saini et al. (2016) for the same

purpose.

Figure 3.5.1 compares the global relative errors for gappy SPOD, the two gappy POD

algorithms, and Kriging. Both cases and all three levels of gappyness are considered. Both

gappy POD methods have the number of modes as a free parameter that needs to be varied to

identify the best-possible reconstruction. Kriging relies on interpolants instead of modes and
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Figure 3.5.1: Global relative error for different reconstruction methods: (a-c) cylinder flow;
(d- f ) cavity flow; (a,d) 1%, (b,e) 5% and (c, f ) 20% of missing data. The ordinate in (a-c)is on
a logarithmic scale for clarity.
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gappy SPOD does not truncate the modal basis. The reconstruction errors of these methods are

therefore constant in figure 3.5.1. The gappy POD-ES and -VK methods produce almost identical

errors (see also Raben et al., 2012, Saini et al., 2016), and we hence do not distinguish between

them. The mode numbers were varied until candidates for the global minima, marked by circles,

were identified as minima by observing the general trend of the errors. As the number of modes

in classical POD is equal to the number of snapshots (4096 and 16000 for the data at hand), gappy

POD becomes computationally intractable due to increasingly high compute times (see table 3

below). Therefore, there is no guarantee that the reconstruction corresponds to the actual global

optimum. A few common trends are observed in all six cases in figure 3.5.1. In general, gappy

POD outperforms Kriging and gappy SPOD outperforms gappy POD. For the cylinder flow and

1% and 5% of gappyness in figure 3.5.1(a,b), final reconstruction errors for gappy SPOD are 3.8

and 4.3 times below those of gappy POD and multiple orders of magnitude lower than those of

Kriging. For 20% gappyness, gappy SPOD and gappy POD yield very similar results with only

a marginal advantage of 2% for gappy SPOD, but both outperform Kriging by about one order

of magnitude. For the turbulent cavity flow in figure 3.5.1(d- f ), at all missing data percentages,

gappy SPOD reduces the global relative error by about 80%, which is at least 20% lower than

for other methods in all cases. In direct comparison with gappy POD, gappy SPOD achieves 2.1,

2.7, and 3.8 fold reductions in error for the three gappyness ratios, respectively. As in section

§§3.4.1 and 3.4.2, we observe that the gappyness has a significant impact on the achievable error

reduction for the periodic laminar flow. In contrast, the final error is almost independent of the

percentage gappyness for the turbulent, noisy experimental data.

We next compare the compute times for Kriging, gappy POD, and gappy SPOD in

table 3.5.1. With the exception of the cylinder flow at the two lower percentages (where gappy

SPOD has an advantage), Kriging and gappy SPOD have similar computational times. A direct

comparison with gappy POD is not possible as the optimal number of modes is not known a priori,

and its computation becomes quickly intractable as the mode number is increased. The mode
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Table 3.5.1: Comparison of computational time. The computations were performed on a
high-performance workstation with 192GB of memory and two 3.0 GHz 48-core Intel Xeon
Gold CPUs. The spatial degrees of freedom times the number of variables for the cylinder and
cavity flows are 62500, and 16500, respectively. The corresponding number of snapshots are
4096 and 16000.

Gappy- Cylinder flow (in hr) Cavity flow (in hr)
ness Kriging gappy POD gappy SPOD Kriging gappy POD gappy SPOD
1% 11.24 49.95 (75 modes) 1.63 2.79 27.88 (75 modes) 2.37
5% 28.91 64.69 (50 modes) 13.58 10.91 19.94 (40 modes) 7.28
20% 159.63 34.13 (20 modes) 139.86 46.84 26.30 (20 modes) 49.57

number shown in table 3.5.1 reflect the minimum number of modes required to guarantee that the

global minimum was identified to the best of our ability. For the two examples at hand, we found

that a decreasing number of modes was required for gappy POD as the gappyness increases. This

gives gappy POD an advantage in terms of compute time for higher percentages of missing data.

Note, however, that gappy SPOD yields a more accurate reconstruction, and does not require

monitoring. In summary, gappy SPOD always outperforms Kriging and generally performs better

(although in one case only marginally) than gappy POD in terms of the reconstruction error, but

sometimes does so at a higher computational cost.

3.6 Missing snapshots

A common scenario not considered so far is that of missing snapshots, or even longer

sequences of missing snapshots. Unlike the classical gappy POD methods (Everson and Sirovich,

1995, Venturi and Karniadakis, 2004), the gappy SPOD algorithm does not rely on a least-squares

fit and hence does not become singular in this situation. Figure 3.6.1 shows the combination

of gaps and missing snapshots investigated here, and which amounts to 5% of missing data.

The gaps are randomly generated in the same way as in §§3.4.1 and 3.4.2. For isolated, non-

consecutive missing snapshots, temporal interpolation can provide accurate reconstructions, and

we hence do not consider this simpler scenario. Instead, we add for the cylinder and cavity flow,
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Figure 3.6.1: Randomly generated gaps with 5% of missing data and missing snapshots: (a)
cylinder flow and (b) cavity flow.

respectively, five and ten sequences of ten to 25 consecutive missing snapshots. The start of the

missing snapshot sequences and their duration are randomly selected within this interval. The

main difference between localized gaps and missing snapshot sequences is that, in the latter, the

algorithm solely relies on temporal correlation with previous and subsequent snapshots for the

reconstruction.

The global relative errors for this scenario are shown in figure 3.6.2. As before, the

tolerance is set to tol “ 10´8 and both cases require four outer loops for convergence. The final

errors are E “ 28%, and 31%, respectively. For the cavity flow example, the final error, although

higher, is still comparable to that of the 5% case shown in figure 3.4.10. For the cylinder flow

example, on the other hand, the final error is comparable to that of the turbulent cavity flow,

but significantly higher than the corresponding case shown in figure 3.4.3. A notable difference

compared to cases without missing snapshots is that the converged solution does not necessarily

yield the minimum global relative error. However, the converged values are within 4% of the

global minimum, and about 70% of the missing energy is recovered for both examples. Missing

snapshots apparently pose a special challenge to the algorithm, in particular for the laminar

cylinder flow. An inspection of the reconstructed data before and after the largest jump occurring
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Figure 3.6.2: Global relative error for cases with missing snapshots shown in figure 3.6.1: (a)
cylinder flow; (b) cavity flow.

at iteration 4340 in figure 3.6.2(a) reveals that the jump is caused by an inversion of the phase of

the entire flow field, and that the jump occurs for the gap with the longest consecutive sequence

of 25 missing snapshots. For simplicity, we refrain from introducing a special treatment of this

very specific phase-inversion error and emphasize that the final error is comparable to its global

minimum. A special treatment of this error type is a direction of future research.

3.7 Performance of the algorithm in the presence of noise and

filtering

Experimental flow data such as the cavity flow data investigated in §4.2, inherently

contains measurement noise. In Nekkanti and Schmidt (2021a), we have demonstrated the

capability of SPOD for denoising by rank truncation. The underlying idea is that physical

structures are coherent and therefore captured by the leading SPOD modes. Many sources of

measurement noise, on the other hand, are incoherent and lead to additional low eigenvalues

that can conveniently be truncated. This becomes clear in figure 3.7.1(b), where added Gaussian

white noise with standard deviation, σ “ 0.1 leads to the formation of a distinct noise floor in the
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Figure 3.7.1: Gappy data reconstruction for flow with 5% gappyness subjected to random
noise with standard deviation σ “ 0.1: (a) instantaneous streamwise velocity field; (b) SPOD
spectrum; (c) global relative error. The red line in (b) indicates the truncation threshold, chosen
slightly above the noise floor.

otherwise noise-free numerical cylinder data with 5% gappyness. The same observation has been

made for space-only POD by Venturi (2006) and Epps and Krivitzky (2019). A time instant of the

streamwise velocity component, u, is shown in figure 3.7.1 (a). In the gappy SPOD algorithm, we

use a truncation threshold slightly above the noise floor (red line in 3.7.1(b)) to remove noise in

step (iii) before performing steps (iv)-(viii). The hard-thresholding leads to the truncation of 84%

of the modes at the lowest non-zero frequency. Frequencies above f “ 2.6 fall below the noise

floor and are removed entirely. This significant truncation in terms of number of modes, however,

only amounts to 2.3% of the total energy being removed. A positive by-product of the truncation

is that the algorithm converges much faster and in fewer iterations. The total reconstruction error
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Figure 3.7.2: Same as figure 3.4.4 with added white noise.

upon convergence is 0.19% as compared to the 7.7ˆ10´3% of the original case in figure 3.4.3(b).

Figure 3.7.2 shows the instantaneous streamwise velocity component of the gappy data

containing noise, reconstructed, and original flow fields, respectively. The same four time

instances as in figure 3.4.4 are selected. A visual inspection revels that the reconstructions in the

missing regions are almost identical to the original data, and that the noise has been removed

in large parts. The relative errors for these four snapshots are ei “ 0.3%, 0.2%, 0.15%, and

0.17%, respectively. Figures 3.7.1 and 3.7.2 show that the algorithm not only performs well in

the presence of noise, but also removes it to a large degree.

3.8 Summary and discussion

A new algorithm is proposed that leverages the temporal correlation of SPOD modes

with preceding and succeeding snapshots and their spatial correlation with the surrounding data

to reconstruct partially missing or corrupted flow data. For demonstration purposes only, the

reconstructed data are compared to the actual data in the corrupted regions. The algorithm itself

exclusively relies on convergence metrics and fills in the gaps sequentially until the reconstruction
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converges to a user-defined tolerance, both locally, that is for each gap, and globally. The method

is demonstrated on simulation data of the flow around a cylinder and time-resolved PIV data

of turbulent cavity flow; the first being a canonical benchmark example used in many previous

studies and the latter a realistic scenario of turbulent flow data in the presence of measurement

noise. For randomly seeded and sized gaps that amount to up to 20% of missing data and extend

over large regions in space and many snapshots, the algorithm accurately recovers the missing

instantaneous and mean flow fields as well as turbulence statistics. It generally outperforms

the established methods, particularly for the turbulent flow, where it yields a significantly lower

reconstruction error that translates into an at least two-fold reduction compared to gappy POD

and Kriging. Notably, this comparably low reconstruction error appears largely unaffected by

the percentage gappyness within the range tested here. Even though the different methods scale

differently and the results are case-dependent, their computational costs are roughly comparable.

A caveat to the strong performance of the new method is that it is strictly applicable to statistically

stationary data only, and that it relies on a sufficiently well-converged SPOD of the data, which

in turn requires a sufficiently long time series. The main limitation of the algorithm directly

follows from the properties of the SPOD: accurate flow reconstruction is only possible within

the physical correlation length and time scales of the flow. This limitation, however, applies

to all correlation-based methods. A systematic study of the most important spectral estimation

parameters shows that best practices for SPOD (Schmidt and Colonius, 2020) also lead to a good

balance between the accuracy and computational cost of the gappy SPOD algorithm. In 3.7, we

demonstrate that the algorithm not only performs well in the presence of noise, but also that

mode truncation facilitates efficient denoising while reducing computational time. Contingent

on further testing on more data sets, the present results suggest that the algorithm can be fully

automated and applied to any sufficiently long stationary flow data.
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Appendix

3.A Effect of spectral estimation parameters nfft and novlp

Figure 3.A.1: Effect of nfft on the global relative error: (a) cylinder flow; (b) cavity flow; (c)
final error, and (d), total number of iterations as a function of nfft.

The arguably most crucial aspect of spectral estimation is the inevitable trade-off between

variance and bias. In SPOD, this trade-off is mainly determined by the block size, nfft. For low
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nfft, the frequency bin size, ∆ f 91{nfft, is large and the spectrum will be biased. For large nfft,

the total number of blocks, and therefore realizations of the Fourier transform, is low and the

spectrum suffers from high variance. The number of blocks can be inflated by increasing the

overlap, novlp. However, values above 50% in practice do not yield lower-variance estimates as

the information contained in neighbouring blocks becomes increasingly redundant (Schmidt and

Colonius, 2020). Figure 3.A.1 summarizes a parameter study of nfft for both test cases. As in

figures 3.4.3 and 3.4.10, we show the global relative reconstruction errors for varying nfft and

5% gappyness. Results for the cylinder and cavity flow cases are shown in figure 3.A.1(a) and

3.A.1(b), respectively. The final error is more sensitive for the laminar flow and is hence reported

on a logarithmic scale. As before, all computations were converged to a tolerance of tol “ 10´8.

The final errors, Efinal, and total number of iterations, are extracted and reproduced in figure

3.A.1(c) and 3.A.1(d). In both cases, the global relative error first decreases and then increases

with nfft. The lowest errors are achieved for nfft “ 256, and nfft “ 64, respectively. With the

exception of nfft “ 64 for the cylinder flow, the number of iterations decreases monotonically with

nfft. This can be seen in figure 3.A.1(d). The number of iterations, in turn, is directly indicative

of the overall compute time. In the main text, we did not use this a posteriori knowledge of the

optimal value of nfft. For the cylinder, the best practise value of nfft “ 256 yields the minimum

error. For the cavity flow this is not the case. However, the error for 32 ď nfft ď 512 only deviates

within 3% from the optimal value. At the same time, using nfft “ 256 leads to a factor 3.5 savings

in compute time as compared nfft “ 64. To summarize, the best practise of nfft “ 256 yielded

the optimal value for one of the examples, and a very good compromise between reconstruction

accuracy and compute time in the other.

The effect of the overlap, novlp, is investigated in figure 3.A.2 for a fixed segment length of

nfft “ 256 and 5% gappyness. The final reconstruction errors for novlp “ 0%, 25%, 50% and 75%

are shown in figure 3.A.2(a). For the turbulent cavity flow, the error decreases with increasing

overlap. For the laminar cylinder wake, the error first decreases, but then increases again for the
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Figure 3.A.2: Effect of novlp on the, (a), global relative error and, (b), condition number of
the weighted CSD matrices for 5% missing data. The maximum condition number over all
frequencies is shown.

largest overlap of novlp “ 75%. Notably, the best-practice value of novlp “ 50% yields the lowest

error for the cylinder flow and is within 2% of the optimum achieved for the cavity flow. The latter

is achieved for novlp “ 75% and comes with an approximately 50% increase in computational

cost. The increase of the error at novlp “ 75% for the laminar cylinder wake is unexpected at first.

We speculate that it is related to the increasing redundancy of information in the overlapping

blocks, which in turn results in increasing linear dependence. The latter can be gauged by the

condition number. In figure 3.A.2(b), the maximum condition number over all frequencies,

maxlpλ
p1q

l {λ
pnblkq

l q, is shown as a function of overlap. As the condition number is independent

of the data reconstruction, more data points are computed and shown in figure 3.A.2(b). The

trends for the two flows are similar, but the condition number of the cylinder flows is, indeed,

significantly higher and elevated by about two orders of magnitude for novlp À 60%. For larger

values, the condition numbers of both flows suddenly increase. These observations support the

best-practice value of novlp “ 50%, which stays well clear of ill-conditioning associated with high

overlaps.
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Figure 3.B.1: Global relative error for the cavity flow with 5% of missing data: (a) full data; (b)
first half of the data; (c) first quarter of the data; (d) first 10% of the data. The total number of
snapshots are 16000, 8000, 4000, and 1600, respectively.

3.B Effect of data length nt

As a statistical method, SPOD relies on a large ensemble realizations of the Fourier

transform to converge the modes and eigenvalues. We hence expect the quality of the reconstruc-

tion to be better for longer time series. The following study of increasingly truncated subsets

of the 5% gappyness cavity data confirms this. The original example shown in figure 3.4.9(b)

is truncated by 50%, 75%, and 90%. The convergence in terms of the global relative errors

for the full and truncated datasets are shown in figure 3.B.1. For comparability, nfft is fixed at

256. Upon convergence, the final global relative error increases with increasing truncation from

E “ 19% to 24.3%, 28.1%, and finally 47.8%, as anticipated. At the same time, we observe

that the shorter datasets require a higher number of outer iterations for global convergence. The

full and truncated datasets require two, three, four, and six outer iterations, respectively. These

observations confirm the dependence of gappy SPOD algorithm on a sufficiently long time series

and, therefore, sufficiently converged SPOD modes. As a rule of thumb, this suggests that gappy

SPOD should only be applied to datasets that are suitable for SPOD analysis in the first place.
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Part II

Investigating the flow physics of turbulent

jets
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Chapter 4

Modal analysis of the acoustic directivity in

turbulent jets

4.1 Introduction

The reduction of jet noise is an important objective for the aviation community. The

pioneering works by Crow and Champagne (1971) and Brown and Roshko (1974) were the

earliest to report the presence of large-scale coherent structures in turbulent jets and shear

layers, respectively. Here, large-scale refers to dimensions longer than or comparable to the

jet diameter. Mollo-Christensen (1967) described them as intermittent spatial structures, or

wavepackets, present in the mixing layer. Researchers (Crighton and Gaster, 1976, Crighton and

Huerre, 1990, Michalke, 1977, Tam and Burton, 1984, Tam and Morris, 1980) have modeled the

coherent structures as growing and decaying instability waves of the turbulent mean flow. These

wavepackets were identified as the main source of aft-angle noise (Jordan and Colonius, 2013).

