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Abstract We present LinStab2D, an easy-to-use linear stability analysis MATLAB tool capable of handling
complex domains, performing temporal and spatial linear stability, and resolvent analysis. We present the
theoretical foundations of the code, including the linear stability and resolvent analysis frameworks, finite dif-
ferences discretization schemes, and the Floquet ansatz. These concepts are explored in five different examples,
highlighting and illustrating the different code capabilities, including mesh masking, mapping, imposition of
boundary constraints, and the analysis of periodic flows using Cartesian or axisymmetric coordinates. These
examples were constructed to be a departure point for studying other flows.

Keywords Linear stability analysis · Resolvent analysis · Flow modelling · Transition to turbulence

1 Introduction

Linear stability theory (LST) is a powerful tool for investigating laminar and turbulent flows. For laminar
flows, it provides insights into the mechanisms that can lead to flow transition to turbulence.

One of the earliest studies of flow stability was due to Lord Kelvin and Helmholtz [101], who studied
the stability of shear layers, modeled by a vortex sheet. They identified what is now known as the Kelvin–
Helmholtz instability. Michalke [59,60] later expanded the analysis to finite thickness shear layers. This
instability mechanism has since been the basis for modeling different phenomena, among them convective and
absolute instability of jets and wakes [50,58,62–64,89].

Another instability mechanism, proposed by [79,96], was proposed in the early twentieth century as a route
bywhich boundary layers transition to turbulence. Themechanism is underpinned by a class of unstable waves,
which became known as the Tollmien–Schlichting (TS) waves. In low free-stream turbulence conditions, is
it considered the primary mechanism for boundary layer transition. Thus, many studies have investigated the
formation of these waves. Goldstein [29] identified that curvature discontinuities are an important mechanism
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by which these waves can be excited by acoustic perturbations. TS waves were also investigated in spatially
evolving flows [65], in the presence of compliant walls [73], when the boundary layer is supersonic [48].

Linear stability has also proven useful in modeling turbulent flows, often providing insights into the
mechanisms responsible for the formation of turbulent structures. After [57] used the framework to model
turbulent structures in a turbulent channel, the approach has been applied to many other problems. Among
them turbulent jets [26,44,70,74,75,85], jet noise [11–14], cavity flow [18], channel flow [3,40,57], pipe
flow [2,31], and the flow around airfoils [93,103], among many others. Towne et al. [97] showed that, under
certain conditions, the most energetic structures in a turbulent flow should indeed be predicted by linear
stability analysis, providing a more grounded theoretical basis for the approach. It also provided insights into
the physical mechanisms underpinning the dynamics of these structures when they are not properly predicted
by linear models [66,71].

As these phenomena have been successfullymodeled by linear analysis, in recent years, several studies have
used linear control theory to control them [5,82]. Sasaki et al. [78] used feed-back control approaches to delay
vortex-roll up in a shear layer, with similar approaches also applied to the control TS of waves [4,41], vortex
shedding in wakes [36], turbulent jets [49], turbulent pipes [45], and in supersonic boundary layers [48,69].

The framework has also been used to guide the design of new airfoils [104], compliant coatings [46,47],
and to design novel approaches for flow estimation and control [36,43,45,51,53,98].

Linear modeling of flows thus can provide insights into fundamental mechanisms that drive flow dynamics,
while also providing a framework to develop flow modeling, estimation, and control approaches.

The approach is based on the linearization of the Navier–Stokes equations, which are subsequently dis-
cretized. Different numerical approaches can then be used to exploit the resulting linear system, with the most
suitable approach dependent on the number of homogeneous directions.

Since the work of [72], pseudo-spectral methods have become the natural choice for flows with only one
non-homogeneous direction. This case is typically referred to as a 1D problem. The high accuracy of these
methods typically requires between 50 and 200 grid points to resolve the dynamics of interest. As the resulting
matrices are small, explicitly handling them is straightforward.

In systems with two inhomogeneous directions, i.e., a 2D problem, the grid point count reaches tens or
hundreds of thousands. In this case, explicitly handling the resultingmatrices becomes prohibitively expensive.
To approach these problems numerically, using finite difference (FD) methods coupled with sparse algebra
libraries and iterative methods became the standard approach. Krylov subspace-based approaches, pioneered
by [22], can compute a subset of the operator eigenvalues to analyze the system’s stability or the action of the
resolvent operator to identify the dominant force and response modes.

For flowswith no homogeneous spatial directions, using sparsematrices, although possible (see, e.g. [77], ),
is typically expensive. In this case, matrix-free methods are typically deployed. These methods avoid matrices
manipulation using approaches based on time integration [24,30,52,65].

While the interest in complex flows has been rising in recent years, there are many problems for which a 2D
approach is better suited. Among them are the cylinder wake [89], jets [26,44,74,75,85], cavity flow [18,43],
channel flow [3,40,57,67], spatially evolving boundary layers [65,68], and the flow around airfoils [93,103].

While the methods required for analyzing 1D systems are usually of manageable complexity and can be
developed on a case-by-case basis, and the conceptual extension to 2D is straightforward, this is not the case
for the implementation of linear stability algorithms. To apply boundary conditions, for example, the indices
of interface nodes need to be tracked. Similarly, mesh deformations are less straightforward, and care must
be taken to keep the matrices sparse. Creating such a code can be time-consuming, making the resulting code
hard to generalize to different problems.

Aiming to facilitate the study of 2D systems, we developed LinStab2D. We are now sharing it as an Open-
Source code and presenting it in this work. The code aims to provide an easy-to-use tool that can perform
state-of-the-art analyses.We provide high-level functions for critical operations and several examples covering
different capabilities and use cases, which can be modified to analyze other flow problems. The predecessor of
this code was originally developed for the 2D stability analysis of compressible streamwise corner flows [83],
then extended to non-modal analysis [84], and has more recently been used for stability [85] and resolvent
analyses [74,75,86] of turbulent jets.

We describe in this work the methods and concepts used in LinStab2D. For a detailed review of different
numerical and modeling approaches, we refer the reader to the analysis presented in previous studies [10,23,
38,94,95].