The acoustic radiation of wavepackets is highly directive and concentrated in the downstream

direction. The directive emission shows an exponential decay at high polar angles θ, or low

jet inlet angle φ “ 2π ´ θ, correspondingly. This pattern was termed superdirective radiation
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by Crighton and Huerre (1990). In this work, we will use this word more loosely and refer to

radiation patterns that are isolated and clearly directed downstream as superdirective. Cavalieri

et al. (2012) have shown that the axisymmetric mode of the subsonic jets exhibit super-directivity.

Readers can refer to Jordan and Colonius (2013) for a comprehensive review on wavepackets in

turbulent jets.

Based on experimental observations and the author’s physical interpretation of the source

mechanisms, Tam et al. (1996) proposed a separation of the far-field spectrum into two empirical

similarity spectra for the downstream and sideline radiation, respectively. This approach was later

extended to subsonic jets by Viswanathan (2002, 2004) and Tam et al. (2008).

Modal decomposition techniques (Rowley and Dawson, 2017, Taira et al., 2017) facilitate

the analysis of complex flows by extracting essential features. The most widely used approach,

proper orthogonal decomposition (POD), was introduced by Lumley (Lumley, 1967, 2007) to

educe coherent structures from turbulent flow fields. Space-only POD computed using the method

of snapshots was later introduced by Sirovich (1987) and is the most commonly used form of

POD. It decomposes the flow field into temporal coefficients and spatial modes that optimally

represent the data in terms of energy. The temporal POD expansion coefficients contain, in

general, a combination of different time scales and are only correlated at zero time lag. Spectral

proper orthogonal decomposition (SPOD) is the frequency-domain variant of POD. It computes

modes that oscillate at a single frequency from statistically stationary data. By construction,

SPOD identifies structures that are coherent in both space and time (Towne et al., 2018) (in the

strict mathematical sense). A number of studies showed that the dominant dynamics are often

accurately captured by only a few modes (Citriniti and George, 2000, Glauser et al., 1987, Jung

et al., 2004, Schmidt et al., 2018, Towne et al., 2018). Experimentally, Glauser et al. (1987),

Citriniti and George (2000) and Jung et al. (2004) showed that a large fraction of the kinetic

energy is contained in the first three SPOD modes. Recently, Schmidt et al. (2018) applied

SPOD to high-fidelity simulation data of turbulent jets in the subsonic, transonic, and supersonic
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regimes. The authors give a detailed account of the Kelvin-Helmholtz and the Orr-type instability

mechanisms that dominate the initial shear-layer and the region downstream of the potential

core, respectively. Towne et al. (2018) performed SPOD on Mach 0.4 turbulent jet and present a

detailed account of the method and its relationship to space-only POD, resolvent analysis, and

dynamic mode decomposition (DMD).

In this work, we perform SPOD of LES simulation data of jets at Mach 0.7, 0.9, and 1.5,

and analyze radiation wave patterns with special emphasis on directivity. The methodology of

SPOD is already explained in §2.2.1 and is hence omitted for brevity. §In section §4.2, the results

are presented and the work is summarized in section §4.3.

4.2 Results and Discussions

We analyse the large-eddy simulations (LES) databases of turbulent jets at Mach numbers

M j “ 0.7, 0.9 and 1.5 computed by Brès et al. (2017, 2018, 2019). The reader is referred to Brès

et al. (2017, 2018), Brès and Lele (2019) for further details on the numerical method and meshing

strategy. The flow is non-dimensionalized by the nozzle exit values, namely, velocity by U j,

pressure by ρ jU2
j , length by the nozzle diameter D, and time by D{U j. Frequencies are reported

in terms of the Strouhal number St “ f D{U j. A cylindrical domain Ω of size x,r P r0,30s ˆ r0,6s

is used for the analysis. The LES data consists of 10,000 snapshots separated by a time step of

∆tc8{D. Important parameters are summarized in table 4.2.1.

Previous studies (Arndt et al., 1997, Cavalieri et al., 2011, 2012, Jordan and Colonius,

2013, Juve et al., 1979) have reported that most of the far-field sound energy is concentrated in

the first three azimuthal wavenumbers, m “ 0,1 and 2. For the sound radiated in the downstream

direction, the axisymmetric mode (m “ 0) is most dominant, while the helical (m “ 1) and

the double-helical modes (m “ 2) become more important in the sideline direction (Jordan and

Colonius, 2013). In this study, we focus our attention on the noise emitted by these three azimuthal
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Table 4.2.1: Parameters of the Large-Eddy Simulations

case Re M j Tj{T8 p0{p8 ∆tc8{D Stmax Reference
Supersonic 1.55 ˆ 105 1.5 1.74 3.67 0.1 1.0 case A2 Brès et al. (2017)
Transonic 1.01 ˆ 106 0.9 1.0 1.7 0.2 1.6 Brès et al. (2018)
Subsonic 0.79 ˆ106 0.7 1.0 1.4 0.2 1.6 Brès and Lele (2019)

wavenumbers. The directivity of the radiation is expressed in terms of the jet inlet angle φ, defined

with respect to the negative x-axis, such that 180˝ corresponds to the downstream direction and

90˝ to the sideline direction perpendicular to the jet axis.

The intensity of the sound radiated to different directions is computed by calculating the overall

sound pressure level (OASPL) along the upper boundary at r “ 6. At this radial distance, effects of

the hydrodynamic pressure component are still partially present, in particular for low frequencies

and downstream of the potential core (see also Bogey et al., 2007, Zaman, 1986). Acoustic

analogies based on Kirchhoff’s method (Lyrintzis and Mankbadi, 1996) or the Ffowcs-Williams

Hawkings equations (Brès et al., 2017, Ffowcs Williams and Hawkings, 1969) may in principle

be applied to extend the analysis to the true far-field, but this is beyond the scope of this study.

Here, the noise at the radial distance r “ 6 is used as a proxy of the far-field pressure. The power

spectral density and the OASPL are defined as

PSD “ 10log10

˜

2 p̂1pm,φ,Stqp̂1˚pm,φ,Stq
p2

refStmin

¸

, and (4.1)

OASPL “ 10log10

˜

Stmax
ÿ

Stmin

2p̂1pm,φ,Stq p̂1˚pm,φ,Stq
p2

ref

¸

, (4.2)

respectively. Here, pref is the reference pressure and p̂1 is the Fourier transform of the pressure

fluctuations in time.

The PSD is estimated using the Welch’s method (1967) with 50% overlap and nfreq “ 512.

Within the radial extent of the computational domain pr ď 6q and at high jet inlet angles, the

hydrodynamic component contributes a significant part of the energy associated with pressure
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Figure 4.2.1: Overall sound pressure level at different jet inlet angles; OASPL for m “ 0 (black
solid lines), m “ 1 (blue lines with circles) and m “ 2 (red lines with triangles).

Figure 4.2.2: Maximum PSD as a function of jet inlet angle: m “ 0, m “ 1 and m “ 2. False
colors indicate corresponding peak frequency. The relative trends between different azimuthal
components are identical to figure 2.2.

fluctuations (?). To eliminate the effect of the hydrodynamic component, a high-pass filter
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(St ě 0.1) is used. The OASPL of the filtered signals for different azimuthal wavenumbers and

different Mach numbers are presented are presented in figure 4.2.1. The overall sound pressure

level at each φ is a measure of the total sound radiated in that particular direction. The OASPL of

azimuthal mode m “ 1 peaks at φ “ 156˝ for the supersonic jet, whereas the m “ 0 component

peaks at φ “ 162˝ for the transonic and subsonic jets. These angles are in agreement with the

observations made by Jordan and Colonius (2013) and Tam et al. (2008). For the supersonic

jet, the m “ 1 component dominates at most angles. At lower inlet angles, m “ 2 is the leading

subdominant component. At higher angles, this component is replaced by m “ 0. In the case of

the transonic jet, m “ 1 is the most dominant component in the range 90˝ ď φ ď 155˝, whereas

m “ 0 is the most dominant component for φ ě 155˝. For subsonic jets, the OASPL curves in

figure 4.2.1(c) show that, m “ 0 is clearly the most dominant mode, followed by m “ 1 and

then m “ 2. For all three jets, the m “ 1 component is larger than the m “ 2 contribution. With

increasing azimuthal wavenumber, the peak OASPL shifts towards lower jet inlet angles.

The scatter plot in figure 4.2.2 shows the variation of the maximum PSD as a function

of the jet inlet angle. False colors show the corresponding Strouhal number. Similar trends as

for the OASPL are observed, see figure 4.2.1. The false color indicates the frequency with the

largest contribution to the PSD at each angle. It can be seen that the frequency of the peak PSD is

St “ 0.4 for the supersonic case and St “ 0.2 for the transonic and subsonic cases, respectively. In

particular for the supersonic jet, it is observed that lobes in the PSD at high jet angle correspond

to distinct frequency bands. In all three cases, the axisymmetric azimuthal component peaks

at φ « 160˝ and St « 0.2. The presence of discrete color bands in figure 4.2.2 suggests a clear

relationship between radiation angle and frequency.

The SPOD eigenvalues and modes are computed for the pressure. The pressure 2-norm is

used as a proxy of the acoustic energy in the far-field. To isolate contributions to the far-field, we
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Figure 4.2.3: SPOD eigenvalue spectra for the far-field focus region as defined in Eq. (4.3).

choose a weighting function

W pxq “

$

’

&

’

%

1 for 5 ď r ď 6,@x P Ω

0 otherwise.
(4.3)

Figure 4.2.3 shows the SPOD spectra for all cases and azimuthal wavenumbers under con-

sideration. Below St “ 0.1, the far-field pressure partially consists of hydrodynamic fluctuations.

As we are interested in acoustics, we omit this region for clarity. Parts of some of the spectra

exhibit a large difference between the first (optimal, or leading) and second (first suboptimal)

modes. This behavior is referred to as low-rank behavior (Schmidt et al., 2018) and indicates

dominance of a physical mechanism associated with the first mode. It is most pronounced for the
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Figure 4.2.4: Leading SPOD modes at peak frequencies (top row), St “ 0.6 (middle row) and
for St “ 1.0 (bottom row). The focus region is indicated by the dashed white box. White solid
lines represent the edge of the potential core defined as ūpx,rq “ 0.95U j, where ū is the mean
axial velocity.

axisymmetric component within the ranges 0.1 ď St ď 0.6 and 0.1 ď St ď 0.7 for the transonic

and subsonic jets, respectively. The prevalence of this behavior decreases as m increases. The

frequency at which the low-rank behavior peaks is termed as the dominant frequency. Modes at

representative frequencies and azimuthal wavenumbers are shown in figure 4.2.4. In particular,

we pick the maximum OASPL azimuthal wavenumber, see figure 4.2.1. The SPOD modes

clearly indicate the dominance of superdirective acoustic radiation emanating from the end of the

potential core as the main source location of high inlet-angle jet noise. It is important to note that

the patterns of the SPOD modes imply spatial correlation, but not causation. Due to the acoustic

nature of the problem, the SPOD modes clearly reveal the source location, but not necessarily

the source mechanism. In the particular case of turbulent jets, however, the primary source of

the superdirective radiation has previously been identified as the Kelvin-Helmholtz-type (KH)

annular instability of the jet shear-layer, using stability-theoretical tools (Nichols and Lele, 2011,

Rigas et al., 2017, Schmidt et al., 2018). The pressure signature of a KH wavepacket is clearly

visible in the supersonic jet for m “ 1 (top panel of figure 4.2.4a).

The radiation patterns confirm the relationship between the jet inlet angle and frequency
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previously discussed in the context of figure 4.2.2. Directive beams that propagate at steeper

angles are observable at the higher frequencies of St “ 0.6 and St “ 1.0 (middle and bottom row

figure 4.2.4). The first, second, and third sub-optimal modes at St “ 0.6 are shown in figure 4.2.5.

Multiple directive beams are observed for all the jets. The number of beams increases with mode

number. The suboptimal mode of the transonic and subsonic jets exhibit two superdirective beams.

These beams originate from either side of the end of the potential core. Rigas et al. (2017) suggest

that these two beams originate from the KH wavepacket and the Orr-type waves, respectively

(Schmidt et al., 2018, Tissot et al., 2017a). The higher suboptimal modes of the transonic and

subsonic jets (middle and bottom row of figure 4.2.5 (b) and (c)) exhibit upstream and sideline

propagating radiation. In section 4.2.2, this observation is addressed in more detail. Notably, very

similar radiation patterns have been predicted by Jeun et al. (2016) using resolvent analysis and

global modes by Schmidt et al. (2016).

Figure 4.2.5: First, second and third suboptimal SPOD modes at St “ 0.60. The focus region is
indicated by the dashed white box. White solid lines represent the edge of the potential core
defined as ūpx,rq “ 0.95U j, where ū is the mean axial velocity.

The distinct radiation patterns identified by the leading SPOD modes may be leveraged

to locate their origin. We obtain an estimate of this location by finding the absolute maximum

of the pressure modes along the lipline, r “ 0.5. This corresponds to the radial distance of
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Figure 4.2.6: The source locations of the acoustic beams for the transonic jet M j “ 0.9 and
azimuthal wavenumber (a) m “ 0, (b) m “ 1, and (c) m “ 2. Top row denotes the normalized
intensity of the SPOD modes ( ■■■, black, gray, white, 0 ď ψ{}ψ}8 ď 1) along the lipline
r “ 0.5. Least square fit of the scaling St „ 1{x is denoted by magenta lines. The location of the
maximum intensity as a function of the St is shown in the bottom row. The scaling is compared
to the experimental results by Bogey et al. (2007).

maximum turbulent activity close to the nozzle, but we note that the beam tracing does not

depend on the exact radial location. Figure 4.2.6 shows the beam origin as a function of the

Strouhal number for the transonic jet and different azimuthal wavenumbers. We focus on the

transonic case for comparison with literature. In agreement with the findings of (Bogey et al.,

2007, Narayanan et al., 2002, Zaman, 1986), high frequency radiation patterns originate near

the nozzle exit, whereas the low frequency acoustic beams emanate from a location further

downstream. Previous studies on acoustic source localization (Bishop et al., 1971, Schlinker

et al., 2009, Zaman, 1986) and wavepacket modeling (Sasaki et al., 2017, Schmidt et al., 2018)
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Figure 4.2.7: Comparison of PSD and SPOD spectra for the m “ 0 component. Black lines
represent the PSD, blue dotted lines represent the first SPOD mode and red lines represent the
sum of all SPOD modes.

have shown that the frequency scales with St „ 1{x in the shear layer region. A least-square fit

for this scaling is shown for the first three azimuthal wavenumbers. In the bottom row of figure

4.2.6, this curve fit is compared with the approximate source locations found experimentally by

Bogey et al. (2007) for a comparable jet using the method of Zoppellari et al. (1997). Note that

the full pressure signal used in the work of Bogey et al. (2007) is compared to different azimuthal

components. A good match between the literature and the present results is observed.

Next, we examine the dominant radiation patterns for different angles by introducing

a new weighting function Wf pxq that focuses on small boxes that are representative of specific

angles,

Wf pxq “

$

’

&

’

%

1 for 5 ď r ď 6,x f ´ 0.5 ă x ă x f ` 0.5, where x f P r0.5,29.5s,

0 otherwise.
(4.4)

The center of each box of height and width ∆x “ 1.0 is used to calculate the angle. The PSD and

SPOD spectrum for different jet inlet angles are compared in figure 4.2.7. This comparison is

shown for m “ 0. Similar trends are observed for higher azimuthal wavenumbers as well. To

facilitate direct comparison with PSD, the SPOD spectrum is normalized by the area of the box.

The leading SPOD mode (blue dotted line) is able to predict the PSD (black lines) accurately,
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in particular at low frequencies. The total SPOD energy is obtained as the sum of all SPOD

eigenvalues and shown as red lines. Only a marginal improvement of the comparison over the

leading mode energy is observed. The energy contained in the leading SPOD mode is found to

account for at least 90% of the total energy over all frequencies. This shows that the radiation

to specific angles is dominated by a specific source. Another conclusion is that a rank-1 SPOD

approximation yields an accurate model of the directional radiation.

Figure 4.2.8: PSD estimated from the (a) time series of the LES pressure data and (b) leading
SPOD eigenvalue for m “ 0 of the supersonic jet.

Figure 4.2.9: Comparison between OASPL of the LES pressure data (solid lines) and leading
SPOD eigenvalue (dotted lines): m “ 0 (black) , m “ 1 (red) and m “ 2 (blue).