This paper is structured as follows. Section2 reviews the theoretical aspects of linear stability analysis.
Section3 describes the numerical methods implemented in code. Section4 showcases five different test-cases:
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• Section4.1 presents the resolvent analysis of a flat-plate boundary layer, illustrating resolvent analysis on
Cartesian coordinates,

• Section4.2 presents the resolvent analysis of an axisymmetric jet, illustrating resolvent analysis on cylin-
drical coordinates,

• Section4.3 presents the temporal and spatial local analysis of a supersonic boundary layer, illustrating local
2D analysis and Floquet modes,

• Section4.4 presents the analysis of Rossiter modes in open cavity flow, illustrating themodeling of complex
domains,

• Section4.5 presents the analysis of the receptivity of steaks in the flow around a paraboloid body, illustrating
the use of curvilinear coordinates.

Section5 presents concluding remarks.

2 Linear stability analysis

The flow of a compressible ideal gas is governed by the continuity Eq. (1a), the compressible Navier–Stokes
Eq. (1b), and the energy Eq. (1c):

∂ρ

∂t
= −∇ · ρu, (1a)

∂ρu
∂t

= −1

2
∇ · (u ⊗ ρu + ρu ⊗ u) − ∇ p + 1

Re
∇ · τ , (1b)

∂ρe

∂t
= −∇ · ρeu + 1

(γ − 1)RePrMa2∞
∇ · k∇T − ∇ · pu + 1

Re
∇ · τu, (1c)

where ρ is the density, u the velocity vector, p the pressure, T the temperature and e the total energy. The
dynamic viscosityμ, thermal conductivity k, specific heat capacity cp, and heat capacity ratio γ are specific to
the fluid. All quantities are non-dimensionalized by their respective free-stream or characteristic values denoted
by (.)∞. The pressure is non-dimensionalized by twice the dynamic pressure, ρ∞u2∞, and the coordinates by a
problem-specific characteristic length scale, L . The dimensionless Mach, Reynolds, and Prandtl numbers are
defined as Ma = u∞/a∞, Re = ρ∞u∞L/μ∞, and Pr = cp,∞μ∞/k∞, respectively. The total energy reads

e = 1

γ (γ − 1)Ma2∞
T + 1

2
‖u‖2. (2)

The viscous stresses of the Newtonian fluid, invoking the Stokes hypothesis to eliminate the bulk viscosity,
are given by

τ = μ
(
∇u + ∇uT

)
− 2

3
μ(∇ · u)I . (3)

The pressure is related to the density and temperature through the ideal gas law,

p = 1

γMa2∞
ρT . (4)

Sutherland’s empirical formula

μ(T ) = μrefT
3/2 1 + Ts

T + Ts
(5)

where μref(Tref = 280K) = 1.735× 10−5 kg/ms and Ts = 110.4K/Tref for standard air, is used to obtain the
dynamic viscosity from the temperature.

Equation (1) can be written in compact operator form as

∂qc
∂t

= N (q), (6)
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where qc(x, t) = [ρ, ρu, ρe]T is the solution vector of conservative variables. The solution vector of primitive
variables, q(x, t) = [ρ, u, T ]T , is readily obtained by dividing the momentum densities, ρu, by the density,
and recovering the temperature by solving Eq. (2) for T . All occurrences of e, τ , p, and μ in compressible
Navier–Stokes operator,N , are replaced by their dependencies on the primitive variables using Eqs. (2)–(5). In
particular, variations of the molecular viscosity with temperature fluctuations are considered, as in [32]. Next,
the Reynolds decomposition, q(x, t) = q(x) + q ′(x, t), is inserted into Eq. (6). In classical linear theory, q
is a steady-state solution, or fixed point, of Eq. (6) with ∂q

∂t = 0, and q ′ hence represents fluctuations around
this steady state. In other applications like resolvent analysis, q can represent a long-time mean of a turbulent
flow. Note that if q is not a fixed point of the system, the results obtained from linear analysis are not unique
[39]. The code implements a linearization using primitive variables. Linearization using, e.g., conservative
variables, can lead to different results.

The Reynolds decomposition allows us to separate terms and to rewrite Eq. (6) as

M∂q′

∂t
= Lq′ + f ′, (7)

where all terms that are linear in the fluctuations are collected in the first term on the right-hand side. Because of
linearity, this termcan bewritten as a product of a linear operatorL = L(q) and the solution vector of fluctuating
quantities, q′. All terms that contain second and higher-order products of fluctuating quantities are collected
in f ′. The operator M = M(q) is required to accommodate the additional terms generated when inserting
the Reynolds-decomposed primitive variables into the time rates of change of the conservative variables on the
left-hand side of momentum and energy Eqs. (1b) and (1c), respectively. By defining A = M−1L, we may
write Eq. (7) as,

∂q ′

∂t
= Aq ′ + f ′, (8)

where the term M−1 f ′ has been re-defined as f ′ for compactness.
In classical linear theory, choosing q as a steady-state solution of the nonlinear equations and neglecting

products of fluctuating quantities implies that f ′ = 0. The linearized dynamics of the fluctuations are then
governed by

∂q ′

∂t
= Aq ′. (9)

In other applications like resolvent analysis, discussed in Sect. 2.6 below, the term f ′ in Eq. (8) is retained
but modeled as exogenous forcing of the linearized dynamics. Nonmodal stability theories (see [80] for a
stimulating overview), like resolvent analysis, require defining a measure to quantify the perturbations. For
incompressible flows, thismeasure is usually the fluctuating, or turbulent, kinetic energy.An analogousmeasure
for compressible flows that, in addition to the fluctuating velocities, takes into account density and temperature
fluctuations was derived by [17] and independently by [32]. This expression for the fluctuating compressible
kinetic energy is defined in terms of the primitive fluctuating variables and can hence readily be used to define
an energy-based (weighted L2) norm,

‖q ′‖2E =
∫ (

T

ργ M2 |ρ′|2 + ρ|u′|2 + ρ|v′|2 + ρ|w′|2 + ρ

T γ (γ − 1)M2
|T ′|2

)
dV, (10)

for the solution vector q′.

2.1 Reference flow

Linear stability analysis can be performed around a fixed point of the Naver–Stokes equations, in which case
the flow analysis is referred to as a baseflow, or over a mean of a turbulent or non-stationary stationary flow,
in which case it is referred to as a mean-flow.

Meanflows can be obtained by averaging flow snapshots fromexperimental [21] or numerical [30,57,85,86]
databases.
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Fig. 1 Illustration of the coordinate systems used

For stable systems, the baseflows can also be measured experimentally, or obtained numerically simply by
marching the Navier–Stokes equations in tomeTime. The system then naturally converges to the fixed point,
which can then be used in the analysis. The case for unstable baseflow is more complicated.