Figure 4.2.8(b) shows the area-weighted eigenvalue of the leading SPOD mode as a

function of frequency and inlet angle. The spectrum closely resembles the PSD of the raw

pressure data shown in figure 4.2.8(a). For brevity, only the m “ 0 component of the supersonic
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jet is shown, but similar results are found for all other cases. The OASPL calculated from the

data and the area-weighted SPOD energy of the first mode are compared in figure 4.2.9(a-c). The

OASPL is calculated as in Eq. (4.2) using the spectrum shown in figure 4.2.8(b). The rank-1

SPOD approximation follows the trend of the OASPL well. Jeun and Nichols (2018b) made

similar observations for a rank-1 approximation based on resolvent analysis. For the two lower

Mach number jets, the OASPL curves predicted by the rank-1 approximation are more accurate

than in the supersonic case.

4.2.1 Superdirective radiation

SPOD eigenvalue spectra for a focus region corresponding to the location of the peak

OASPL (see Table 4.2.2) are shown in figure 4.2.10. All of these spectra exhibit low-rank

behavior in the frequency range, 0.1 ď St ď 1.0. The optimal and the suboptimal eigenvalues

differ by up to three orders of magnitude in this band. This observation indicates that most of

the energy is present in the first mode and is consistent with the results shown in figure 4.2.7.

The leading SPOD modes at the peak frequencies are shown in the top row of figure 4.2.11.

It is observed that the peak frequencies from the SPOD analysis and the peak PSD frequency

coincide. This implies that the leading SPOD mode provides an accurate representation of the

directive far-field radiation. Superdirective beams that encompass the region being investigated

are observed. For the lower Mach number jets, the acoustic beams originate from the end of the

potential core, whereas this location appears to be shifted slightly upstream in the supersonic

case. The observations made for M j “ 0.9 are in agreement with the findings of Bogey and Bailly

(2007). The superdirective radiation propagates at a steeper angle in the supersonic jet. The

steeper propagation angle and upstream source location appear to cause a shift in the maximum

directivity towards a lower jet inlet angle for the supersonic jet. Cavalieri et al. (2012) argue

that the azimuthal interference of the helical mode and the smaller spatial extent of the helical

wavepackets cause this difference. The leading SPOD modes at St “ 0.8 are shown in the bottom
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Table 4.2.2: Maximum OASPL and radiation angles for the different cases.

Subsonic M j “ 0.7 Transonic M j “ 0.9 Supersonic M j “ 1.5
φ OASPLmax [dB] φ OASPLmax [dB] φ OASPLmax [dB]

m “ 0 161.8˝ 117.7 162.0˝ 124.8 158.1˝ 136.6
m “ 1 154.1˝ 113.5 157.0˝ 124.1 155.7˝ 138.5
m “ 2 149.4˝ 111.6 151.4˝ 121.8 150.8˝ 131.5

row of Fig 4.2.11. Multiple beams emanating from different source locations are observed in

the supersonic and the transonic jet. This decrease of directivity with increasing frequency is in

agreement with the findings by Cavalieri et al. (2012) and may be attributed to the decline of the

dominance of the KH mechanism in this regime.

Figure 4.2.10: SPOD eigenvalue spectra for the peak OASPL focus region. Spectra are shown
for the dominant azimuthal wavenumber of each jet.

4.2.2 Noise generated in the sideline direction

To understand the generation of jet noise in the sideline direction, we focus our attention

to the dominant radiation patterns to angles φ ă 135˝. These angles represent the region above

the potential core. As before, we focus on the azimuthal wavenumber of the peak OASPL in

that region (see figure 4.2.1). Figure 4.2.12 depicts the leading SPOD modes for φ “ 95˝. At

the peak Strouhal numbers (top row of figure 4.2.12), upstream traveling radiation patterns are

observed. The SPOD modes of the supersonic and transonic jets also reveal the presence of
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Figure 4.2.11: Leading SPOD modes at peak frequencies (top row) and for St “ 0.80 (bottom
row). The focus region is indicated by the dashed white box. White solid lines represent the
edge of the potential core defined as ūpx,rq “ 0.95U j, where ū is the mean axial velocity.

directive downstream radiation. Both the upstream and downstream radiation patterns originate

from the same source location at the end of the potential core. The leading modes at St “ 0.8

(bottom row of figure 4.2.12) exhibit multi-directive radiation patterns that include upstream,

sideline and downstream beams. In the supersonic case, the upstream radiation is clearly slaved

to the much more energetic downstream radiation.

Figure 4.2.12: Leading SPOD modes at peak frequencies (top row) and for St “ 0.80 (bottom
row). The focus region is indicated by the dashed white box. White solid lines represent the
edge of the potential core defined as ūpx,rq “ 0.95U j, where ū is the mean axial velocity.

The sideline radiation perpendicular to the jet axis is investigated in figure 4.2.13. The

SPOD was computed by translating the focus region along the upper boundary at an interval

of ∆x “ 0.1. The angles for which perpendicular radiation patterns are observed were selected
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manually. Notably, the identified angles of φ “ 112˝, φ “ 129˝ and φ “ 131˝ for the subsonic,

transonic and supersonic jet, respectively, correspond to distinct frequency bands in figure 4.2.2.

All modes also exhibit downstream radiation. For the supersonic jet, the downstream radiation

is found considerably more energetic than the sideline beam. Similar to the findings of Freund

(2001), these observations suggest that the sideline radiation is directly coupled with the dominant

directive radiations, implying that both originate from the same source at the end of the potential

core. For the higher frequency, St “ 0.8, the source location is further upstream. This trend can be

explained by the fact that the peak location of the KH wavepacket moves upstream with increasing

frequency. The leading SPOD modes of the supersonic and the transonic jets at St “ 0.80 (bottom

row figure 4.2.13 (a) and (b)) show multi-directive radiation patterns.

Figure 4.2.13: Leading SPOD modes at peak frequencies (top row) and for St “ 0.80 (bottom
row). The focus region is indicated by the dashed white box. White solid lines represent the
edge of the potential core defined as ūpx,rq “ 0.95U j, where ū is the mean axial velocity.

Next, we inspect the link between downstream and sideline radiation. In figure 4.2.14, the

leading mode at φ “ 156˝ is compared with a higher mode (lower energy) at φ “ 95˝ and vice

versa. The leading mode corresponding to the region of maximum directivity and the eighth mode

at φ “ 95˝ are observed to resemble each other. Both of these modes exhibit superdirective beams

that propagate at the same angle and originate from a similar location in the shear-layer. The

bottom row of figure 4.2.14 shows the tenth mode at φ “ 156˝ and the leading mode at φ “ 95˝.

As before, close correspondence is found. Note that the convergence of these higher SPOD modes
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Figure 4.2.14: Comparison of leading and suboptimal SPOD modes for the supersonic jet
M j “ 1.5 at St “ 0.40: mode 1 (top left) and mode 10 (bottom left) for φ “ 156˝; mode 8 (top
right) and mode 1 (bottom right) for φ “ 95˝. The most similar modes were identified by visual
inspection.

is not guaranteed; see appendix 4.2.3. However, it was confirmed by manual inspection that

the same flow features are consistently found within a narrow range of mode numbers if only a

subset of the full data was used. This results clearly suggests that the sideline radiation is directly

linked to the dominant downstream radiation pattern. Similar observations are found for the other

cases. In summary, the observations made in Figs. 4.2.11-4.2.14 suggest that downstream and

sideline emissions share the same location of origin. An important implication from a modeling

perspective is that structures that are found to be dominant for a particular spatial weighting are

recovered as suboptimal modes in the other. This means that, if a sufficient number of SPOD

modes is retained, the two SPOD basis span a similar space.

Based on a comprehensive analysis of experimental data, Tam et al. (2008) suggest the

use of two universal curves. The F-spectrum, which exhibits a distinct peak at lower frequencies,

models radiation to downstream angles. Noise spectra of sideline radiation are generally more

broadband and approximated by the so-called G-spectrum. The PSD for two angles representative

of sideline radiation (at φ “ 95˝) and downstream radiation (at φ “ 160˝) are compared to the

G and F spectra, respectively, in figure 4.2.15. The pressure PSD of the first three azimuthal

wavenumbers contain most of the acoustic energy (Jordan and Colonius, 2013) and are summed
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here. The PSD curves follow the similarity spectra for all the cases, with small deviations at

higher frequencies. The peak frequency of the F-spectrum is around St « 0.2, in agreement with

the experimental observations made by Tam et al. (1996), Viswanathan (2004), and Tam et al.

(2008). The spectrum corresponding to the leading SPOD mode is also shown in figure 4.2.15;

they, too, resemble the F- and G-spectra. These results indicate that the noise in the downstream

and sideline directions at r “ 6 are accurately represented by the leading SPOD eigenpair. This

finding implies that the patterns shown in figure 4.2.11 - 4.2.14 are the main contributors to both

sideline and downstream jet noise.

Figure 4.2.15: Comparison of F and G spectra with PSD (red dashed lines) and the leading SPOD
eigenvalues (blue dotted lines). The contributions from the first three azimuthal wavenumbers
m “ 0,1,2 are summed.

Figure 4.2.16 aims at summarizing our results in a compact and interpretable way by

relating the origin of the acoustic beams, radiation angle and peak frequency. First, the peak

Strouhal number of the leading SPOD mode is selected for each φ, or far-field location. Each

line then connects the far-field location to the point corresponding to the absolute maximum

of the mode
›

›ψ
p1q

Stpeak

›

›

8
. This point approximately tracks the origin of the beam and serves as

a proxy for the source location (but not necessarily the source mechanism, as discussed in the

context of figure 4.2.4 above). False colors indicate the corresponding peak frequency. A few

trends are observed. The primary source location of the dominant downstream radiation appears

to be located in the region surrounding the end of the potential core. Sideline radiation to low

115



Figure 4.2.16: Directivity plot obtained from directional SPOD analysis: straight lines connect
far-field focus region to location of maximum absolute value of SPOD mode at peak frequency.
Peak frequencies are indicated by false colors.

angles emanate from the jet shear-layer or the end of the potential core. In most cases, the

sideline radiation appears to be slaved to the directive downstream radiation. In all cases the

source location is in the vicinity of the jet axis (r « 0) or the lipline (r « 0.5), i.e., in the region

where the Kelvin-Helmholtz wavepackets (inside the shear-layer) and Orr-type wavepackets

(downstream of the potential core) dominate the dynamics of the jet. As observed earlier, the

dominant superdirective radiation occurs at frequencies of St « 0.2, whereas higher frequencies

are observed in the sideline direction.
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4.2.3 Convergence of SPOD modes

Following Lesshafft et al. (2019) and Sano et al. (2019), the convergence of the SPOD

modes is assessed by splitting the data into two parts containing 50% of the full data, each. The

similarity of SPOD modes is quantified in terms of a normalized inner product,

βi;k “

〈
ψk,ψi;k

〉
x

}ψk}x ¨ }ψi;k}x
, (4.5)

of the k-th mode ψi;k from subset i with the k-th mode ψk from the full data. Here, i “ 1,2

indicates the two subsets. As before, the inner product defined by Eq. (2.2) is used. Values of βi;k

close to unity imply convergence.

Figure 4.2.17: Convergence of SPOD modes for M j “ 1.5 and m “ 1 at (a) St “ 0.2 (b) St “ 0.4
(c) St “ 0.60 and (d) St “ 0.80. The top and bottom row show the convergence of the SPOD
modes computed using the weighting function of the full far-field (Eq. (5.10)), and the focus
region of φ “ 156˝ (Eq. (2.22)), respectively.

Figure 4.2.17 shows this measure for St “ 0.2, 0.4, 0.6, and 0.8. The two different

weighting functions considered in this work, i.e., the full far-field (top row, see Eq. (4.3)), and
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the focus region of φ “ 156˝ (bottom row, see Eq. (4.4) are considered for the supersonic jet and

azimuthal wavenumber m “ 1. Form the proximity of the values of βi;k for the two subsets and

its high values of βi;k Á 0.8, it can be concluded that at least the first three far-field modes are

well converged. For the restricted focus region with φ “ 156˝, the first six modes are converged,

following the same argument. Similar observations were found by Lesshafft et al. (2019), Sano

et al. (2019).

4.3 Summary and conclusion

The first three azimuthal wavenumber components of supersonic, transonic, and subsonic

jets are analyzed using spectral proper orthogonal decomposition with localized weighting. The

dominant component is m “ 1 for the supersonic jet and m “ 0 for the subsonic case. In the

transonic regime, m “ 1 for φ ď 150˝ is surpassed by m “ 0 for φ ą 150˝. In the sideline direction

(φ À 130˝), the m “ 1 and m “ 2 components are relatively more important. For all cases, the

frequency of the peak PSD in the m “ 0 component occurs for St « 0.2. The SPOD analysis

identifies a single directive beam at φ « 160˝ as the corresponding radiation pattern. The source

of this superdirective beam is at the end of the potential core for low frequencies and in the

shear-layer for higher frequencies. Suboptimal SPOD modes show multi-directive patterns that

include radiation in the upstream and sideline directions. For the first few modes, a clear hierarchy

is observed that directly relates the mode number to the number of beams. Additional data

may further confirm this finding by improving convergence of the SPOD. Noise in the sideline

direction is in most cases associated with higher frequencies. The SPOD modes reveal that

the largest contributions to noise emissions in the sideline and downstream directions both take

the form of acoustic beams that originate from the end of the potential core. The inspection of

modes at different angles and suboptimal modes further underlines the notion that sideline and

downstream radiation share the same source location. A comparison of the SPOD spectra with the
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OASPL shows that the first SPOD eigenvalue accurately approximates the overall sound pressure

over all angles. This implies that the corresponding mode structure is the single largest contributor

to directional noise. Despite the limited radial extent of the domain, our observations strongly

suggest that sideline and upstream radiation patterns are associated with the same large-scale

coherent structures as the dominant downstream radiation. A possible source mechanism that was

previously investigated in the context of wavepacket modeling by Cavalieri and Agarwal (2014),

and that in line with this notion, is coherence decay. In particular, we propose a scenario in which

the distortion of a coherent KH wavepacket gives rise to multi-directive burst events.
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Chapter 5

Triadic nonlinear interactions of forced

versus unforced turbulent jets

5.1 Introduction

A potential strategy to reduce jet noise is to perform closed-loop control that attenuates

the acoustic radiation from the wavepackets. With this objective in mind, first, we harmonically

force the jet to gain an understanding of the alternation of dynamics in forced jets. The forcing

increases the amplitude of the wavepackets above the background turbulence. Recently, the

experimental closed-loop control of turbulent jets has demonstrated the attenuation of amplified

wavepackets over a broad range of frequencies (Maia et al., 2022, 2021b, 2020). Once a strategy

is designed to control the elevated wavepackets, it can be applied to a more realistic scenario of

an unforced jet to reduce jet noise.

Following Crow and Champagne (1971), harmonically-forced jets has been the subject

of numerous studies. The actuation of the jet has varied over a wide range of frequencies and

forcing amplitudes. Most of these studies have focussed on two mechanisms that lead to the

formation of coherent structures. One is the shear-layer mode or the Kelvin-Helmholtz instability,
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the frequency at which the shear layer rolls up into vortices. The other is the preferred mode or

the jet column mode (Hussain and Zaman, 1981), characterized by the frequency at which the jet

exhibits the greatest response to external forcing. At low amplitudes of forcing, the jets exhibit

a linear response. As the forcing amplitude increases, it triggers nonlinear interactions in jets.

High levels of forcing and the resulting nonlinear interactions of coherent structures have rarely

been explored. Broze and Hussain (1994), Husain and Hussain (1995), Raman and Rice (1991),

Shaabani-Ardali et al. (2019) have investigated the nonlinear response to high amplitude forcing

in jets, and most have focussed on initially-laminar jets. In this work, nonlinear interactions in

unforced and forced jets are examined and compared for turbulent jets. Here, we perform LES

of unforced and forced turbulent subsonic jets at a Reynolds number, Re “ ρ jU jD{µ j “ 50,000,

and Mach number, M “ U j{c8 “ 0.4, where ρ is the density, U the mean flow velocity, µ the

dynamic viscosity, c the speed of sound, and the subscripts j and 8 denote the jet and free-stream

conditions. We validate our simulations with the experiments performed at Institut Pprime.

Following the experiments, the jets are forced harmonically at a non-dimensional frequency of

St “ f D{U j “ 0.4, near the nozzle lip.

5.2 Bispectral mode decomposition

Bispectral mode decomposition (BMD) is a technique recently proposed by Schmidt

(2020), to characterize the coherent structures associated with triadic interactions in statistically

stationary flows. Here, we provide a brief overview of the method. The reader is referred to

Schmidt (2020) for further details of the derivation and mathematical properties of the method.

BMD is an extension of classical bispectral analysis to multidimensional data. The classical

bispectrum is defined as the double Fourier transform of the third moment of a time signal. For a

time series, yptq with zero mean, the bispectrum is
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Syyyp f1, f2q “

ż ż

Ryyypτ1,τ2qe´i2πp f1τ1` f2τ2qdτ1dτ2, (5.1)

where Ryyypτ1,τ2q “ Eryptqypt ´ τ1qypt ´ τ2qs is the third moment of yptq, and Er¨s is the ex-

pectation operator. The bispectrum is a signal processing tool for one-dimensional time series

that only measures the quadratic phase coupling at a single spatial point. In contrast, BMD

identifies the intensity of the triadic interactions over the spatial domain of interest and extracts

the corresponding spatially coherent structures.