Selective frequency damping can be used to damp existing unstable modes without affecting the baseflow,
which can then be obtained by time marching [1]. Alternatively, implicit time-stepping methods, e.g., the
backward Euler, can be used with large time steps, which numerically damps any flow oscillation. Another
approach is to follow the fixed point of a stable system using Newton’s method. This allows tracking a fixed
point, e.g., identified in a regionof the parameter spacewhere it is stable, into a regionwhere it becomesunstable.
Advanced methods, such as RPM [88] and BoostConv [19], can accelerate and/or reduce the numerical costs
associated with finding these points.

LinStab2D was designed to perform linear stability analysis only, and thus does not contain functions to
compute base or meanflows. We refer the reader to the works cited above for a description of these methods.

2.2 Coordinate systems

Stability analysis is performed by computing eigenvalues of the linearized operator, A, and the presence of at
least an eigenmode with growing amplitude indicates that the flow is unstable. While this procedure has to be
applied to the physical domain, i.e., in 3D, the presence of symmetries allows for simplifying assumptions.
For example, translation symmetry of the flow, i.e., when a homogeneous direction exists, allows for using a
Fourier ansatz, which reduces the number of spatial directions by one and, therefore, significantly reduces the
size of the problem to be studied.

In Eqs. (1a–c), the governing equations of compressible flow are given in operator form, i.e., independent
of the coordinate system. In practice, the linearized operator L in Eq. (6) and the conversion operator M
in (7) are derived using symbolic math software for Cartesian and cylindrical coordinates separately. These
coordinate systems are illustrated in Fig. 1.

In general, for Cartesian coordinates,

A = A
([

U, T , ρ
]
(x, y, z),

∂

∂x
,

∂

∂y
,

∂

∂z

)
, (11)

i.e., it is a differential operator with an explicit dependence on the baseflow. We consider here the case where
the flow is homogeneous in the z direction,U = U(x, y), and likewise for the other baseflow quantities. Using
the ansatz

q(x, y, z, t) = q̂ ′(x, y)eiβz−iωt , (12)

the linear operator can be expressed as

Aβ = Aβ

([
U, T , ρ

]
(x, y),

∂

∂x
,

∂

∂y
, β

)
(13)

and the linear stability problem is solved independently for each wavenumber β.
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Similarly, in cylindrical coordinates, we assume the baseflow does not depend on the azimuthal coordinate,
and thus the ansatz

q(x, y, θ, t) = q̂ ′(x, y)eimθ−iωt , (14)

yields the linear operator

Am = Am

([
U, T , ρ

]
(x, y),

∂

∂x
,

∂

∂y
,m

)
, (15)

which now depends on the azimuthal wavenumber m.

2.3 Temporal stability analysis

Temporal stability is based on (9). It describes the time evolution of a given flow condition: if the perturbation
grows without bounds, the flow is unstable. Otherwise, it is stable. To analyze the stability properties the ansatz
(12) or (14) are used to re-write (9) as an eigenvalue problem, i.e.,

−iωq̂′ = A•q̂ ′
, ω ∈ C (16)

where A• is a placeholder for either Am or Aβ , with m ∈ I and β ∈ R.
Eigenvalues, ω, and corresponding eigenmodes q̂ ′ as solution of (18). The real part of ω provides the

oscillation frequency, and their imaginary part indicates its growth or decay rates, if positive or negative,
respectively. The flow is stable if all eigenvalues lie in the bottom half of the complex plane. A single value
on the upper complex plane is sufficient to render the system unstable.

The adjoint operator, A†•, is defined as the operator that satisfies

〈w,A•q〉Wq = 〈A†•w, q〉Wq , ∀q, w. (17)

The adjoint eigenproblem reads

−iω†ŵ
′ = A†•ŵ

′
, (18)

and it can be shown thatω† = −ω∗1,where the ∗ superscript indicated complex conjugation, and that the adjoint
modes can be normalized such that 〈ŵ′

, q̂ ′〉Wq = δi j , i.e., the direct and adjoint modes are bi-orthogonal. In
the context of LSA, adjoint modes indicate the optimal way to excite a given flow mode, or can be used to
decompose a flow perturbation into an eigenmode basis.

Although the results are easy to interpret at first sight, they can be nuanced if the homogeneous direction
coincides with the streamwise direction. In this case, an unstable mode indicates that the perturbation energy
will grow indefinitely provided that the initial conditions span the entire domain, i.e., from −∞ to +∞.
However, what happens if the perturbations are localized, or the analysis domain is finite, which is always the
case, is not a priori clear. Does the energy growth at a given position come from the surrounding perturbations
or different domain regions? In the latter case, is the equilibrium position reached again if the initial condition
was localized in space?

Spatial stability provides further insights into these systems.

1 The adjoint operators can be obtained as described here from the discrete operator A• as A†• = W−1
q AH• Wq . This method is

referred to as discrete-adjoint. Alternatively, it can be obtained by first deriving the adjoint equations and then discretizing them.
This method is referred to as continuous-adjoint, see [15] for a discussion. The discrete-adjoint method discussed here guarantees
that ω† = −ω∗, but can lead to oscillations in the adjoint modes. This trend is reversed for the continuous-adjoint approach.
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2.4 Spatial stability analysis

While temporal stability analyzes the temporal growth rate of perturbations, spatial stability analyzes their
spatial growth. Spatial stability was developed initially to model flows with localized perturbations [27,28],
e.g., a vibrating ribbon on a boundary layer [87]. In practice, spatial stability analyses a problem with a real-
valued frequency, ω, and complex-valued wavenumber, β, which contains information on the modes’ growth
or decay, i.e., their stability.