BMD maximizes the spatial integral of the point-wise bispectrum,

bp fk, flq “ E
„

ż

Ω

q̂˚
px, fkq ˝ q̂˚

px, flq ˝ q̂px, fk ` flqdx
ȷ

. (5.2)

Here, q̂ is the temporal Fourier transform of q computed using the Welch approach (Welch,

1967) and ˝ denotes the Hadamard (or element-wise) product.

Next, as in equation (3.2), all the Fourier realizations at l-th frequency are arranged into

the matrix, Q̂l . The auto-bispectral matrix is then computed as

B “
1

nblk
Q̂H

k˝lWQ̂k`l, (5.3)

where, Q̂H
k˝l “ Q̂˚

k ˝ Q̂˚
l .

To measure the interactions between different quantities, we construct the cross-bispectral

matrix

Bc “
1

nblk

`

Q̂˚
k ˝ R̂˚

l
˘

WŜk`l. (5.4)

Owing to the non-Hermitian nature of the bispectral matrix, the optimal expansion

coefficients, a1 are obtained by maximising the absolute value of the Rayleigh quotient of B (or

Bc)

a1 “ arg max
}a}“1

ˇ

ˇ

ˇ

ˇ

a˚Ba
a˚a

ˇ

ˇ

ˇ

ˇ

. (5.5)
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The complex mode bispectrum is then obtained as

λ1p fk, flq “
a˚

1Ba1

a˚
1a1

. (5.6)

Finally, the leading-order bispectral modes and the cross-frequency fields are recovered as

ϕ
p1q

k`l “ Q̂k`la1, and (5.7)

ϕ
p1q

k˝l “ Q̂k˝la1, (5.8)

respectively. By construction, the bispectral modes and cross-frequency fields have the same

set of expansion coefficients. This explicitly ensures the causal relation between the resonant

frequency triad, ( fk, fl , fk ` fl), where Q̂k˝l is the cause and Q̂k`l is the effect. The complex

mode bispectrum, λ1, measures the intensity of the triadic interaction and the bispectral mode,

ϕk`l , represents the structures that results from the nonlinear triadic interaction.

5.3 Validation of LES

The experiments of the isothermal subsonic jets were performed at the “JET100” low

Mach number jet facility at Institut PPRIME, Poitiers, France. The experiments were carried out

for a jet Mach number M j = 0.05, and Reynolds number of Re “ 50000. The boundary layer is

tripped inside the nozzle by a carborundum strip located 2.5D upstream from the nozzle exit. The

turbulent jet is forced by eight loudspeakers that are equally distributed around the nozzle lipline

(r{D “ 0.5). The loudspeakers generate synthetic jets through an annular gap of width 0.01D. For

further details of the experimental setup, the reader is referred to Maia et al. (2022, 2021b, 2020).

We perform large-eddy simulations of subsonic jets using the compressible flow solver

“Charles” developed at Cascade Technologies (Brès et al., 2017, 2018). Charles solves the

spatially filtered compressible Navier–Stokes equations on unstructured grids using a density-
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based finite-volume method. The LES combines the Vreman sub-grid model (Vreman, 2004)

with the wall-model by Bodart and Larsson (Bodart and Larsson, 2012, Kawai and Larsson, 2012).

The reader is referred to Brès et al. (2017, 2018) for further details on the numerical method and

validation on jet flows.

The validation of the LES case for the present case follows the previous studies. In

particular, the mesh used by Brès et al. (2018) is modified to accommodate the new nozzle

geometry and refined in the vicinity of the synthetic jet actuators. The total grid size is 16.6

million control volumes. The LES is conducted for the experimental Reynolds number, whereas

the Mach number is artificially increased to M j “ 0.4. Effects of compressibility are still small in

this regime and the very small time steps associated with the incompressible limit are avoided.

The LES results for the unforced jet are compared to the experiments in figure 5.3.1.

The mean and RMS streamwise velocities on the centerline and lipline are reported in figure

5.3.1(a,c) and 5.3.1(b,d), respectively. In figure 5.3.1(a), the mean streamwise velocities along

the centerline of the experiment and the simulation are almost indistinguishable within the first ten

jet diameters. The corresponding potential core length, indirectly defined as ūpx “ xcq “ 0.95U j

is xc « 6.2. The RMS velocity along the centerline, shown in figure 5.3.1(c), matches well for

the first six jet diameters and is underpredicted by about 10% further downstream. The lipline

RMS velocity in figure 5.3.1(d) is slightly overpredicted near the nozzle and underpredicted with

a maximum deviation of also about 10% further downstream. Clearly visible in the simulation

results are grid transitions that were similarly observed by Brès et al. (2018). It was confirmed in

the same work that increasing the resolution mitigates these transitions. More importantly, Brès

et al. (2018) also showed that both nozzle-exit turbulent statistics and far-field noise predictions

were accurate for the lower resolution simulations that exhibit grid transitions.

For the forced simulations, we follow Heidt et al. (2021) and model the effect of the

loudspeaker actuators as an acoustic forcing in the annular region along the lip line, 0.50 ď r ď

0.51, as
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Figure 5.3.1: Comparison of the experiment with the LES simulations: centerline (a,c) and
lipline (b,d). Profiles of the mean (a,b) and (c,d) RMS streamwise velocity. Black dashed line
represents U{U j “ 0.95 and its intersection with the mean streamwise velocity indicates the
length of the potential core.

Figure 5.3.2: Power spectral density of the streamwise velocity at x “ 2 and r “ 0: (a)
unforced jet; (b) forced jet. The experiment (blue line) is compared to the simulations (red line).
St “ St f “ 0.4 corresponds to the forcing frequency (red dotted line).
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pprq “ 1 ´ 40000pr ´ 0.505q
2, (5.9a)

uxpr, tq “ Apprqcos
`

m f θ
˘

sin
`

2πSt f t
˘

, (5.9b)

ur “ uθ “ 0, (5.9c)

ρ “ ρ8 ` ρ8ux{c8, (5.9d)

p “ p8 ` ρ8c8ux. (5.9e)

The amplitude, A, was manually adjusted to match the experimental observations. Here,

St f “ 0.4 is the forcing frequency. Figure 5.3.1(c,d) shows the power spectral densities of the

centerline streamwise velocity at x “ 2 for the unforced and axisymmetrically forced jets. The

comparison between experiment and simulation are excellent for the unforced jet seen in figure

5.3.1(c). The best agreement for the forced case was obtained for A “ 0.4 and is shown in figure

5.3.1(d). Both the peaks at the forcing frequency and its harmonics, as well as the number of

active harmonics and the underlying broadband spectrum, are well predicted.

5.4 Triadic interactions in unforced and forced jets

Figure 5.4.1 shows the area-integrated power spectral densities (PSD) for the five most

energetic azimuthal wavenumbers m “ 0,1,2,3,4. The PSDs are integrated over the compressible

energy norm. The azimuthal wavenumber m “ 1 contains most of the energy for the unforced

jet. For the axisymmetrically forced jet, we observe large peaks at the forcing frequency and

its harmonics in the wavenumber m “ 0. The peaks at these harmonic frequencies indicate the

presence of triadic sum interactions. For the m “ ˘1-, m “ ˘2-, and m “ ˘6- forced jets, peaks

are observed at the odd harmonics St “ St f , 3St f , ¨ ¨ ¨ , in the actuated azimuthal components, i.e.,

m “ 1,m “ 2 and m “ 6, respectively. Peaks exist at the even harmonics (St “ 2St f , 4St f , 6St f ,
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Figure 5.4.1: Integrated PSD of first five azimuthal wavenumbers, m “ 0,1,2,3,4 for the four
jets: (a) unforced; (b) axisymmetrically forced; (c) m “ ˘1-forced; (d) m “ ˘2-forced; (e)
m “ ˘6-forced jet. In (e) m “ 6,12 are also shown. PSD is integrated over the compressible
energy norm.

¨ ¨ ¨ ) in m “ 0, 2, 4 for the m “ ˘1-forced jet, in m “ 0, 4, 8 for the m “ ˘2-forced jet, and in

m “ 0, 12, 24 for the m “ ˘6-forced jet. These observations indicate that the triadic interactions

occur in both the frequency and azimuthal wavenumber space for non-axisymmetrically forced

jets.

5.4.1 Axisymmetrically forced jet

The mode bispectra for the unforced and forced jets are shown in figure 5.4.2. The

high-intensity regions (false red color) in the mode bispectra signify the dominant triads that

arise from the interactions of two frequencies. Different combinations of frequencies (St1,St2)

interact to generate the same frequency (St1 ` St2 = constant) along the diagonals of slope -1 in

the mode bispectrum. For the forced jet (figure 5.4.2 (b)), a grid-like pattern is observed with

vertical, horizontal, and diagonal lines at the forcing frequency and its harmonics with local
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Figure 5.4.2: BMD spectra: (a) unforced turbulent; (b) forced turbulent jet.

maxima at the intersection of these lines. These local maxima represent the prominent triadic

interactions. In particular the two most dominant triads are (0.4,0.4,0.8) and (0.8,-0.4,0.4). The

latter triad indicates a back-scatter effect where energy is supplied to the fundamental by the

second harmonic. In the case of unforced jets, a broadband behavior is observed, with the highest

values concentrated at lower frequencies.

Next, we examine the mode bispectrum along different diagonals with St3 “ const to

identify the strongest non-linear interaction that result in a triad at each frequency. Figure

5.4.3 shows the mode bispectrum along the constant frequencies of St3 = 0.0, 0.4, 0.8, and

1.2 for the two cases. The spectrum of the unforced jet is broadband for all St3. The forced

jet exhibits distinct peaks at the forcing frequency and its harmonics. The two most dominant

triads are observed for St3 “ 0.4 in figure 5.4.3(b) and St3 “ 0.8 in 5.4.3(c). The first of these

two triads is the difference interaction between St1 “ 2St f and St2 “ ´St f , i.e., between the
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Figure 5.4.3: Mode bispectrum along diagonal of constant frequency: (a) St3 = St1 ` St2 “ 0.0;
(b) St3 = St1 ` St2 “ 0.4; (c) St3 = St1 ` St2 “ 0.8; (d) St3 = St1 ` St2 “ 1.2. The red dotted and
dash-dotted lines denote the forcing, and conjugate forcing frequency, respectively.
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Figure 5.4.4: Bispectral modes forming a cascade of triads, starting from the forcing frequency
(St1,St2,St3) = (0.4,0.0,0.4), middle-left. The real part of the streamwise velocity component is
shown.

second harmonic and the conjugate forcing frequency. The second triad is the fundamental

self-interaction, (St f ,St f ,2St f ), that creates the second harmonic. The dips of the forced mode

bispectrum observed for St2 “ 0 in figure 5.4.3(b), (c), and (d) correspond to the relative lower

values of the mode bispectrum previously seen along the abscissa in figure 5.4.2(b). Note that

the zero-frequency bin contains unresolved low frequency components due to the finite sampling

frequency, and the non-zero mode bispectrum should not be interpreted along St2 “ 0.

The BMD modes of the triad cascade including the most significant interactions up to

St1 ď 2St f are visualized in figure 5.4.4. The cascade starts with the mode at the forcing frequency,

φSt f `0 (left column middle row). The modes associated with the sum interactions are shown in

the first and second row, and those associated with the difference interactions are shown in the

fourth and fifth row. The mode φSt f `0 self-interacts to generate the second harmonic, φSt f `St f .
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Figure 5.4.5: Streamwise velocity component of the BMD modes for the turbulent un-
forced (a,c,e,g) and forced jets (b,d, f ,h) for different frequency triads: (a,b) (St f ,-St f ,0); (c,d)
(St f ,0,St f ); (e, f ) (2St f ,´St f ,St f ); (g,h) (St f ,St f ,2St f ).

The fundamental forcing mode and its second harmonic then interact to create the third harmonic,

φ2St f `St f , and so on. In the negative St2 plane, the destructive self interaction of the forcing mode

creates a mean flow distortion mode, φSt f `´St f , with St3 “ 0. Inspecting the modes reveals that

sum-interactions create modes with high wavenumbers and difference-interactions create modes

with lower streamwise wavenumbers. This behaviour is in agreement with the linear dispersion

relation of these Kelvin-Helmholtz (KH) type instability waves.

Another interesting observation is that the spatial structures of the modes along the

diagonals of constant frequencies St3 “ 0.4, 0.8, 1.2 and 1.6 are very similar. As shown for the

companion experiment by Maia et al. (2021a), these similar bispectral modes at constant St3 ‰ 0

resemble the leading SPOD modes at each frequency. This indicates that the spatial structures

created by the triadic interactions are also the most energetic coherent structures. Along St3 “ 0,

on the contrary, the streak-like structures with an increasing number of streamwise lobes are

created by the destructive self-interactions of the forcing mode and its harmonics.
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Figure 5.4.6: Integral interaction maps,
ř

k,l λ1pStk,Stlq|φk˝l ˝ φk`l|: (a) unforced turbulent jet;
(b) forced turbulent jet. White solid and dashed lines outline the potential core and the jet width
defined as lines of constant ux “ 0.95U j and 0.05U j, respectively.

Next, we compare the spatial structures of the BMD modes associated with the triadic

interactions for unforced and forced turbulent jets. Figure 5.4.5 shows the streamwise velocity

components for the dominant triads at (St f ,-St f ,0), (St f ,0,St f ), (2St f ,´St f ,St f ), and (St f ,St f ,2St f ),

which correspond to the mean flow deformation, fundamental instability mode, a harmonic-

fundamental difference interaction and fundamental self-interaction, respectively. The BMD

modes reveal that the structures contributing to the triadic interactions are localized to the region

near the end of the potential core for the unforced jet, whereas, for the forced jet, they are

located at a more upstream location and are concentrated in the shear layer. This effect is more

pronounced for the BMD mode of the fundamental self-interaction triad (St f ,St f ,2St f ), which

exhibits a KH type wavepacket near the nozzle exit in the forced jet.

We next seek to identify the regions where triadic interactions are most active. This is

achieved by summing the weighted interaction maps over all frequency triads as
ř

k,l λ1pStk,Stlq|φk˝l ˝

φk`l|. The resulting integral interaction maps are presented in figure 5.4.6 and indicate the regions

where the triadic interactions are most active. Both jets exhibit strong triadic nonlinear interac-

tions downstream of the potential core near the centerline. This observation is in agreement with

previous findings by Cavalieri et al. (2013) and Tissot et al. (2017b), who, in the same region,

observed that linear wavepacket models differ significantly from experiments. In addition to this

‘natural’ occurrence of nonlinear effects, the forced jet interaction map also reveals the presence

of strong nonlinearity in the shear layer near the nozzle exit that is directly associated with the

forcing. Also observed is a shortening of the potential core and a thickening of the shear layer.
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This is in agreement with the previous works by Crow and Champagne (1971), Samimy et al.

(2007b), who argue that the enhanced entrainment due to forcing leads to a widening of the shear

layer, and consequently, a contraction of the potential core.

To identify the link between the triadic interactions in the near-field and the acoustic

far-field, we perform BMD on the pressure data using a weight matrix,

Wacpxq “

$

’

&

’

%

1 for 5 ď r ď 6,@x P Ω

0 otherwise,
(5.10)

that focuses on the far-field. Figure 5.4.7 shows the BMD modes for the resultant frequencies

(St3) of St=0.4 (a,b), 0.8 (c,d), 1.2 (e, f ) and 1.6 (g,h). The BMD mode corresponding to the

most dominant triad at each resultant frequency (St3) is selected. The pressure components for

the unforced and forced turbulent jets are shown in figure 5.4.7 (a,c,e,g) and 5.4.7 (b,d, f ,h)

respectively. In case of the forced jet, (2St f ,´St f ,St f ) is the most significant triad identified from

the BMD spectra (not shown here). This identifies as the difference-interaction between the

first harmonic and the forcing frequency and is the most significant triad. This observation is

in agreement with the findings of Sandham et al. (2006), who show that unstable waves with

difference-interactions (St3 “ St1 ´ St2) are more efficient radiators of jet noise than the sum-

interactions (St3 “ St1 ` St2). For the forced jet, the BMD modes exhibit beams that propagate at

a steeper angle as compared to the unforced jet. For the triads (0.8, 0.4, 1.2) and (1.2, 0.4, 1.6),

the unforced jet exhibits directive downstream radiation, whereas for the forced jet, we observe

actuation-induced sideline noise. These sideline radiation patterns are similar to those found by

Jeun et al. (2016) and Nekkanti and Schmidt (2021b).
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Figure 5.4.7: BMD modes of the pressure field for the turbulent unforced (a,c,e,g) and forced
jets (b,d, f ,h) for different frequency triads: (a,b) (2St f ,´St f ,St f ); (c,d) (St f ,St f ,2St f ); (e, f )
(2St f ,St f ,3St f ); (g,h) (3St f ,St f ,4St f ).

5.4.2 Non-axisymmetrically forced jets

For non-axisymmetrically forced jets, peaks exist in multiple azimuthal wavenumbers,

which indicates the interactions between different azimuthal wavenumbers. Hence, we compute

the cross-BMD to characterize these triadic interactions. Figure 5.4.8 shows the cross-mode

bispectra for the m “ ˘1 forced jet. Here, we show five azimuthal triplets, [m1,m2,m3] = [1,-1,0],

[1,1,2], [2,1,3], [2,2,4], and [3,1,4], where m1 ` m2 “ m3. For the [1,-1,0] triplet, the cross-

bispectra is symmetric about the lines, St1 “ St2 and St1 “ ´St2. For the triplets, [1,1,2] and

[2,2,4], the cross-bispectra is symmetric about the line St1 “ St2, whereas there is no symmetry

for the triplets, [2,1,3] and [3,1,4]. These symmetry lines are denoted using white dash-dotted

lines. Figure 5.4.8(a) shows the interaction of helical component (m “ 1) and its conjugate to

generate the axisymmetric component. The most dominant frequency triads are (0.4,0.4,0.8),

(1.2,-0.4,0.8), (0.4,-0.4,0.0) and their symmetric counterparts, for example, (-0.4,1.2,0.8), and

(0.4,-1.2,-0.8). Similarly the self-interaction of the helical component generates peaks at the
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Figure 5.4.8: Cross-BMD spectra that shows the interaction of the azimuthal wavenumbers
triads, [m1, m2, m3], for the forced m “ ˘1 jet: (a) [1,-1,0]; (b) [1,1,2]; (c) [2,1,3]; (d) [2,2,4];
(e) [3,1,4]. The symmetry lines are denoted by white dash-dotted lines.

same frequency triads. For the azimuthal triplet, [2,1,3], the dominant frequency triads are

(0.8,-0.4,0.4), (0.8,0.4,1.2), and (-0.8,1.2,0.4). As previously observed in figure 5.4.1, the odd

azimuthal wavenumbers exhibit peaks at odd harmonics and the even azimuthal wavenumbers

exhibit peaks at the even harmonics, and the different possible triadic interactions are
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if m1,m2 are odd, p2n1 ` 1qSt f ` p2n2 ` 1qSt f “ 2pn1 ` n2 ` 1qSt f m3 is even,

(5.11)

if m1,m2 are even, p2n1qSt f ` p2n2qSt f “ 2pn1 ` n2qSt f m3 is even,

(5.12)

if m1 is odd,m2 is even, p2n1 ` 1qSt f ` p2n2qSt f “ p2pn1 ` n2q ` 1qSt f m3 is odd,

(5.13)

where, n1, n2 P Z are integers. Equations (5.11)-(5.13) show that the interaction of two odd or two

even wavenumbers always generate peaks at the even harmonics, t2St f ,4St f , ¨ ¨ ¨ u, whereas the in-

teraction of an odd and even wavenumber generate peaks at the odd harmonics, tSt f ,3St f ,5St f , ¨ ¨ ¨ u.

The most significant frequency triads for the azimuthal triplets, [2,2,4], and [3,1,4] are (1.6,-

0.8,0.8), and (0.4,0.4,0.8) which confirm this observation. Note that, the high intensity of the

frequency (0,0,0) is ignored while considering the dominant triads because it is an artifact of the

spectral leakage of BMD.

The back-scatter phenomenon is not limited to axisymmetrically forced jets but is also

present in non-axisymmetrically forced ones. In the case of m “ ˘1 forced jets, the back-scatter

effect is observed in the azimuthal triplet [2,-1,1] at the frequency triad (0.8,-0.4,0.4), which is not

shown here for brevity. In this phenomenon, the second harmonic frequency 2St f of the azimuthal

wavenumber 2m f supplies energy back to the fundamental mode, i.e., the mode corresponding to

the frequency St f and azimuthal wavenumber m f .

Figures 5.4.9 and 5.4.10 show the cross-BMD spectra for the azimuthal triplets, [2,-2,0],

[2,2,4] and [4,2,6] in the m “ ˘2-forced jet, and [6,-6,0], [6,6,12] and [12,6,18] in the m “ ˘6-

forced jet, respectively. As shown in figure 5.4.1, the non-axisymmetric forcing affects only

those azimuthal wavenumbers that are integer multiples of the forcing azimuthal wavenumber.
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Figure 5.4.10: Cross-BMD spectra that shows the interaction of the azimuthal wavenumbers
triads, [m1,m2,m3], for the forced m “ ˘6 jet: (a) [6,-6,0]; (b) [6,6,12]; (c) [12,6,18].

Specifically, the m “ ˘2-forced jet excites the azimuthal wavenumbers, t¨ ¨ ¨ ,´4,´2,0,2,4, ¨ ¨ ¨ u,

while the m “ ˘6-forced jet excites the azimuhtal wavenumbers, t¨ ¨ ¨ ,´12,´6,0,6,12, ¨ ¨ ¨ u. In

the m “ ˘2 forced case, the peaks (0.4,0.4,0.8), (0.4,-0.4,0.0), and (1.2,-0.4,0.8) in m “ 0 arise

from the interactions between m “ 2 and m “ ´2 at the forcing frequency and its odd harmonics.

Local maxima at the same triads are observed for the self-interaction of m “ 2 to generate the

m “ 4 component. In the [4,2,6] triplet, even harmonics in m “ 4 interact with odd harmonics

in m “ 2 to generate odd harmonics in the m “ 6 component. Similarly, for the m “ ˘6 forced
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jet, the dominant azimuthal triplets are [6,-6,0], [6,6,12], and [12,6,18]. The first two triplets

generate even harmonics, t0,0.8,1.6, ¨ ¨ ¨ ,u, while the third triplet exhibits peaks at odd harmonics,

t0.4,1.2,2.0, ¨ ¨ ¨ u. The spectra in figures 5.4.9(a) and 5.4.10(a) are symmetric about the lines

St1 “ ˘St2, and the spectra in 5.4.9(b) and 5.4.10(b) are symmetric about the line St1 “ St2. The

spectra in the 5.4.9(c) and 5.4.10(c), on the other hand, are asymmetric.

The observations of figures 5.4.8, 5.4.9, and 5.4.10 suggest the following trends for a

general m “ ˘m f -forcing:

1. Even harmonics t0,2St f ,4St f , ¨ ¨ ¨ u are generated from azimuthal triplets of the form

rp2k1qm f ,p2k2qm f ,2pk1 `k2qm f s and rp2k1 `1qm f ,p2k2 `1qm f ,2pk1 `k2 `1qm f s , where

k1,k2 P Z.

2. Odd harmonics tSt f ,3St f ,5St f , ¨ ¨ ¨ u arise from azimuthal triads of the form

rp2k1 ` 1qm f ,p2k2qm f ,p2pk1 ` k2q ` 1qm f s.

3. The cross-BMD spectrum of the triads rm f ,´m f ,0s exhibits four-fold symmetry about the

lines St1 “ ˘St2.

4. The cross-BMD spectrum of the triads rm f ,m f ,2m f s exhibits two-fold symmetry about the

line St1 “ St2.

5. The spectra of other triads, such as r2m f ,m f ,3m f s, are asymmetric.

Next, we will understand how the actuation of the jet results in the abovementioned triads.

To begin, we express the Navier-Stokes equation in the following form:

dq
dt

“ Lq ` Q pq,qq. (5.14)

Here, L represents the linear operator, and Q denotes the quadratic nonlinearities. By taking the

Reynolds decomposition, qpx, tq “ q̄pxq ` q1px, tq, and substituting it into equation (5.14), we
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obtain:
dq1

dt
“ Lq̄q1

` Q
`

q1,q1
˘

(5.15)

where, Lq̄ “ L ` Q pq̄, ¨q ` Q p¨, q̄q. When the jet is forced at an angular frequency of ω f and

azimuthal wavenumbers ˘m f , the complex representation of the boundary forcing in equation

(5.9b) is expressed as:

q1
f 9

´

e´ipω f t´m f θq
` e´ipω f t`m f θq

¯

` c.c. (5.16)

At the n-th harmonic angular frequency, nω f , the temporal Fourier decomposition of the equation

can be written as

inω f q̂n,m “ Lq̄q̂n,m ` Q n,m, (5.17)

where,

Q n,m “

$

’

&

’

%

ř

l

ř

p
Q

`

q̂l,p, q̂n´l,m´p
˘

if n,m are even or n,m are odd

0 otherwise,
(5.18)

denotes the non-linear interactions that result in the n-th harmonic angular frequency and the

m-th azimuthal wavenumber. Here, in q̂l,p, the first subscript denotes the l-th harmonic frequency

index, and the second subscript denotes the p-th multiple of azimuthal wavenumber forcing.

For example, the triadic interactions that result in the second harmonic frequency can be

written as:

Q 2,0 “ Q pq̂1,˘1, q̂1,¯1q ` Q pq̂3,˘1, q̂´1,¯1q ` Q pq̂4,˘2, q̂´2,¯2q ` ¨ ¨ ¨ , (5.19)

Q 2,˘1 “ 0, (5.20)

Q 2,˘2 “ Q pq̂1,˘1, q̂1,˘1q ` Q pq̂3,˘3, q̂´1,¯1q ` Q pq̂4,˘4, q̂´2,¯2q ` ¨ ¨ ¨ , (5.21)

Q 2,˘3 “ 0. (5.22)
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Similarly for the third harmonic frequency,

Q 3,0 “ 0, (5.23)

Q 3,˘1 “ Q pq̂1,¯1, q̂2,˘2q ` Q pq̂2,˘2, q̂1,¯1q ` Q pq̂4,˘4, q̂´1,¯3q ` ¨ ¨ ¨ , (5.24)

Q 3,˘2 “ 0, (5.25)

Q 3,˘3 “ Q pq̂2,˘2, q̂1,˘1q ` Q pq̂4,˘4, q̂´1,¯1q ` Q
`

q̂5,˘5, q̂´2,¯2
˘

` ¨¨ ¨ . (5.26)

Equations (5.19 - 5.26) re-emphasize that the odd harmonic frequencies are present in the odd

multiples of azimuthal wavenumber forcing, while even harmonic frequencies are present in the

even multiples of m f . These equations elucidate how the external forcing triggers the nonlinear

interactions.

(0.4,0.0,0.4)

(0.4,0.0,0.4)
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(0.8,0.4,1.2)

(0.8,0.4,1.2)

[1,-1,0]

[-1,-1,-2]
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(1.2,0.4,1.6)
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m=1

m=-1

Figure 5.4.11: Example of a forward cascade of triads for the m “ ˘1-forced jet.

Figure 5.4.11 shows the spatial structures involved in the cascade of triads for the m “

˘1-forced jet. The BMD modes in the frequency range St f ď St1 ď 3St f and the azimuthal

wavenumber range ´1 ď m1 ď 2 are visualized here. The forcing initiates the cascade, where
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m “ 1,St “ 0.4 and m “ ´1,St “ 0.4 can undergo two possible interactions: (i) they can interact

with each other to generate the m “ 0,St “ 0.8 mode through the wavenumber triad rm1,m2,m3s “

r´1,1,0s and the frequency triad pSt1,St2,St3q “ p0.4,0.4,0.8q; (ii) each of them can self-interact

to result in m “ 2,St “ 0.8 or m “ ´2,St “ 0.8. The generated modes (second column from the

left) then interact with fundamental forcing modes to produce higher harmonics, such as the triad

r2,1,3s, (0.8, 0.4, 1.2). Similarly, the cascade can be extended to higher frequencies and azimuthal

wavenumbers. The cascade for m3 ă 0 is symmetric to m3 ą 0 and is not shown for brevity.

Inspecting the modes reveals that the sum interactions in the frequency space create spatial

structures with smaller wavelengths, while the sum interactions in the azimuthal wavenumber

space result in modes with a larger swirl. An illustration of the cascade in the form of a directed

acyclic graph is shown on the left in figure 5.4.11. Note that the cascade of triads shown in figure

5.4.11 is one of the many possible pathways of energy transfer.

Figure 5.4.12 depicts the cascade of triads generated by the m “ ˘6-forcing, similar to

figure 5.4.11. The major difference is that the azimuthal wavenumbers t¨ ¨ ¨ ,´2,´1,0,1,2, ¨ ¨ ¨ u

are replaced by t¨ ¨ ¨ ,´12,´6,0,6,12, ¨ ¨ ¨ u, i.e., the odd and even integers are replaced by the

odd and even integer multiples of 6. The higher azimuthal forcing actuates the spatial structures

that are near the nozzle’s exit. The BMD mode resulting from the self-interaction of the forcing,

[6,6,12] and (0.4,0.4,0.8), is also localized to the vicinity of the nozzle’s lip. Though the overall

trends are similar, the BMD modes corresponding to the m “ ˘6 forcing exhibit greater swirl

compared to the modes of the m “ ˘1 forcing. An interesting observation is that the BMD modes

associated with the frequency triads (0.4, 0.4, 0.8) and (1.2, 0.4, 1.6) in the wavenumber triplet [6,

-6, 0] resemble the modes associated with the same frequency triads in the wavenumber triplet [1,

-1, 0] for the m “ ˘1-forced jet. This indicates that the different m “ ˘m f forcings generate the

same spatial structures in the wavenumber triplet rm f ,´m f ,0s.
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Figure 5.4.12: Example of a forward cascade of triads for the m “ ˘6-forced jet.

5.5 Mean flow distortion due to non-axisymmetric forcing

The non-axisymmetric forcing results in a distortion of the jet cross-section. Previous

studies (Cohen and Wygnanski, 1987, Long and Petersen, 1992) demonstrate that the jet loses

its axial symmetry when excited by the two different azimuthal modes of the same frequency,

in particular, m “ ˘m f -forcing results in a cos
`

2m f θ
˘

distortion, where θ is the azimuth angle.

Figures 5.5.1, 5.5.2, 5.5.3 and 5.5.4 report similar observations.

Figures 5.5.1 and 5.5.2 show the contours of the mean streamwise velocity at various

axial cross-sections. At the nozzle’s exit, the cross-section is circular for all 5 jets. As the flow

evolves downstream, the distortion of the mean flow is observed for non-axisymmetrically forced

jets. For the m “ ˘1 forced jet, the cross-section is initially circular, and from x “ 2 it undergoes

distortion to an elliptical shape. The elliptical shape of the mean streamwise velocity persists till

x “ 16. The m “ ˘2-forced jet exhibits a square cross-section at x “ 1 and 2, while a four-lobed

structure is observed between 3 ď x ď 6. The cross-section reverts back to a circular shape by
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Figure 5.5.1: Mean streamwise velocity contours at five different streamwise cross-sections
x “ 0,1,2,3, and 4: (a-e) unforced; ( f - j) m “ 0-forced; (k-o) m “ ˘1-forced; (p-t) m “ ˘2-
forced; (u-y) m “ ˘6-forced.
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Figure 5.5.2: Mean streamwise velocity contours at five different streamwise cross-sections
x “ 6,8,10,13, and 16: (a-e) unforced; ( f - j) m “ 0-forced; (k-o) m “ ˘1-forced; (p-t) m “ ˘2-
forced; (u-y) m “ ˘6-forced.
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Figure 5.5.3: TKE at five different streamwise cross-sections x “ 0,1,2,3, and 4: (a-e) unforced;
( f - j) m “ 0-forced; (k-o) m “ ˘1-forced; (p-t) m “ ˘2-forced; (u-y) m “ ˘6-forced. The D2,
D4, and D12 symmetries associated with the non-axisymmetric forcing are shown in panels (n),
(q), and (v), respectively.

x “ 13. The cross-section of the m “ ˘6 forced jet demonstrates a 12-lobed pattern, with each

lobe placed at every 30 degrees. The degree of mean-flow distortion decreases quickly, and the

cross-section regains its axisymmetric nature by x “ 3. On the other hand, cross-section of the

unforced and axisymmetrically forced jets remains circular throughout the entire domain. Slight

deviations from a circular shape are seen at larger downstream distances, primarily due to a lack

of convergence. Overall, these observations suggest that higher azimuthal wavenumber forcing

results in mean flow distortion at a more upstream location, but its effect fades earlier. In contrast,

lower azimuthal forcing causes delayed mean flow distortion but is more persistent.
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Figure 5.5.4: TKE at five different streamwise cross-sections x “ 6,8,10,13, and 16: (a-e)
unforced; ( f - j) m “ 0-forced; (k-o) m “ ˘1-forced; (p-t) m “ ˘2-forced; (u-y) m “ ˘6-forced.
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The turbulent kinetic energy (TKE), K “ xu1
iu

1
iy{2, for the 5 jets at different axial cross-

sections, is shown in figures 5.5.3 and 5.5.4. Similar to figures 5.5.1 and 5.5.2, a m “ ˘m f forcing

results in patterns with 2m f lobes. The TKE fields for the m “ ˘1 and m “ ˘2-forced jets, display

elliptical and square cross-sections, respectively, while a dodecagon cross-section is observed

at the nozzle’s exit for the m “ ˘6-forced jet. The TKE fields exhibit trends similar to those of

the mean flow, suggesting that non-axisymmetric forcing breaks the azimuthal symmetry of both

the mean quantities and the turbulent statistics. Upon closer examination, the jets exhibit distinct

symmetries: the m “ ˘1 forced jet is symmetric about the lines y “ 0 and z “ 0; the m “ ˘2

forced jet is symmetric about y “ 0, z “ 0, y “ z, and y “ ´z; the m “ ˘6 forced jet is symmetric

about the lines z “ tanpnπ{12qy, where n “ 0,1,2, . . . ,11. The corresponding symmetric lines are

shown in panels (n), (q), and (v) of figure 5.5.3. These findings indicate that the m “ ˘1, m “ ˘2,

and m “ ˘6 cases display D2, D4, and D12 symmetries, respectively, where D represents the

dihedral group. A complete decomposition into the components of the dihedral groups is beyond

the scope of this work and we defer it to our future works.