While presenting the spatial stability formulation, we will consider only Cartesian systems. Note that for
axisymmetric problems, the perturbations are, by definition, periodic in the azimuthal direction, and thusm is a
real-valued integer. Spatial analysis is not meaningful in this direction, as it assumes complex-valued numbers
to encode modes growth or decay. To perform spatial analysis, the operator Aβ is written as a polynomial in
β, and (18) reads

−iωq̂′ = (Aβ,0 + Aβ,1β + Aβ,2β
2)

︸ ︷︷ ︸
Aβ

q̂ ′
, (19)

which, for a given value of ω, corresponds to a polynomial eigenvalue in β. It can be converted into a standard
eigenvalue problem using an extended system, which reads

β

[
1 0
0 −Aβ,2

] [
q̂ ′

β q̂ ′
]

=
[

0 1
(Aβ,0 + iωI) Aβ,1

] [
q̂ ′

β q̂ ′
]

. (20)

The real and imaginary parts β correspond to the wavenumber and spatial amplification or decay rate,
respectively. However, the group velocity must be investigated to determine if a mode is stable or unstable.
This is achieved by the [6,8] criteria: in the limit of �(ω) → ∞, if β lies on the top-half complex plane, the
mode is traveling in the z+ direction, and thus unstable if �(β) < 0. Otherwise, if β lies on the bottom-half
complex plane for �(ω) → ∞, the mode is traveling in the z− direction and thus unstable if �(β) > 0.

2.5 Spatiotemporal analysis

While temporal/spatial analyses restrict ω /β to be real-valued, spatiotemporal analysis assumes that both ω
and α can be complex numbers. A dispersion relation formulation is constructed from (19) as

DR(ω, α) = det
(−iω − Aβ,0 + Aβ,1β + Aβ,2β

2) = 0. (21)

This approach unifies spatial and temporal analysis. Temporal analysis can be recovered by fixing a real-
valued β, and spatial analysis by fixing a real-valued ω.

Huerre and Monkewitz [33] brought to the fluid community the concepts of convective and absolute
instabilities developed by [6,8] in the context of plasma physics. The framework uses spatiotemporal analyses
to investigate the long-term behavior of the flow at a given position.

Convective stabilities are instabilitywaves that are strongly convected by the flow. Thus, while its amplitude
increases, this growth is convected away from the disturbance origin. The flow thus returns to equilibrium once
this wave passes. These instabilities can trigger transition to turbulence downstream of the perturbation point,
but the flow may remain laminar locally. On the other hand, absolute instabilities grow locally, leading to
transition, or at least to a new base state.

To determine the nature of the instability, pinching points on the spatial spectra, or, alternatively, cusps on
the temporal spectra, have to be identified. For details on the procedure, we refer the reader to the works of
[16,33,34,81].

2.6 Resolvent analysis

Another important realization was that, even if flows are stable, finite perturbations can be amplified by the
flow dynamics [37,76,81,100], a phenomenon intrinsically connected to the non-normality of the system.
Two types of non-modal amplifications have been studied. In the time domain, the phenomenon is known
as transient growth and studies the amplification of a given perturbation without external forcings. In the
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frequency domain, one typically studies flow responses for different forcings, identifying the forcing terms
that are optimally amplified by the flow dynamics. The amplification factors are described by gains obtained
via a singular-valued decomposition. Such analysis is known as resolvent analysis.

The Resolvent analysis framework is obtained from (9), which, once Fourier-transformed in time, leads to

q̂ ′ = (−iω − A•)−1
︸ ︷︷ ︸

R
f̂

′
, (22)

where R is known as the resolvent operator.

Resolvent analysis consists in finding the forcing term f̂
′
that leads to the largest response, i.e., the forcing

that maximizes

σ = ‖C q̂ ′‖Wq

‖B f̂ ′‖W f

, (23)

where ‖•‖W f,q represents separate norms for the response and forcing using different weights W f,q . We
introduce the operators B and C in (23) to allow for restriction in the forcings and responses considered.
By default, we use the compressible energy norm defined in Eq. (10). The forcing and response modes that
maximize σ are called leading modes, and σ is the corresponding leading gain. Suboptimal modes and gains
maximize (23) under the constraint of being orthogonal to the leading modes and each other.

When applied to laminar and stable flows, resolvent analysis can point towards mechanisms responsible for
by-pass transition [32,65]. For turbulent flows, it has been observed that the framework can provide insights
into the turbulent dynamics. By interpreting the non-linear interactions as an exogenous forcing term, many
trends observed for the turbulent fluctuations can be reproduced [35,57]. Resolvent analysis is thus a powerful
tool for analyzing turbulent flows, with intimate connections to spectral proper orthogonal decomposition
(SPOD) [97], widely used to extract coherent structures from turbulent flows.

Resolvent analysis is closely related to pseudo-spectra. Assuming B = C = I, for simplicity, the pseudo
spectrum is characterized by the isovalues of [99]

ps(λ) = ∥∥(A − λI)−1
∥∥ . (24)

Noting that the term to be normed is equal to −R for ω = −λ/ i , and that the leading singular value of a
matrix defines a norm, it is clear that the leading resolvent gain gives the pseudo spectra. However, analyses
of the pseudo-spectra are typically not concerned with the modes associated with the gains. One of the main
contributions of the resolvent analysis framework is to use the left and right singular modes, i.e., forcing and
response modes, to shed light on the physical mechanisms at play in the flow.

2.7 Floquet ansatz

When analyzing a given problem, exploring its symmetries reduces computational costs. When the problem
has a translational symmetry (i.e., a homogeneous direction), the Fourier ansatz, as in (12) and (14), reduces
the dimensionality of the problem. Another well-known symmetry is the reflection symmetry, which leads to
symmetric or antisymmetric solutions.

A more complex type of symmetry is periodic symmetry (for an illustration of a periodic baseflow, see
Fig. 9 in Sect. 4.3). In such cases, the Fourier ansatz is not applicable. Instead, the Floquet ansatz can be used,
which reads

q ′(x, y, z, t) = q̃ ′(x, y, z, t)e
2π i

Lnfloq
x
. (25)

The ansatz consists of decomposing q ′ into two terms: a Floquet mode, q̃ ′, which is periodic in the domain L ,
and a second term with period nfloqL . Fourier ansatz can later be added to homogeneous directions, such as t
and z/θ .

As the second term in (25) is analytical, only q̃ ′ has to be obtained numerically. As this function has the
same period as the flow, only a single flow period has to be discretized, reducing the computational cost of,
for example, the analysis of sub-harmonic instabilities.



Linstab2D: stability and resolvent analysis 673

Fig. 2 Illustration of the concept of the state vector of compressible flow quantities

3 Numerical implementation

To numerically compute spatial, temporal, or resolvent analyses, the linear operator A• has to be discretized,
and boundary conditions imposed. The result of this process is a finite-size matrix A•.

This section describes how the derivative operators are constructed, how boundary conditions are imposed,
and how the code handles complex geometries, such as block-structured meshes and curvilinear coordinates.