For a quantitative measure of the cross-section distortions, we introduce two metrics:

Udist
x pxq “

}Upx,r,θq ´ xUpx,r,θqyθ}r

}xUpx,r,θqyθ}r
, (5.27)

Kdist
pxq “

}Kpx,r,θq ´ xKpx,r,θqyθ}r

}xKpx,r,θqyθ}r
, (5.28)

where x¨yθ denotes the azimuthal mean and }q}2
r “

ş

r q˚Wqdr. The equations (5.27), and

(5.28), quantify the distortions of the mean streamwise velocity, and TKE, respectively. The

corresponding results are presented in Figure 5.5.5(a) and (b). The m “ ˘2 forcing produces

the largest distortion of both the mean streamwise velocity and TKE. A significant distortion is

observed near the nozzle’s exit for the m “ ˘6-forced jet, which diminishes rapidly within the

first three diameters. The m “ ˘1 case exhibits the largest mean flow distortion beyond x “ 10,

emphasizing its persistence. However, its impact on TKE distortion is weaker than that of the
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Figure 5.5.5: Cross-section distortion of the jet due to different forcing: (a) mean streamwise
velocity; (b) TKE.

m “ ˘2 forcing. These findings suggest that the m “ ˘1 forcing is more effective in distorting

the cross-section of mean flow rather than the TKE.

Next, the structures at St Ñ 0 for different forcings are visualized in figure 5.5.6. To

obtain these structures, we use the D2, D4, and D12 symmetries and select the component that

corresponds to the identity mapping. We then compute the FFT using the Welch approach and

average the Fourier realizations at St Ñ 0. The streamwise velocity component ux of the m “ ˘1-,

m “ ˘2-, and m “ ˘6-forced jet is shown in figure 5.5.6. These structures are elongated regions

of streamwise velocity and are reminiscent of streaks. For the m “ ˘1-forced jet, we observe

two streaks with ux ą 0, and for a ˘m f -forcing, we observe 2m f streaks. We also show the

TKE contours and find that the streaks are located in the regions of cross-section distortions.

The spatial extent of streaks increases for lower m f forcing, and the streaks originate at a more

upstream location for higher m f forcing. These observations suggest that the mean-flow distortion

is caused by the streaky structures, and the characteristics of streaks determine the strength and

persistence of cross-section distortion.
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Figure 5.5.6: Large-scale streaky structures at St “ 0 for the three non-axisymmetrically forced
jets: (a) m ˘ 1-forced jet; (b) m “ ˘2-forced jet; (c) m “ ˘6-forced jet. The D2, D4, and D12
symmetries are used to compute these structures. Isosurfaces of streamwise velocity (ux ą 0:
red, ux ă 0; blue) at ˘50% of their maximum value.

5.6 Summary and conclusions

LES of unforced and forced turbulent jets were performed and validated with companion

experiments. The jet is axisymmetrically forced by blowing and suction at a frequency of

St “ 0.4 and with an amplitude that correspond to the jet velocity, triggering strong nonlinear

interactions. The axisymmetric forcing produces a purely axisymmetric response and entails

significant thickening of the shear layer and shortening of the potential core. The axisymmetric

component, m “ 0, exhibits peaks at the forcing frequency and its harmonics due to triadic

interactions. BMD is employed to investigate the structures associated with these triads and their

relative significance. The prominent azimuthal wavenumber triplet is [0, 0, 0] and the two most

dominant triads arise due to the self-interaction of the forcing frequency, rSt f ,St f ,2St f s, and due

to harmonic-fundamental difference interaction, p2St f ,´St f ,St f q, that scatters energy back into

the fundamental. Integral interaction maps are defined to identify regions of activity of triadic

interactions. Both unforced and forced jets exhibit strong interactions in the closure region of the

potential core. This ‘natural’ region of nonlinear activity extends over „ 6 jet diameters in the

unforced case and over „ 4 in the forced case, respectively. We speculate that the nonlinear activity

in that region is the reason for the discrepancy of SPOD modes and linear resolvent (Schmidt

et al., 2018) and global modes (Schmidt et al., 2017b), and similarly the discrepancy between
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linear wavepacket models and experimental data, also attested to nonlinearity by Cavalieri et al.

(2013) and Tissot et al. (2017b). In the forced jet, strong interactions that are associated with the

large-amplitude forcing are identified in the vicinity of the actuator near the lip line. Additionally,

BMD was applied to the far-field pressure and identified the difference-interaction between the

first harmonic and the forcing frequency as the most significant triad. This observation is in

agreement with the findings of Sandham et al. (2006).

For the non-axisymmetrically forced jet, the triadic interactions occur across different

azimuthal wavenumbers. For a m “ ˘m f forced jet, different wavenumber triplets are important,

such as, rm f ,´m f ,0s, rm f ,m f ,2m f s, and r2m f ,m f ,3m f s. The cascade of triads is initiated by

the self-interaction of the fundamental frequency, pSt f ,St f ,2St f q in the wavenumber triplets

rm f ,´m f ,0s, rm f ,m f ,2m f s. The resulting triads then interact with the forcing modes to generate

the odd harmonic frequencies in the odd integer multiples of the wavenumber forcing. For instance,

the odd harmonic frequency 3St f at 3m f is created through the frequency triad p2St f ,St f ,3St f q

and the wavenumber triad r2m f ,m f ,3m f s. The cascade proceeds in a similar way to generate the

even harmonics in the even integer multiples of the wavenumber forcing. As an example, the

3St f at 3m f interacts with St f at m f to generate the fourth harmonic frequency, 4St f , in the fourth

integer multiple of the forcing wavenumber, 4m f .
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Chapter 6

Nonlinear energy transfer in vortex-pairing

of initially-laminar jets

6.1 Introduction

The seminal work by Brown and Roshko (1974) demonstrated the presence of large-scale

coherent vortical structures in turbulent mixing layers. Winant and Browand (1974) showed that

the pairing of these vortical structures significantly influences the growth of the mixing layers.

Evidence of a similar process has been reported in axisymmetric jets. For initially-laminar or

transitional jets, the fluid emerging from the nozzle forms an unstable laminar shear layer that

grows very rapidly, forming ring vortices that further pair up (Moore, 1977). The pairing of vortex

rings in jets was first described by Becker and Massaro (1968). They performed jet experiments

at a moderate Reynolds number and forced the jet at a single frequency to illustrate the formation

of vortices and subsequent pairing. Zaman and Hussain (1980) and Hussain and Zaman (1980)

investigated the vortex pairing process in more detail by forcing a wide range of frequencies. In

particular, they identified the vortex dynamics, the trajectories of vortices, and the role they play

in the transition to turbulence. The process of vortex pairing not only provides us insights into
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the transition to turbulence but also enables us to control turbulence by finding strategies that

enhance or suppress turbulent mixing.

Vortex pairing is also a source of jet noise, especially in initially-laminar jets (Bridges

and Hussain, 1987, Zaman, 1985a,b, 2012). In this regard, Bridges and Hussain (1987) showed

that vortex-pairing events are acoustically unimportant for turbulent jets but play a significant

role in the emitted noise for initially-laminar jets. Bogey and Bailly (2010) also investigated the

influence of vortex pairing on the radiated noise in initially-laminar jets. They found that jets with

larger momentum thickness exhibit stronger vortex pairing and consequently radiate more sound

to the far-field. These results were further confirmed by Zaman (2012). Hence, understanding

vortex pairing will provide us additional insights into the generation of jet noise, which is another

motivation for this study.

Vortex pairing is also observed in plane shear layers, for example, Ho and Huang (1982)

and Hajj et al. (1992). Ho and Huang (1982) compared the development of the fundamental and

subharmonic modes in the vortex-pairing mechanism and found that the vortex rollup process

is associated with the saturation of the fundamental frequency, while the vortex pairing process

corresponds to the saturation of the subharmonic frequency. In a two-dimensional shear layer,

Pierrehumbert and Widnall (1982) demonstrated that the emergence of the subharmonic frequency

is linked to the pairing of vortices. The existing literature reports two possible routes for the

growth of the subharmonic frequency. Monkewitz (1988) hypothesizes that a parametric resonance

mechanism between the fundamental and the subharmonic modes leads to a pronounced growth

of the subharmonic. Later, Hajj et al. (1992) demonstrated that this occurs due to nonlinear energy

transfer. On the other hand, Mankbadi (1985) argued that pairing arises when the subharmonic

component acquires sufficient energy from both the fundamental wave and the mean flow to

become the largest-amplitude perturbation in the jet. Experimental investigations by Paschereit

et al. (1995) show that most of the energy for the resonant growth of the subharmonic comes

directly from the mean flow, and the fundamental-subharmonic interaction only acts as a catalyst.
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In this study, we use spectral turbulent kinetic energy equations to shed light on the energy transfer

that occurs during the vortex pairing process. In this study, we will use spectral turbulent kinetic

energy equations to shed light on the energy transfer that occurs during the vortex pairing process.

The chapter is organized as follows: In §6.2, we discuss the methodology of the local

linear stability theory. In §6.3, we identify and characterize the vortex pairing process using

visualization, turbulent statistics, and SPOD. In §6.4, we revisit the spectral TKE equations and

customize them based on the leading SPOD modes. In §6.5, we analyze the triadic interactions

using BMD, and finally, in §6.6, we summarize the work.

6.2 Local linear stability theory

To identify the most unstable spatial waves, we will perform a local linear stability

analysis. The flow will be linearized around the mean flow, assuming a locally parallel flow. This

means that the streamwise derivatives of the mean flow in the streamwise direction are negligible.

Firstly, we will use the Reynolds decomposition

qpx,r,θ, tq “ q̄px,rq ` q1
px,r,θ, tq, (6.1)

where, q “ rρ,ux,ur,uθ,Ts
T . In local analysis, the base flow is considered to be homogeneous in

the streamwise and azimuthal directions and in time, which leads to fluctuations of the form,

q1
px,r,θ, tq “ q̂prqeipαx`mθ´2π f tq, (6.2)

where α and m are streamwise and azimuthal wavenumbers, respectively, and f is the frequency.

As the objective is to obtain the most unstable streamwise wavenumbers, i.e., α, we will specify

the frequency f and solve the eigenvalue problem for αp f q. Linearizing the Navier-Stokes
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equations results in the following eigenvalue problem:

piωI ` Lα,mqq̂α,m “ 0. (6.3)

Here, L is the linearized compressible Navier–Stokes operator. Following the approach of

Rodrı́guez et al. (2015), we neglect the viscous terms of order α2 and solve the resulting eigenvalue

problem using the methodology of Maia et al. (2022, 2021b). Further details on the boundary

conditions, domain extension, and domain mapping can be found in Maia et al. (2022, 2021b).

At each frequency f , the growth or decay of disturbances in the jet is governed by the sign of the

imaginary part of the streamwise wavenumber, αi “ Impαq: if αi ă 0, the disturbances will grow

exponentially downstream; if αi ą 0, they will decay downstream.

6.3 Vortex-pairing and the formation of subharmoncis

We perform large-eddy simulation of an initially-laminar subsonic jet using the com-

pressible flow solver “Charles” developed at Cascade Technologies Brès et al. (2017, 2018).

Charles solves the spatially filtered compressible Navier–Stokes equations on unstructured grids

using a density-based finite-volume method. The LES combines the Vreman sub-grid model

(Vreman, 2004) with the wall-model by Bordat and Larsson (Bodart and Larsson, 2012, Kawai

and Larsson, 2012). The reader is referred to Brès et al. (2017, 2018) for further details on the

numerical method and validation on jet flows. The validation of the LES case for the present

case follows the previous studies. In particular, the mesh used by Brès et al. (2018) is modified

to accommodate the new nozzle geometry. The total grid size is 16.6 million control volumes.

The LES is conducted for the experimental Reynolds number, whereas the Mach number is

artificially increased to M j “ 0.4. Effects of compressibility are still small in this regime and

the very small-time steps associated with the incompressible limit are avoided. The LES of a

turbulent jet with the same Re and M j was validated in the previous chapter §5.
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Figure 6.3.1: Development of the shear-layer in the turbulent and initially laminar jet. The
instantaneous flow field of the turbulent, and initially-laminar jet are shown in (a), and (b),
respectively. Mean (c-g) and RMS streamwise velocities (h-k) at different axial locations: (c,h)
x “ 0; (d,i) x “ 1; (e, j) x “ 2; ( f ,k) x “ 5; (g,l) x “ 15.
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Figure 6.3.2: Comparison of the experiment with the LES simulations for the initially-laminar
jet: (a) mean and (b) RMS streamwise velocity on the centerline. Black dashed line represents
ux{U j “ 0.95 and its intersection with the mean streamwise velocity indicates the length of the
potential core.

Figure 6.3.1 shows the evolution of an initially-laminar jet through visualizations and

mean and RMS streamwise velocity. For comparison, the turbulent jet (tripped boundary-layer

inside the nozzle) at the same Reynolds number is also shown. Panels (a,b) show instantaneous

streamwise velocity fields for the two jets, revealing that the initially-laminar jet has a shorter

potential core. The insets in panels (a,b) indicate that the initially-laminar jet starts to develop

much later than the turbulent jet, around x « 0.8. This observation is further supported by the mean

flow profiles in panels (c-g), which show that the turbulent jet transitions to a bell-shaped curved

earlier than the initially-laminar jet. Additionally, in the region 0 ď x ď 1, the gradient Būx{Br is

larger for the initially-laminar jet. The laminar jet experiences faster diffusion, eventually leading

to a larger velocity gradient in the turbulent jet. Panels (h-l) depict the RMS streamwise velocity

profiles. At the nozzle’s exit, the turbulence intensity of the initially-laminar jet is almost zero,

but it grows rapidly downstream and eventually exceeds the intensity of the turbulent jet. These

observations suggest that although the initially-laminar jet starts to develop later, it grows much

faster than the turbulent jet. Later we will demonstrate that this is a result of vortex-pairing, which

is significantly stronger for initially-laminar jets (Bogey and Bailly, 2010, Kim and Choi, 2009).
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We compare the LES of the initially-laminar jet to the turbulent jet (both LES and

experimental), and two previous studies for the initially-laminar jet. Figure 6.3.2 shows the mean

and RMS streamwise velocities on the centerline. For the turbulent jet, a good agreement was

obtained between the numerical simulations and the experiments. On the other hand, the mean

and RMS profiles of initially-laminar jet exhibits notable differences. Along the centerline, the

mean flow predicted by the LES shows a dip at x « 2 (inset in figure 6.3.2(a)), which decays

rapidly beyond the end of the potential core. For comparison, the mean flow velocity profile of

Bogey and Bailly (2010) is shown, which exhibits a similar trend to our LES. Figure 6.3.2(b)

shows that the LES of the initially-laminar jet overpredicts the RMS of streamwise velocity on

the centerline. The most observable discrepancy is the hump at x « 2.8. These differences are

due to the stronger vortex pairing in the case of the initially-laminar jet. The initially-laminar

jet is sensitive to the shear-layer thickness and this effect has been explored in detail by Bogey

and Bailly (2010), Bogey et al. (2012), Kim and Choi (2009). These studies demonstrated that

for initially-laminar jets, a thicker shear layer grows faster and exhibits stronger vortex pairing,

whereas a thinner shear layer develops earlier but at a slower rate, resulting in lower urms
x on

the centerline (Bogey and Bailly, 2010). Figure 6.3.2 also includes the RMS of the streamwise

velocity curves from previous works such as the experiments of Zaman and Hussain (1980) and

the simulations of Bogey and Bailly (2010) for comparison. These curves showed a similar

hump in the RMS of the streamwise velocity, and the Reynolds number of these studies were

Re “ 1.2 ˆ 104 and 105, respectively. These comparisons with the literature indicate that the

tripping of the boundary layer inside the nozzle of the jet significantly influences the shear layer,

causing the initially-laminar jet to behave differently from the turbulent jet. Our focus is on

analyzing the nonlinear interactions that cause these discrepancies.
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Figure 6.3.3: Pre-multiplied power spectral density along x: (a) streamwise velocity, ux; (b)
radial velocity, ur. The PSD is integrated along the radial direction at each streamwise location.

6.3.1 Shear-layer instability

Figure 6.3.3 shows the premultiplied PSD for the streamwise and radial velocities, ux and

ur, respectively. The PSD is computed at each spatial location and then integrated radially for

each streamwise location. The PSD of both ux and ur show the prominence of three frequency

components, St “ 1.76,0.88, and 0.44. The frequency St “ 1.76 occurs at x « 1 and precedes

St “ 0.88, which in turn precedes St “ 0.44. The occurrence of the subharmonic frequencies at a

more downstream location, suggests the possibility of vortex-pairing that result in the formation

of these subhamonics. The PSDs reveal that the frequencies St “ 1.76, 0.88, and 0.44 are more

significant in the radial velocity than the streamwise velocity component.

Figure 6.3.4(a) shows the contribution of frequencies St “ 1.76, 0.88, 0.44, 0.22, and

0.11 to the total RMS of the streamwise and radial velocity on the centerline in (a) and on the

lipline in (b) and (c), respectively. The total RMS is shown on the left ordinate whereas the RMS

of five frequencies and their sum (denoted by a red line) are shown on the right ordinate. For

the streamwise velocity on the centerline in (a), the curve corresponding to the sum of the five

frequencies, though lower in magnitude, has a similar shape to that of the total RMS, which

indicates that these five frequencies are sufficient to capture the trend of streamwise velocity on

the centerline. The RMS of the frequency, St “ 0.44, peaks at the same location as that of the

hump at x « 2.8. The subharmonic of this frequency, St “ 0.22, peaks at the location of the global
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Figure 6.3.4: Development of the RMS velocities of total and individual frequencies along x:
(a) urms

x on the centerline, r “ 0; (b) urms
x on the lipline, r “ 0.5;(c) urms

r on the lipline, r “ 0.5.
The total RMS (black curve) is plotted on the left ordinate and the remaining curves are plotted
on the right ordinate.
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Figure 6.3.5: Most unstable eigenvalue obtained from local stability theory at various streamwise
locations: (a) initially-laminar jet; (b) turbulent jet.

maximum of x « 6. The frequency St “ 0.11 reaches its maximum further downstream at x « 8.

Along the lipline the total RMS of the streamwise and radial velocity exhibit a global

maximum at x « 1.8. In both the velocity components St “ 0.44 achieves the largest value of RMS

among these five frequencies. In the radial velocity component, initially, St “ 1.76 grows rapidly

achieves its global maximum, and then decays. As St “ 1.76 starts to decay, its subharmonic

frequency St “ 0.88, grows rapidly and overtakes St “ 1.76. Similarly, the same trend is present

for St “ 0.44 which overtakes St “ 0.88. In the streamwise velocity component, St “ 0.88 is the

first frequency that grows, saturates, and decays followed by St “ 0.44. Note that, for ux the

St “ 1.76 is not significant as previously observed in figure 6.3.3. These observations indicate that

along the lipline, the subharmonic frequencies begin to grow as their harmonic frequencies start to

decay. Our findings are in agreement with the findings of Hajj et al. (1992) and Shaabani-Ardali

et al. (2019). These studies show that the simultaneous decay of the fundamental and growth of

the subharmonic is due to the energy transfer from the fundamental to the subharmonic through a

parametric resonance mechanism (Hajj et al., 1992, Monkewitz, 1988).

Next, we perform local linear stability analysis at different streamwise locations to
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identify the fundamental frequency. Figure 6.3.5 shows the most unstable eigenvalues at different

streamwise locations for the initially-laminar and turbulent jets. For both jets, the most unstable

eigenvalues occur near the nozzle exit. For the initially-laminar jet, the frequency corresponding

to the most unstable eigenvalue is St « 1.76, whereas it is St « 0.81 for the turbulent jet. This

suggests that the spatially most unstable frequency is St « 1.76 for the initially-laminar jet,

which occurs at the most upstream location. Therefore, we will identify this frequency as the

fundamental frequency in the initially-laminar jet.

The green-dotted line represents the frequency corresponding to the most unstable eigen-

value, while the black-dotted line denotes the frequency corresponding to the neutrally stable

eigenvalue. Additionally, the streamwise locations corresponding to the maximum PSD of the

frequencies St “ 1.76, 0.88, and 0.44 are shown, and they lie close to the neutrally stable curve.

This suggests that the frequency is spatially most unstable at a more upstream position but attains

its maximum amplitude more downstream. At this location, the wave is neutrally stable and starts

to decay. The fundamental distinction between local stability theory and maximum PSD is that

the former pinpoints the location where the frequency initially starts to grow spatially, while the

latter reveals the location where the frequency attains its highest global amplitude.

The leading SPOD modes associated with St “ 1.76,0.88,0.44,0.22, and 0.11, are shown

in figure 6.3.6. The modes exhibit structures in the shear-layer, which are shifted downstream

at lower frequencies. For example, at St “ 1.76 the structure is concentrated in the region

0.8 ď x ď 1.2 around the lipline. At a lower frequency of St “ 0.44, the leading SPOD mode

has larger spatial support that peaks in 2 ď x ď 3. Here, the streamwise velocity, ux, is more

concentrated on the centerline and the radial velocity, ur on the lipline. Furthermore, the presence

of this Kelvin-Helmhotlz-type wavepacket is directly correlated to the formation of hump in

the RMS streamwise velocity on the centerline at x « 3. The structures of the modes at other

frequencies are also associated with the peaks of the RMS velocities in figure 6.3.6. In the

following, we will show that the process of vortex pairing leads to the formation of these
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Figure 6.3.6: Leading SPOD modes at five representative frequencies: (a,b) St “ 1.76;( c,d)
St “ 0.88; (e, f ) St “ 0.44; (g,h) St “ 0.22; (i, j) St “ 0.11. The left column represents the
streamwise velocity component, ux and the right column represents the radial velocity, ur.

structures.

6.3.2 Vortex-pairing

The vortex pairing process is illustrated in figure 6.3.7, which shows eight different time

instances of the vorticity ωθ for the axisymmetric component m “ 0. The first snapshot shows

two vortices that form due to the roll-up of the shear layer. The roll-up and vortices are denoted by

four red rectangles. These vortices are associated with a frequency of St “ 1.76. The next three

snapshots demonstrate the pairing of these vortices in the region between 1.2 ď x ď 2.1. This

proces is demonstrated using two blue rectangles in figure 6.3.7 (b-d). The first vortex pairing

results in the formation of a vortex with a frequency of St “ 0.88, which can also be observed in

figure 6.3.7 (c-e). Then, the two St “ 0.88 vortices, denoted by blue rectangles in (e), undergo

pairing to form a vortex with a frequency of St “ 0.44, as shown in figure 6.3.7 (e- f ). During
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Figure 6.3.7: Visualization showing the pairing of vortices.
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Figure 6.3.8: (a) x-t plots along the lipline showing the pairing of vortices. (b) The maximum
frequency at the corresponding streamwise locations. The contour levels in (a) represent the
vorticity fluctuations, ω1

θ
.

this process, the vortex that is at a more upstream location accelerates and catches up with the

decelerating downstream vortex. Eventually, they wrap around each other and form a single

vortex at x « 3.5. The pairing of two vortices results in the formation of a larger vortex that is

associated with half the frequency of the previous vortices. Our observations are in agreement

with previous works by Zaman and Hussain (1980) and Shaabani-Ardali et al. (2019).

The vortex pairing is investigated in terms of the x ´ t plots in figure 6.3.8. Figure 6.3.8(a)

shows the vorticity fluctuations, ω1
θ
, of the m “ 0 component along the lipline in the time interval

35 ď t ď 65. This interval encompasses the time instances shown in figure 6.3.7. Diagonal lines

with slopes greater than zero represent the convective nature of the vortices, and these lines unite

downstream to form a single line. For example, the vortex pairing process shown in figure 6.3.7

can be observed in the range 40 ď t ď 55, 0.5 ď x ď 3.5. The false color in white at x « 3.5,

t « 55 corresponds to the St “ 0.44 vortex. Note, however, that this is a single event of the vortex

pairing. The objective here is to obtain a statistical representation of this event. To achieve this,

we perform the following steps:
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1. Reconstruct the flow field using the leading SPOD modes associated with the frequencies

St “ 0.44,0.88,1.76.

2. Select the point x “ 3.5,r “ 0.5 in the reconstructed field.

3. Identify the local maxima in the time series of this point as t0, which is representative of

the vortex pairing event.

4. Obtain the realization of each vortex-pairing event as t P rt i
0 ´ 20, t i

0 ` 10s, where i is the

i-th local maxima at the chosen point

5. Average over all the realizations.

The x ´ t plots along the lipline obtained from the aforementioned conditionally averaging

is shown in figure 6.3.8(b). The first and second vortex-pairing events at x « 1.5 and x « 3,

respectively, are evident here. We use polynomial curve fitting to illustrate this process. As in

Figure 6.3.7, the red, blue, and magenta lines correspond to the frequencies of St “ 1.76, 0.88,

and 0.44, respectively.

6.4 Spectral Energy Budget

We investigate the spectral energy balance of kinetic energy. The motivation behind this

analysis is to identify the nonlinear energy transfer between different frequencies and the net

production of TKE associated with certain frequencies during the vortex pairing process. In the

following, we will revisit the derivation of the spectral-TKE equation and then tailor it to compute

the individual terms based on the leading SPOD modes. The readers are referred to refer to the

work of Towne et al. (Reference Towne, Schmidt and Colonius2018) for a details of the derivation

We start by writing the Reynolds averaged Navier-Stokes equations for the turbulent

fluctuations,

165



Bu1
j

Bt
` ūi

Bu1
j

Bxi
` u1

i
Bu1

j

Bxi
“ ´u1

i
Bū j

Bxi
`

B

Bxi
u1

iu
1
j ´

Bp1

Bx j
`

2
Re

Bs1
i j

Bxi
, (6.4)

where s1
i j “ 1{2

´

Bu1
i{Bx j ` Bu1

j{Bxi

¯

is the strain rate.

The next step is to compute the FFT of the equation (6.4) in time and azimuthal direction

such that, u1px,r,θ, tq “
ř

ω

ř

m
ûpx,rqeipmθ´2π f tq and then left multiply it with û˚

j pm, f q,

û˚
j pm,ωq

«

Bû j

Bt
` ūi

Bû j

Bxi
`

{

ui
Bu j

Bxi
“ ´ûi

Bū j

Bxi
´

B p̂
Bx j

`
2

Re
Bŝi j

Bxi

ff

m, f

. (6.5)

Using continuity and taking the temporal mean, we get the following equation at an azimuthal

wavenumber of m and frequency f :

BK̂
Bt

“ R

«

´ūi
BK̂
Bxi

´ û˚
j

{

ui
Bu j

Bxi
´ û˚

j ûi
Bū j

Bxi
´

2
Re

ŝ˚
i j ŝi j ´

B

Bx j

´

û˚
j p̂

¯

`
2

Re
B

Bxi

´

û˚
j ŝi j

¯

ff

, (6.6)

where R denotes the real part and K̂pm, f q “ û˚
i pm, f qûipm, f q{2. For statistical stationary flows,

the left-hand side goes to zero. The most important terms for the current study are the nonlinear

transfer term and the production, the second and third terms on the right-hand side, respectively.

The scale-specific production term is

P pm, f q “ ´R

«

û˚
j pm, f qûipm, f q

Bū j

Bxi

ff

(6.7)

The scale-specific nonlinear transfer is

Tnlpm, f q “ ´R

«

û˚
j p f ,mq

{

ui
Bu j

Bxi
p f ,mq

ff

(6.8)

This term represents the total nonlinear transfer interactions that generate the frequency f and
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wavenumber m. To identify the energy transfer of individual triads, i.e. m1 ` m2 “ m3 and

f1 ` f2 “ f3, following Cho et al. (2018), this term is written in the discretized convolution:

Tnlpm3, f3q “ ´R

»

—

—

–

û˚
j pm3, f3q

ÿ

f1` f2“ f3
m1`m2“m3

ûipm1, f1q
Bû j

Bxi
pm2, f2q

fi

ffi

ffi

fl

(6.9)

For a single triad [m1,m2,m3], ( f1, f2, f3) this is expanded as follows:

Tnlrpm1,m2,m3q,p f1, f2, f3qs “ ´R

«

û˚
j pm3, f3qûipm1, f1q

Bû j

Bxi
pm2, f2q

ff

(6.10)

The velocity field can be expanded in terms of the SPOD modal basis as

up f , tq «
ÿ

i

apiq
p f , tqϕpiq

px, f q, . (6.11)

where, a is the time-continuous expansion coefficients, obtained using the convolution approach

described in §. We focus on kinetic energy production and nonlinear transfer of the most

energetic structures so the modal basis is truncated after the leading mode at each frequency, i.e

i “ 1. Here, we are interested in the energy transfer only in the axisymmetic component, i.e.,

m1 “ m2 “ m3 “ 0, and we omit the azimuthal index with the understanding that the following

equations are evaluated at m “ 0,

Tnlrp f1, f2, f3qs “ ´R
ˆ

a˚p f3qap f1qap f2qϕ˚
j p f3qϕip f1q

Bϕ j

Bxi
p f2q

˙

, (6.12)

ÿ

f1` f2“ f3

Tnl “ ´R

¨

˝

ÿ

f1` f2“ f3

a˚p f3qap f1qap f2qϕ˚
j p f3qϕip f1q

Bϕ j

Bxi
p f2q

˛

‚, (6.13)
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Figure 6.4.1: Production and nonlinear energy transfer terms for St “ 1.76,0.88,0.44, and 0.22
integrated in r and as a function of streamwise locations.

P p f1q “ ´a˚p f1qap f1qφ
˚
j p f1qφip f1q

Bū j

Bxi
, (6.14)

P p f1q “ ´λ
p1q

p f1qφ
˚
j p f1qφip f1q

Bū j

Bxi
. (6.15)

Figure 6.4.1 shows the production and nonlinear energy transfer at frequencies St “

1.76,0.88, 0.44, and 0.22. These terms are radially integrated and plotted as a function of

the streamwise location. Positive production indicates energy gain from the mean flow, while

negative production represents energy loss to the mean flow. Figure 6.4.1(a) shows that St “ 1.76

is the earliest to gain energy from the mean flow and as it saturates, St “ 0.88 begins to growth.

Subsequently, St “ 0.88 attains its global maximum at x “ 1.25, which also corresponds to the

location of global minimum of St “ 1.76. Similarly, the global maximum of St “ 0.44 and the

global minimum St “ 0.88 are in close proximity. The saturation of the subharmonic frequency

has been related to the onset of vortex-pairing by Ho and Huang (1982) and was confirmed by Hajj

et al. (1992, 1993). The production curves also suggest this and further reveal that at the beginning

of vortex pairing the fundamental losses maximum energy to mean flow and the subharmonic

gains its most energy from the mean flow. Another intersting observation is that the production

of St “ 1.76,0.88, and 0.44 becomes negative at x “ 1.07, 1.64 and 2.64, respectively, which

correspond to the locations where the frequencies St “ 1.76,0.88, and 0.44 become neutrally

stable.
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Figure 6.4.2: Spatial fields of production, dissipation, and nonlinear transfer terms integrated.

The net nonlinear energy transfer, computed using equation (6.13), is shown in Figure

6.4.1(b). The net nonlinear energy transfer is always Tnl ď 0 for St “ 1.76. On the other hand,

for St “ 0.88 and 0.44, the energy is initially transferred into these frequencies, and as the flow

evolves downstream, energy is extracted from these frequencies. The red and black curves in the

region 1.3 ď x ď 2.3 have a similar shape but are opposite in sign, which reveals that nonlinear

interaction results in an energy loss for St “ 0.88 and an energy gain for St “ 0.44. This suggests

the possibility of the energy being transferred from St “ 0.88 to its subharmonic, St “ 0.44. Later,

in Figure 6.4.2, we will explore the energy transfer for each triadic interaction.

Figure 6.4.2 shows the energy transfer for each triadic interaction. The energy transfer for

each triad is computed by integrating Tnlr f1, f2, f3s, equation (6.12), over the spatial domain of

interest. In figure 6.4.2(a), positive values (red color) denote the energy transfer to the frequency

St3 from frequencies St1 and St2, whereas negative values (blue color) indicate the extraction of

energy from St3 to St1 and St2. The two triads with the highest intensity are (0.88,-0.44,0.44)

and (0.44,0.44,0.88). These triads exhibit positive and negative energy transfer, respectively.

However, both triads convey the same information. The triad (0.88,-0.44,0.44) has a Tnl value

greater than zero, indicating that energy is transferred from St “ 0.88, and -0.44 to St “ 0.44.
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On the other hand, Tnl ă 0 for the triad (0.44,0.44,0.88), which indicates that St “ 0.44 extracts

energy from St “ 0.88. Additionally, even though the triads (1.76,-0.88,0.88) and (0.88,0.88,1.76)

have lower amplitudes, they exhibit similar energy transfer behavior. These two triads reveal that

energy is transferred from 1.76 to 0.88. These findings, in combination with observations from

Figures 6.3.5, 6.3.7, and 6.3.8, suggest that during the vortex pairing process, energy is initially

transferred from the fundamental (St “ 1.76) to its first subharmonic (St “ 0.88), and then from

the first subharmonic to the second subharmonic (St “ 0.44). Our results support the hypothesis

of a parametric resonance mechanism proposed by Monkewitz (1988).