The space is discretized into a Nx × Ny grid. The pressure, temperature, and velocity fields are reshaped
into a vector, and the vectors are concatenated into a state vector. This is illustrated in Fig. 2.

3.1 Spatial discretization

Spatial derivatives are computed using summation-by-parts (SBP) finite differences (FD) [42,92]. All second
derivatives are approximated using the consistent second difference weights provided by [56]. We refer to the
latter paper for a review of this discretization scheme. Second-, fourth-, and eighth-order arrucate SBP-FDs
are available in the code. From experience, fourth-order accuracy provides a good balance between accuracy,
compactness of the FD molecules (and therefore sparsity of the discretized stability operators), and stability.
Based on this best practice, all computations shown in this paper are computed using fourth-order accuracy.
The polar singularity of the cylindrical coordinate system is treated by the reflected-stencil method proposed
by [61]. Also implemented is a Padé-type 10th-order filter [25] that can be switched on to stabilize resolvent
analyses. If enabled, both the input and output modes are filtered at each call of the matrix–vector product by
the Krylov–Schur method.

3.2 Boundary conditions

3.2.1 Dirichlet boundary conditions

Dirichlet boundary conditions are implemented directly on the operator discretized A•. Considering that such
a condition is to be implemented on the i-th DOF, the matrix is modified as

A• =
⎡
⎣
A−,−• A−,i• A−,+•
Ai,−• Ai,i• Ai,+•
A+,−• A+,i• A+,+•

⎤
⎦ →

⎡
⎣
A−,−• 0 A−,+•
0 ε 0

A+,−• 0 A+,+•

⎤
⎦ (26)

where the +/− index represents the block matrices with indexes larger/smaller than i and ε is a penalization
term.EachDirichlet boundary condition uses this approach to have an eigenvalue ε ofA•. All other eigenvectors
have null entries at the corresponding DOF, i.e., satisfy the boundary condition. Choosing a large value for
ε guarantees the spurious eigenvalues are away from the region of interest, not affecting the eigenvalue
computation.

When performing a resolvent analysis, forcing terms acting on the DOFs where the Dirichlet boundary
condition is applied leads to a non-zero value (i.e., equal to f̂ ′

i /ε). To enforce the boundary conditions on the
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Fig. 3 Illustration of ameshmasking, mapping, and the stencils used for a 4th order FD scheme. The red and bluemarkers indicate
the points used to compute derivatives at the crosses alongside the ξ and η coordinates, respectively. Black circles correspond to
grid points in the flow domain, and gray circles to masked points. A case with periodicity in ξ/x is shown. (Colour figure online)

solution, matrices B and C, i.e., discretized versions of operators B and C, need to be constructed to prevent
forcing these DOFs.

3.2.2 Neuman boundary conditions

Neuman boundary conditions are implemented similarly. Considering that such a condition is to be imple-
mented on the i-th DOF, the matrix is modified as

A• =
⎡
⎣
A−•
Ai•
A+•

⎤
⎦ ⇒

⎡
⎣
A−•
εDi

A+•

⎤
⎦ (27)

where the+/− index represents the blockmatriceswith line indexes larger/smaller than i , i superscript indicates
the i-th line of D, the differentiation matrix, and ε is a penalization term.

Here also, when performing a resolvent analysis, matricesB andC need to be constructed to prevent forcing
the DOFs where the boundary condition was applied.

3.2.3 Periodic boundary conditions

Periodic boundary conditions are obtained by using centered stencils around the boundaries. Figure3 illustrates
stencils used across the periodicity boundary. Note that the function value of the grid points located at ξ = 0
and ξ = 1 is identical, and thus only the first is kept in the computational domain.

3.3 Curvilinear coordinates

Amapping between aCartesian, computational, grid and the physical grid is constructed to construct curvilinear
coordinates. This is illustrated in Fig. 4. We assume the mapping to be defined numerically, which makes the
code more versatile and easy to use. In practice, the mapped position of each point is provided to the code,
and mapping’s Jacobian and Hessian are computed numerically. The differentiation matrices on the physical
domain are then constructed.

First-order derivatives are obtained as
[

∂
∂x
∂
∂y

]
f =

[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂ξ
∂y

]

︸ ︷︷ ︸
J

[
∂
∂ξ
∂
∂η

]
f, (28)

from which we obtain, for any scalar function f , the relation

∂ f

∂xi
= Ji, j

∂ f

∂ξ j
, (29)
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Fig. 4 Illustration of the computational (left) and physical (right) meshes

where ∂/∂x1/2 corresponds to ∂/∂x and ∂/∂y, and ∂/∂ξ1/2 corresponds to ∂/∂ξ and ∂/∂η, respectivelly.
Differentiation matrices approximating the differential operators are constructed using finite difference

schemes. Thus, the terms in J, which are functions of the derivates w.r.t. x and y, cannot be constructed
directly. Instead,

J−1 =
[

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂ξ

]
, (30)

is constructed numerically and J is obtained by its inversion.
The second derivative is obtained using the chain rule,

∂2 f

∂xi x j
= ∂

∂xi

(
J j,l

∂ f

∂ξl

)
= ∂ J j,l

∂xi

∂ f

∂ξl
+ J j,l Ji,m

∂2 f

∂ξm∂ξl
, (31)

with term
∂ J j,l
∂xi

computed using the identity

∂J
∂xi

= J
∂J−1

∂xi
J, (32)

which can be computed using derivatives of the numerical mapping w.r.t. ξ and η only.
When used in periodic domains, the mesh deformation should be smooth across the periodic boundary to

ensure proper Jacobian map computation when using periodic and boundary conditions on the left and right
boundaries.

3.4 Quasi-structured meshes

While many problems can be studied using structured meshes using Cartesian and curvilinear coordinates,
some geometries remain challenging to model using structured meshes. Examples include the flow around a
cavity, a square cylinder, or a jet flow where the nozzle needs to be modeled.

To allow the study of these problems, a quasi-structured mesh can be used. The approach consists of
masking grid points from an otherwise Cartesian grid. Near masked points, derivatives are computed using
uncentered finite differences. A quasi-structured Cartesian grid can be mapped into more complex domains
using the approach detailed in Sect. 3.3. Figure3 illustrated the approach.

Note that when using this approach, the matrix representing the linear operator acts only of the non-masked
grid points, i.e., masked points do not increase the size of thematrix, and thus do not increase the computational
cost. However, the corresponding solution vector has to be extended to include the masked points, with a minor
increase in the memory requirements. However, this cost is negligible.
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3.5 Computation of eigen and resolvent modes.

To obtain a finite set of the eigenvalues of A•, a Krylov–Schur method [91] is used. This approach typically
converges to the largest eigenvalues.

To select the eigenvalue region of interest, a shift-and-invert (s&i) approach is used, i.e., the Krylov–Schur
method is applied to As&i = (A• − ωtarI)−1. The matrix inversion is avoided by computing v = As&iu by
solving a linear problem

v = (A• − ωtarI) u. (33)

The largest eigenvalues of As&i correspond to the eigenvalues closes to ωtar of A•, and that As&i shares the
same eigenvectors as A•. This approach thus allows obtaining eigenvalues and vectors in a region of interest.

Resolvent forcing and response modes are obtained from the discretized modified resolvent operator

R̃ = W1/2
q RW−1/2

f , (34)

via a singular value decomposition, i.e.,

R̃ =
⎡
⎣

| | |
ṽ1 ṽ2 ṽ3 . . .
| | |

⎤
⎦

⎡
⎢⎢⎣

σ1
σ2

σ3
. . .

⎤
⎥⎥⎦

⎡
⎣

| | |
ũ1 ũ2 ũ3 . . .
| | |

⎤
⎦
T

, (35)

from which the forcing and response modes are recovered as u = W−1/2
q ũ and v = W−1/2

f ṽ [97].

For large systems, it is typically more efficient to compute ũi as eigenvalues of R̃H R̃, with ṽi recovered
as R̃ũi [90]. The leading eigenvalues are obtained using an implicitly restarted Arnoldi algorithm.

Note that, after discretization, the norm weights become diagonal matrices W f,q , and quadrature weights
are typically included in thesematrices, such that the norm of a vector is approximated by ‖q ′‖2Wq

= q ′HWqq ′.

4 Examples

This section presents five examples, which were chosen to highlight different features of the code.
First, we illustrate the application of resolvent analysis on systems homogeneous in the spanwise and

azimuthal directions, using a spatially evolving boundary layer and an axisymmetric jet as examples. Next,
we perform temporal and spatial stability of a locally parallel streaky-boundary layer, exploiting periodicity in
the spanwise direction with the Floquet ansatz. Finally, we illustrate quasi-structured and curvilinear meshes
using the flow around a cavity and a paraboloid body as examples. In all the examples below, fourth-order
finite difference schemes and identical forcing and response norms were used (Wq = W f ), with the matrix
accounting for the compressible energy norm [17,32] and quadrature weights. When performing resolvent
analysis, matricesB andC are diagonal matrices with 1’s along the diagonal, except for the columns associated
with DOFs where the boundary conditions were applied.

Typically, boundary conditions should be applied in every boundary of the problem for the three velocity
components, u′, v′,w′, and temperature T ′. At physical walls, no-slip conditions implyDirichlet boundary con-
ditions for the velocity. For the temperature field, isothermal/adiabatic conditions lead to Dirichlet/Neumann.
No boundary conditions need to be applied for the density field. If the flow is periodic, the periodic boundary
conditions for all terms should be used.

The treatment of inflow/outflow boundaries is more subtle. Here, we choose to apply Dirichlet boundary
conditions for the velocity and temperature fields, using sponge zones to dampen forcing/response modes
near them, thus avoiding wave reflection. More sophisticated boundary conditions are possible. We refer the
reader to the work of [20] for a comprehensive review of different inflow, outflow, and non-reflective boundary
conditions.
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Fig. 5 Boundary layer flow and coordinate system. The color scale indicates the axial velocity

Fig. 6 Forcing and response modes for the three leading modes of the spatially evolving boundary layer, and the associated gains.
Only the forcing associated with the stream-wise momentum equation and the streamwise velocity component are shown for
brevity

4.1 Tollmien–Schliching waves in the flat-plate boundary layer

In this example, we investigate the optimal forcing of Tollmien–Schliching waves on a spatially evolving
boundary layer, shown in Fig. 5. This example follows the work of [90], who conducted their study for the
incompressible self-similar Blasius solution. We choose a relatively low Mach number of Ma = 0.3 to obtain
comparable results for the self-similar compressible boundary layer (see, e.g., [102], ). The Reynolds number
based on unit length and unit velocity is Rex = 60 000. All the variables are made adimensional using the
freestream temperature (T = 273.15K), velocity, and density. The flow is homogeneous in the z direction,
and we focus the study on planar (β = 0) perturbations.

The domain consists of the rectangle [0.05, 1.25] × [0, 0.05], discretized into a grid of 300 × 100 points,
which are mapped into the y direction to concentrate most of the points below the boundary layer edge.
Dirichlet boundary conditions were applied for the temperature and velocity fields on all the boundary nodes.

Figure 6 shows the forcing and responsemodes obtained and the associated gains for a frequency ofω = 60.
The leading mode consists of a forcing mode located upstream of the domain, with most of the response found
downstream. This is a typical behavior of amplifier flows and a signature of the non-normality of the system.

For this boundary layer, the mechanism associated with this perturbation amplification is the excitation of
Tollmien–Schliching waves. As these waves are convectively unstable, their amplitude increases as they travel
upstream. Thus, the optimal way to force these waves is to excite them upstream, leveraging this instability
mechanism to obtain high amplitudes further downstream.

The suboptimal modes leverage a similar mechanism. However, in order to be orthogonal to the leading
mode, they have to excite these waves in different positions, with opposite phases, leading to the amplitude
modulation observed in the suboptimal response modes. This cancelation means that the associated forcing
modes are less effective in generating a flow response, which is reflected in lower gains.

The reader is referred to [90] for a detailed physical interpretation of the results.

4.2 Resolvent analysis of an axisymmetric jet

Here, the evolution ofKelvin–Helmholtz instabilitywaves on a spatially evolving axisymmetric jet is presented.
The mean flow of the Re = 450,000 turbulent jet, which serves as the base state, is shown in Fig. 7 and was
obtained from a large-eddy simulation [7]. All the variables were made non-dimensional using the jet velocity,
diameter, freestream temperature (T = 288.15K ), and density. This example corresponds to the transonic
jet case in [86] with Mach number of Ma = 0.9. Following the reference, we assume a constant effective
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Fig. 7 Jet base flow and coordinate system. The color scale indicates the axial velocity, normalized by the velocity of the jet core

Fig. 8 Forcing and response modes for the three leading modes of the spatially evolving boundary layer, and the associated gains.
Only the forcing associated with the stream-wise momentum equation and the streamwise velocity component are shown for
brevity

Reynolds number of 10 000 but note that more accurate models are available [75]. The flow is homogeneous
in the z/θ direction, and we focus the study on axisymmetric (m = 0) perturbations.