Figure 6.4.2(b) shows the net nonlinear energy transfer, obtained from equation (6.13)

. At St “ 1.76, and 0.88 the net nonlinear energy transfer is negative, whereas for St “ 0.44 it

is positive. This is not surprising as Tnl ă 0 for the triads (0.44,0.44,0.88) and (0.88,0.88,1.76),

which are the most significant contributors along St3 “ 0.88, and 1.76, respectively. Overall, the

nonlinear interactions interaction results in an energy influx for St “ 0.44 and an energy outflux

at St “ 0.88, and 1.76. This suggests that the second vortex-pairing event, occurring between the

first and second subharmonic, is stronger than the first vortex-pairing event, occurring between

the fundamental and the first subharmonic.

6.5 BMD analysis

Next, we perform the BMD to identify the spatial structures associated with the triads and

further, we will try to construct a cascade of triads.

The mode bispectrum is shown in figure 6.5.1. The high-intensity regions (false red

color) in the mode bispectra signify the dominant triads that arise from the interactions of

two frequencies. Different combinations of frequencies (St1,St2) interact to generate the same

frequency (St1 ` St2 = constant) along the diagonals of slope -1 in the mode bispectrum. All the

significant triads occur in the frequency range 0 ď St1 ď 2, ´1 ď St2 ď 1. The insert in figure
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Figure 6.5.1: The mode bispectra of the laminar jet is shown in (a). The summed (along
diagonals) mode bispectra: (a) unforced turbulent; (b) forced turbulent jet; (c) unforced initially-
laminar; (d) forced initially-laminar. The inset shows a zoomed-in visualization of the BMD
spectra in the range 0 ď St1 ď 1.0, ´0.5 ď St2 ď 0.5.

171



6.5.1(a) shows a zoomed-in view of the mode spectra highlighting the most dominant triads. The

two most dominant triads are (0.44,0.44,0.88) and (0.88,-0.44,0.44). The latter corresponds to one

of the vortex pairing processes, where the energy scatters back from 0.88 to 0.44. Furthermore,

local maxima at (0.44.-0.22,0.22), (0.22,0.22,0.44), (0.22,0.0,0.22), and (0.44,0.22,0.66) represent

the other prominent triadic interactions.

Figure 6.5.1(b) shows the mode bispectrum summed along the diagonals of frequency,

St3. The summed mode bispectrum, denoted by the black line, exhibits peaks at frequencies

St “ 0.22, 0.44, 0.66, 0.88, 1.32, and 1.76, and the global maximum at St “ 0.44. This implies

that the triadic interactions that result in the frequency of St3 “ 0.44 are the most significant.

Figure 6.5.1(b) also shows the summed mode bispectrum in the sum- and difference-regions, i.e.,

St1,St2 ą 0 and St1 ą 0,St2 ă 0, denoted by blue and red lines, respectively. The contribution of

the difference-region is greater than the sum-region for St3 ď 0.78 and vice-versa for St3 ą 0.78.

This indicates that the lower frequencies are a result of destructive interference between higher

frequencies ,and the higher frequencies are an outcome of the constructive interference between

lower frequencies. This implies an inverse cascade at lower frequencies and a (regular) energy

cascade at higher frequencies.

The mode bispectum along the diagonals, St3 “ 0.22, and 0.44 are shown in figure 6.5.1(c).

The line curves illustrate the most dominant frequency triads along the respective diagonals. For

example, along St3 “ 0.44, it is clear that the most dominant triad is at St1 “ 0.88 and St2 “ ´0.44,

which reemphasizes the presence of vortex pairing. Along St3 “ 0.22, we find that three triads

are of almost equal importance, (St1,St2,St3) = (0.22,0.0,0.22), (0.44,-0.22,0.22), and (0.66,-

0.44,0.22). These triads respectively denote the interaction of St “ 0.22 with the mean flow,

harmonic-fundamental difference interaction of St “ 0.22, ultra harmonic-harmonic difference

interaction (the latter two are analogous to vortex pairing). This suggests that the St “ 0.22 can

be generated through the vortex-pairing mechanism or by a resonant growth due to interaction

with the mean flow. Paschereit et al. (1995) demonstrate that most of the energy to a subharmonic
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Figure 6.5.2: Bispectral modes forming a cascade of triads for the unforced initially-laminar
jet, starting from the fundamental instability mode (St1,St2,St3) = (0.44,0.0,0.44), middle-centre.
The real part of the streamwise velocity component is shown.

comes directly from the mean flow.

The BMD modes of the triad cascade including the most significant interactions up to

St1 ď 0.88 are visualized in figure 6.5.2. The cascade starts with the mode at the St “ 0.22,

φ0.22`0 (left column middle row). The modes associated with the sum interactions are shown in

the first and second row, and those associated with the difference interactions are shown in the

fourth and fifth row. The mode φ0.22`0 self-interacts to generate the St “ 0.44, φ0.22`0.22. Next,

the latter interacts with the former to create the φ0.44`0.22, and so on. In the negative St2 plane,

the destructive self interactions creates a mean flow distortion mode, φ0.22`´0.22, with St3 “ 0.

Inspecting the modes reveals that sum-interactions create modes with high wavenumbers and

difference-interactions create modes with lower streamwise wavenumbers. This behaviour is in

agreement with the linear dispersion relation of these Kelvin-Helmholtz (KH) type instability

waves.

Figure 6.5.3 shows the interaction maps and compares them with the spatial fields of
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Figure 6.5.3: Interactive maps showing the spatial regions of nonlinear interactions of three
triads corresponding to vortex pairing: (a) (1.76,-0.88,0.88); (b) (0.88,-0.44,0.44); (c) (0.44,-
0.22,0.22).

the nonlinear transfer term. The interaction maps are obtained by taking the Hadamard product

of the cross-frequency modes and the bispectral modes, i.e. |ϕk˝l ˝ϕk`l|. The three triads that

correspond to the vortex pairing, (1.76,-0.88,0.88), (0.88,-0.44,0.44), and (0.44,-0.22,0.22), are

chosen. The figures demonstrate that the interaction maps obtained from the BMD can effectively

highlight the precise regions of nonlinear interaction, which are also revealed by the spatial

fields of the nonlinear transfer term. This indicates that the BMD can serve as a useful proxy for

identifying the regions of nonlinear interactions.

6.6 Summary and concluding remarks

The large eddy simulation of an initially-laminar jet at Re “ 50,000 is investigated and

compared with a turbulent jet at the same Reynolds number. The difference between these two

simulations is that the boundary layer is tripped for the turbulent jet, whereas it isn’t for the

initially-laminar jet. Compared to the turbulent jet, the initially-laminar jet develops later but at

a faster rate, resulting in a shorter potential core length and a hump in the RMS velocity along

the centerline. The centerline mean streamwise velocity also exhibits a dip at x « 2, and the

turbulence intensity of the laminar jet is significantly higher than that of the turbulent jet for the

first ten diameters. Similar observations have been reported in the works of Zaman and Hussain

(1980) and Bogey and Bailly (2010). These are caused by the vortex-pairing in the shear layer,
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which is significantly stronger for the untripped boundary layer.

This study aims to characterize the vortex-pairing and associated energy transfer. Two

sets of vortex pairing occur during this process: (i) two vortices of St “ 1.76 pair to form an

St “ 0.88 vortex, and (ii) two St “ 0.88 vortices pair to form an St “ 0.44 vortex. Using local

stability theory, we identify the fundamental as the most unstable frequency, which is St “ 1.76.

We estimate different terms in the spectral-TKE equation using the leading modes of the spectral

proper orthogonal decomposition, and two important terms are the non-linear transfer and the

production. The non-linear transfer term reveals that energy is transferred from the fundamental

to its subharmonic, resulting in the growth of the subharmonic. This transfer is caused by the most

dominant triads of (St1,St2,St3) = (1.76, -0.88, 0.88) and (0.88, -0.44, 0.44). Our results provide

evidence for the hypothesis by Monkewitz (1988) that the energy transfer from the fundamental

to the subharmonic is due to a parametric resonance mechanism. The production term in the

spectral-TKE equation suggests that, at the start of the vortex pairing process, the fundamental

loses maximum energy to mean flow, and the subharmonic gains its most energy from the mean

flow. In addition to explaining the physics of energy transfer during vortex pairing, this study

provides a framework for identifying the transfer of kinetic energy between the most energetic

coherent structures at different scales.
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Chapter 7

Conclusions and Future work

Finally, we conclude by summarizing the contributions of this thesis and suggest potential

future directions that can be explored.

7.1 Summary of contributions

In chapter 2 we extend SPOD for four different applications: low-rank reconstruction,

denoising, prewhitening, and frequency-time analysis. Two approaches, frequency-domain, and

time-domain, are proposed for low-rank reconstruction. The former conserves the orthogonality

property and the frequency-mode correspondence of the SPOD modal basis, while the latter

optimally reconstructs the instantaneous flow field using the least number of modes. These

approaches are especially useful in reconstructing the flow field with the dominant dynamic and

also have useful applications for low-order modeling. After establishing the advantages and

disadvantages of these two approaches, we demonstrate SPOD-based denoising as an application

of the frequency-domain approach. Significant noise reduction is achieved and at the same time,

a substantial amount of energy of the original flow field is retained. Compared to a standard

low-pass filter, SPOD-based denoising has the additional advantage of significant storage savings.

Further, we develop a convolution strategy that computes time-continuous expansion coefficients
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of the SPOD modes. Similar to the frequency-domain approach, this retains the orthogonality

and mode-frequency correspondence of the SPOD. The spectrograms are able to identify the

intermittent nature of the high-energy events. The occurrence of these events is directly linked to

the presence of flow structures resembling the leading SPOD modes. The use of SPOD-based

frequency–time analysis, provides additional physical insight by indicating time intervals during

which a particular mechanism is active.

In chapter 3 we propose a gappy-SPOD algorithm to reconstruct the missing data in a

flow field. The algorithm leverages the temporal correlation of SPOD modes with preceding

and succeeding snapshots and their spatial correlation with the surrounding data to reconstruct

partially missing or corrupted flow data. We demonstrate this method on simulation data of the

flow around a cylinder and time-resolved PIV data of turbulent cavity flow. For randomly seeded

and sized gaps that amount to up to 20% of missing data and extend over large regions in space

and many snapshots, the algorithm accurately recovers the missing instantaneous and mean flow

fields as well as turbulence statistics. It generally outperforms the established methods such as

gappy-POD and Kriging. In particular, our method, gappy-SPOD, yields a significantly lower

reconstruction error that translates to a two-fold reduction.

In chapter 4, we analyze three LES of turbulent jets in subsonic, transonic, and supersonic

regimes. We identify the sources of the acoustic beams in different directions. In the downstream

direction, the dominant radiations are super-directive. These emanate from the large-scale

structures located at the end of the potential core, which are associated with lower frequencies

(St ď 0.5). We find that the radiation in the sideline and upstream directions also originates

from the vicinity of the end of the potential core, and the sources of these beams are also large-

scale coherent structures. Based on our results, we conclude that the upstream, sideline, and

downstream radiation all originate from the same source.

In chapters 5 and 6, we perform large eddy simulations of six jets: two unforced and four

forced jets. The unforced cases comprise an initially-laminar and a turbulent jet, with the former
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referring to the case where the boundary layer inside the nozzle isn’t tripped. All the forced jets

are turbulent and forced at the azimuthal wavenumbers m “ 0, m “ ˘1, m “ ˘2, and m “ ˘6.

Chapter 5 investigates the nonlinear triadic interactions that are instigated due to the forcing.

For a general m “ ˘m f -forcing, we observe that even harmonic frequencies are present in even

multiples of m f , and similarly, odd harmonic frequencies are present in odd multiples of m f ,

i.e., p2k ` 1qm f , for any integer k. Additionally, we found that difference-interactions are more

efficient radiators of jet noise than sum-interactions. In chapter 6, we explored vortex-pairing,

which is stronger in initially-laminar jets. Our emphasis was on the nonlinear energy transfer

during this process. We approximated the spectral TKE equations using the leading SPOD modes

to evaluate the production and nonlinear transfer terms. Our analysis revealed an inverse-energy

cascade during the vortex-pairing process, where energy transfers from the fundamental to its

first subharmonic and then from the first subharmonic to its second subharmonic.

7.2 Future work

7.2.1 Extension of the Modal techniques for turbulent flows

The application of SPOD-based reconstruction extends beyond denoising and frequency-

time analysis. It is especially useful in reduced-order modeling, where the convolution expansion

coefficients can be employed to construct a SPOD-based Koopman reduced-order model that is

entirely data-driven and can provide valuable insights into different turbulent flows. By employing

machine learning techniques such as LSTM, one can also propagate the expansion coefficients in

time and obtain data over longer time series. Additionally, the convolution approach can provide

time-continuous expansion coefficients of the coherent structures associated with turbulent flows.

These coefficients can be used to compute the probability density function (PDF) of the structures

and quantify their intermittency. Previous research, for example, Onorato et al. (2000), has

computed PDF at specific locations and classified PDF with long tails as intermittent. However,
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our approach enables the quantification of the intermittency of the entire spatial structure rather

than just a single location.

Gappy SPOD has potential for future extensions, including customization of the algorithm

to handle non-stationary data such as cyclo-stationary processes, and incorporation of trends for

transient, non-stationary data. Improvements to the algorithm could also be made to fill in missing

snapshots or data containing regions with missing data throughout the entire time series. One

approach to this could involve using gappy-SPOD to fill in partially missing regions, followed by

Kriging all the SPOD modes to fill in the missing regions in the modes. Finally, the Kriged-SPOD

modes could be used with the expansion coefficients to fill in all the missing regions. A potentially

relevant application for gappy-SPOD is optimal sensor placement for oceanic measurements.

7.2.2 Physical phenomenon in turbulent jets

Our findings suggest that the downstream and upstream acoustic beams originate from the

same source, and this could be verified at farther radial distances, around r « 50, instead of the

limited radial distance of r “ 6 that we investigated. To achieve this, we propose the use of the

Ffowcs-Williams Hawkings equations (Brès et al., 2017, Ffowcs Williams and Hawkings, 1969)

to extend the current domain. Furthermore, investigating the source mechanism that generates

sound in different directions is important. A possible source mechanism is coherence decay

(Cavalieri and Agarwal, 2014), In particular, we propose a scenario in which the distortion of a

coherent KH wavepacket gives rise to multi-directive burst events. Future SPOD-based jet noise

models may further benefit from the observation that both the dominant downstream and sideline

radiation patterns are part of a single SPOD basis.

There are a few potential avenues for future research based on the findings of the study.

One direction is to investigate the mean flow distortion resulting from forcing the jet at different

azimuthal wavenumbers. Another possible direction is to characterize the effect of the forcing on

the far-field noise. It has been hypothesized by Wu and Huerre (2009) that the interaction of a
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helical conjugate pair with m “ ˘1 generates a slowly modulating mean-flow distortion, which

radiates low-frequency sound to jet angles between 45˝-60˝. Therefore, it could be beneficial

to investigate this hypothesis and its potential implications for jet noise. Moreover, it would

be valuable to understand the cascade of triads from a causality perspective, potentially using

information theory metrics such as Shannon entropy. Lozano-Durán et al. (2020) have successfully

employed Shannon entropy to identify causal interactions of energy-eddies in turbulent channel

flows, and a similar approach may yield insights into the causal dynamics of triads in forced

jets. Another long-term objective is to understand the direction of energy transfer during triadic

interaction. Underpinning the direction of energy transfer during triadic interaction is another

long-term objective.

In chapter 6, we characterized the vortex-pairing and energy transfer that occurs during

this process. A future direction is to look into the nonlinear dynamics of this process. In particular,

if the vortex-paring corresponds to a limit-cycle oscillator or chaotic attractor? Furthermore,

our work lays out a framework for identifying nonlinear energy transfer, which can be used in

different turbulent flows.

The techniques developed in this dissertation have the potential to be adapted for the

analysis of different types of flows. For instance, in geophysical flows, they can be used to

quantify the intermittency of submesoscales. Moreover, recent studies have provided evidence

of energy transfers between mesoscales and submesoscales, and their seasonal reversal, which

can be analyzed using the energy transfer approximated through the BMD. Additionally, some

coherent structures, such as streaks, are found in various turbulent flows, including wall-bounded

flows, jets, and wakes (Nekkanti et al., 2023). Future research could investigate the effects of

factors such as angle of attack (Ortiz-Tarin et al., 2021) and stratification (Ortiz-Tarin et al., 2023)

on these structures. Comparing the characteristics of streaks in jets with those in channel flows

and wakes could help to reveal potential universal behavior of these low-frequency structures.
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