The domain consists of the rectangle [−1, 34.5]× [0, 11.2], discretized into a grid of 500× 100 points. To
avoidwave reflections, sponge zones andmesh stretchingwere used near the upstreamof the nozzle (x < 0) and
near the downstream (x > 30). Dirichlet boundary conditions were applied for the temperature and velocity
fields on the left, right, and top borders. On the bottom border, a symmetry condition was imposed on the
density, streamwise velocity, and temperature fields (ρ,u,T ), and anti-symmetry conditions on the azimuthal
and radial velocity components (v,w).

Figure 8 shows the forcing and response modes obtained and the associated gains for a Strouhal number
St = f U/D = 0.39, as previously reported by [85]. The leading forcing mode consists of excitations near the
nozzle lip (r = 0.5), with a Kelvin–Helmholtz wavepacket evolving downstream. The leading mode pair has
a large gain. This gain can be understood by the amplification of perturbations at the mixing layer due to the
instability associated with the baseflow inflectional point. Higher-order modes have their forcing components
distributed through the domain, with a lower gain. The mechanism responsible for the modulation is analogous
to the one discussed in the previous section for the boundary layer example. These are typical of systems with
convective instabilities.

4.3 Local analysis of a supersonic boundary layer

Here, a stability analysis of a streaky boundary layer [9] is presented. The baseflow is shown in Fig. 9. All
variables were made non-dimensional using the boundary layer thickness, freestream velocity, temperature
(T = 273.15k), and density. The Reynolds and Mach numbers are Re = 28,000 and Ma = 6. The flow is
periodic in the spanwise direction (x), and the problem assumes homogeneity in the streamwise direction (z),
i.e., it is a locally parallel approximation.

The domain consists of the rectangle [0, 2π]×[0, 5], discretized into a grid of 200×200 points. A smaller
domain, [0, π] × [0, 5], discretized with 100× 200 points, is also used with the Floquet ansatz. Sponge zones
and mesh stretching were used near the top boundary to avoid wave reflections. Dirichlet boundary conditions
were applied for the temperature and velocity fields on the top and bottom borders and a periodic condition
on the right and left borders.

Figure 10 shows the temporal spectra for a streamwise wavenumber β = 0.6283 and the streamwise
velocity of the two unstable modes, using a domain that contains two streaks (indicated by the black rectangle
in Fig. 9). The mode with the highest growth rate exhibits a periodicity of 2π , corresponding to a sub-harmonic



Linstab2D: stability and resolvent analysis 679

Fig. 9 Streamwise velocity for a Mach 6 streaky boundary layer base flow. The coordinate systems and freestream velocity
vectors are indicated. The flow is periodic in the x direction, and the red and blue rectangles indicate the two domain domains,
with lengths of π and 2π , used in the analysis. (Colour figure online)

Fig. 10 Temporal spectrum obtained with a domain containing two streaks is shown with blue dots. Red and yellow diamonds
show the spectra obtained using a domain with one streak and nfloq = 1 and 2, respectively. Figures on the right show the
streamwise velocity (ŵ′) field for the two fastest-growing modes: the dominant having a period 2L , and the other having the same
periodicity as the baseflow, i.e., L . (Colour figure online)

streak instability. The other mode has the same periodicity as the streaks. An analysis of a domain containing
a single streak (indicated by the red rectangle in Fig. 9) using the Floquet ansatz is shown with red (n f loq = 0)
and yellow (n f loq = 2) diamonds2. The approach reproduces the spectrum of the larger domain, having the
advantage of naturally splitting the spectra into harmonic and subharmonicmodes, having lower computational
cost, and is easily extended to higher Floquet numbers, i.e., analyzing larger domains.

The instability observed in this case is a case of sub-harmonic instability. On a baseflow with period L ,
perturbations with a period of L/2 can be self-excited by triadic interactions. A quadratic non-linear interaction
between the mentioned perturbation and baseflow, leads to terms with period L± L/2, i.e., L/2 and 3L/2. The
former can enhance the original perturbation, giving rise to the subharmonic instability. For small perturbations,
this non-linear interaction can be linearized, and thus be captured by the code.

The same mechanisms can be observed in the spatial stability framework. To illustrate it, we focus on
the frequency associated with the fastest-growing mode identified in the temporal analysis, i.e., ω = 0.585.
The smaller domain (Lx = π) with nfloq = 2 is used to reduce the computational cost. Figure11 shows the
resulting spectra and illustrates the Briggs–Bers criteria. None of the loci form a saddle point, which indicates
that these modes are not absolutely unstable. Instead, a spatially unstable mode with β = 0.628 − 0.018i is
observed. As the imaginary part of the frequency increases, this mode crosses the real axis at the complex
frequency identified in the temporal stability analysis, showing that the mode is essentially the same. As the
mode’s shape is indistinguishable from the one shown in Fig. 10, it is not presented.

4.4 Rossiter modes in open cavity flow

This example illustrates the stability analysis of a flow over an open cavity. The baseflow is shown in Fig. 12. It
corresponds to the turbulent mean flow of the direct numerical simulation by [55]. We thankfully acknowledge
the authors for providing us with the data. All variables were made non-dimensional using the cavity depth,
freestream velocity, temperature (T = 300k), and density. The Reynolds and Mach numbers are Re = 1 500
and Ma = 0.5. The problem is assumed to be periodic in the spanwise (z) direction.

2 Note that since q̃ ′, in (25), has period L , results for n f low = 0 and 1 are equivalent.
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Fig. 11 Spatial stability spectra for a base flow with one (Lx = π) streaks and nfloq = 2. The spectrum for ω = 0.5854 is shown
in blue. The back dots show the spectra for increasing imaginary parts. The yellow diamond indicates the point on which the
unstable mode crosses the real axis line, which occurs for �(ω) = 0.0167. (Colour figure online)

Fig. 12 Cavity base flow and coordinate system. The color scale indicates the axial velocity

The domain consists of the rectangle [−1.65, 5, 34] × [0, 5], discretized into a grid of 241 × 101 points.
The grid was deformed in the x and y directions to position points at the wall surface. Points within the wall
were masked from the domain using the quasi-structured mesh approach described in Sect. 3.4. Sponge zones
were used near the top, left, and right boundaries to avoid wave reflection. Dirichlet boundary conditions were
applied for the temperature and velocity fields along the walls.

Figure 13 shows the spectra of the direct (ω) and the adjoint operator (ω†). As expected, the spectra are
consistent: complex conjugating the adjoint eigenvalues recovers the direct eigenvalues.

The mechanism associated with these instabilities is an interaction between Kelvin–Helmholtz waves on
the shear layer formed over the cavity, which is downstream-traveling, and acoustic waves inside the cavity,
which are upstream-traveling. Being unstable, the Kelvin–Helmholtz waves impinge on the right edge of the
cavity with a large amplitude, being scattered into acoustic waves inside the cavity. Traveling downstream,
these acoustic waves can re-excite Kelvin–Helmholtz waves. If the overall gain, considering the amplification
due to Kelvin–Helmholtz instability, reflection coefficients, and potential attenuation of the acoustic wave, is
positive, an unstable mode is formed.

This mechanism underpins both unstable modes observed. As the wavenumber increases with frequency
for the Kelvin–Helmholtz instability, the higher frequency mode exhibits more oscillations in the shear layer,
i.e., higher harmonic modes are formed. The adjoint modes have their support near the upstream cavity wall,
as this is the region where disturbances can optimally excite the unstable modes.

4.5 Steaks in the flow around a paraboloid body

Finally, the last example illustrates a resolvent analysis of the incompressible flow around a paraboloid body
using curvilinear coordinates. The baseflow is shown in Fig. 14. All the variables were made non-dimensional
using the freestream velocity and density and twice the curvature diameter at the leading edge.

As the response modes are expected to be concentrated on the boundary layer, and for high Reynolds
numbers, it becomes thin, we focus on a low Reynolds number case to facilitate the mode visualization. The
Reynolds and Mach numbers are Re = 5000 and Ma = 0.01. The flow is homogeneous in the azimuthal
direction (z).

A Cartesian domain using a grid of 100×100 points is mapped around the paraboloid body using parabolic
coordinates. Sponge zones were used near the left and top boundaries. Dirichlet boundary conditions were
applied at the parabolic surface (right domain boundary) for the temperature and velocity fields. At the axis
of rotation (bottom boundary), symmetry conditions were applied. The forcing and response modes for the
azimuthal number m = 5 are shown in Fig. 15.
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Fig. 13 Spectra of the direct (blue circles) and adjoint (black crosses) operators for the flow around a cavity. On the bottom,
support of the unstable adjoint (top) and direct (bottom) modes

Fig. 14 Velocity magnitude for the flow around a paraboloid body

Fig. 15 Forcing and response modes for the three leading modes for the flow around the paraboloid body and the associated
gains. Only the forcing associated with the stream-wise momentum equation and the streamwise velocity component are shown
for brevity

The forcing/response modes have optimal modes exhibiting a single maximum in the radial/wall-normal
direction and an increasing number of nodes for the suboptimal modes, with forcing/response modes concen-
trated upstream/downstream of the stagnation point. Results for higher Reynolds numbers show qualitatively
the same results, with forcing/response modes moving closer to the symmetry axis/body surface [54].

Part of the mechanism responsible present here is the excitation of streamwise vortices upstream of the
body, which penetrates the boundary layer via the stagnation point. Once in the boundary layer, these vortices
create regions of downwash, with a velocity pointing towards the wall, and upwash, with the velocity pointing
away from the wall. These regions are intercalated and have the same periodicity as that of the streamwise
vortices formed in the upstream region. These regions trigger the lift-up mechanism: fast flow velocities, found
far from the wall, are brought closer to the wall via the downwash, while low velocities, found closer to the
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wall, are brought up by the upwash. This leads to the formation of regions of fast and slow velocities, known
as streaks.

For the lower Reynolds number shown here, the forcing modes extend throughout the domain, and the
mechanisms described above are mixed with the direct excitation of streaks throughout the body. For increas-
ing Reynolds numbers, the lift-up mechanism becomes more effective, and thus the leading mode becomes
dominated by it. In a previous work [54], we show that the forcing modes move upstream of the body, with
most of the streaks formed by this mechanism.

5 Conclusion

We presented LinStab2D, a MATLAB code for linear stability and resolvent analysis of 2D flows. High-
order finite differences were used to approximate the linearized Navier–Stokes operator using sparse matrices
accurately. Using iterative methods, different aspects of the flow dynamics can be explored: flow instabilities,
locally parallel temporal, spatial, and spatio-temporal stability, and resolvent analysis, i.e., identifying the
optimal flow forcings and the associated responses.

Operations that are conceptually simple but whose implementation can be time-consuming and error-prone,
such as imposing boundary conditions, using curvilinear coordinates, and mesh masking, are performed using
high-level functions, reducing setup time and opportunity for coding mistakes. This approach allows the user
to focus on the physics-relevant aspects of the analysis.

The code, available as an open source project (see link in page 28), contains examples that can be easily
adaptable to studying different problems. The examples were designed to highlight different code capabilities:
analyses in cartesian (Sect. 4.1) and cylindrical (Sect. 4.2) coordinates, temporal and spatial locally parallel
analyses (Sect. 4.3), spatially periodic flows (Sect. 4.3), andflowdomainswith non-trivial geometries (Sects. 4.4
and 4.5). These examples provide an illustration not only of how to use the code, but also of the physical
mechanisms which can be identified with it. Among the potential mechanisms that can be modeled are Kelvin–
Helmholtz waves, Tollmien–Schliching waves, the interaction between upstream and downstream waves,
subharmonic instabilities, and the lift-up mechanism.

The code has been tested for both compressible and incompressible regimes. Although this code has not
yet been used to investigate flows with shocks, a similar code has been used for the analysis of overexpanded
supersonic jets [21]. Note, however, that in the work of Edgington-Mitchell et al„ the shocks have been
smoothed out during measurements, both due to the measurement technique and the unsteadiness of the shock,
which, when averaged, provides a smooth flow transition. Care should be takenwhen using this codewhen flow
discontinuities are present, as the code does not include shock-capturing techniques, and the finite difference
scheme used here can be unstable near these discontinuities.
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