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Abstract Different transition to turbulence routes for the flow around blunt bodies are possible. Non-modal
amplification of perturbations via the lift-up effect has recently been explored to explain transition near the
stagnation point in axisymmetric bodies. However, only perturbations already present in the boundary layer
can be amplified, and themechanisms bywhich free-stream perturbations enter the boundary layer have not yet
been fully explored. In this study, we present an investigation of how disturbances enter the boundary layer via
the stagnation point. This linear mechanism is expected to dominate over non-linear mechanisms previously
identified on the formation of boundary layer perturbations at low turbulence intensity levels. A parametric
investigation is presented, revealing trends with Reynolds and Mach numbers.

Keywords Flow receptivity · Resolvent analysis · Linear flow analysis

1 Introduction

Turbulent boundary layers enhance viscous drag and higher heat flux to the bodies about which they develop.
Predicting where a boundary layer will transition from a laminar to a turbulent state is necessary to predict
aerodynamic performance. In supersonic flight, the transition point is also a key design parameter as turbulent
boundary layers exchange more heat with the surface and thus require more robust thermal shielding.
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Earlier work issued from local stability theory describes several paths for transition in wall-bounded
flows [24]. In scenarios where perturbations present in the free stream or due to surface roughness are small,
the mechanism that leads to transition is typically modal, i.e., unstable modes in the boundary layer grow
exponentially and eventually trigger transition. By-pass transition is another possible mechanism when small-
but-finite perturbations are present. The mechanism is characterized by a non-modal amplification of these
perturbations, which may then reach significant amplitudes and lead to flow transition. As only perturbations
within the boundary layer can lead to its transition, it is necessary to understand their origin, i.e., how they
enter or are generated within the boundary layer.

Perturbations can be created within a boundary layer, e.g., by roughness elements or be excited by external
disturbances. Acoustic waves can excite Tollmien-Schlichting (TS) waves at points of curvature discontinuity
Goldstein [9]. Free-stream disturbances can excite vortical modes in the boundary layer via non-linear inter-
actions, as studied by Brandt et al [2]. In this study, the non-linear mechanism was dominant at moderate to
large free-stream turbulence intensities, while pre-existing boundary layer structures’ amplification was more
relevant at lower turbulence intensities and larger integral wavelengths. The study suggests that such vortical
structures may penetrate the boundary layer at the leading edge, although this mechanismwas not investigated.
Thus, such a linear mechanism is expected to dominate receptivity at low turbulent intensities.

For higher Mach numbers, different receptivity mechanisms may be observed. For example, in supersonic
flows, there are regions for which Mack waves [20] have wavelengths matching that of acoustic waves, and
can thus be directly excited by them [34].

Numerical studies on the leading-edge receptivity typically use smooth surfaces, i.e., with continuous
curvatures, to prevent the results from being contaminated by the length-conversion mechanism identified by
Goldstein [9]. Leading edges shaped as super-ellipses [3,15,33,37] and parabolic bodies [11] are among the
examples studied. Haddad and Corke [11] have identified that the receptivity of TS waves decreases with
Reynolds number on a paraboloid body, i.e., with increasing bluntness. This result contrasts with a more recent
review on thick flat plates with curved leading edges [33]. The reason for this discrepancy is unclear, but they
may be related to different flow regimes. The study of Haddad and Corke [11] may only be valid around the
stagnation point, and, while the super-ellipse studied by Shahriari et al [33] is formally smooth, the surrounding
flow can exhibit strong gradients, whose contribution to the receptivity mechanism is unclear. As a favorable
pressure gradient stabilizes TSwaves near the stagnation point, TSwaves amplitudes are typically small around
it. However, they can be amplified downstream, where the pressure gradient asymptotically vanishes. Mack
waves exhibit a similar behavior in supersonic flows due to the low velocities near the stagnation point.

Nevertheless, there are circumstances where transition is observed close to the leading edge, e.g., in
hypersonic blunt bodies [27]. For these configurations, different mechanisms have been proposed. Entropy
layer perturbations can be amplified and penetrate the boundary layer when the entropy layer is swallowed
or be imprinted on it via non-linear mechanisms upstream of the swallowing point [7,28]. Another transition
route is the onset of leading-edge modal instabilities [16,17]. However, the former can only lead to transition
after the ingestion point, which occurs further downstream than the observed transition point, and the latter
is only active in the presence of a crossflow. When no crossflow is present, such modal mechanisms cannot
explain these transitions, motivating the study of non-modal mechanisms in the nose region [27].

The lift-up is a non-modal mechanism that is ubiquitous in shear flow. It consists of streamwise vortices
that move flow from regions with higher velocities to regions with lower velocities and vice versa, creating
alternating regions of fast and slow streamwise velocities, known as streaks. Under a parallel flow assumption,
linear stability theory predicts amplitude amplification to scalewith Re for spanwisewavelengths of the order of
two boundary layer thickness in both compressible and incompressible flows [1,12,18,29]. Large perturbation
amplification is also observed in spatially evolving boundary layers [14,23,27,35].

The vorticity dynamics entering the boundary layer via the leading edge have received less attention. Obrist
and Schmid [26] studied the problem using Hiemenz’s self-similar flow model, Mack and Schmid [19] and
Meneghello et al [22] studied swept flow over a parabolic body and a wing leading edge. However, there are
virtually no studies investigating the problem of unswept flows.

In this study, we present a systematic investigation of non-modal mechanisms at the leading edge using a
paraboloid body as a flow model. We systematically investigate the role of bluntness and compressibility to
provide a cartography of the phenomena.

The paper is structured as follows. Section2 presents the flowaround the paraboloid body. Section3 presents
the numerical methods used in the linear stability analysis. Section4 presents a study of the perturbation
amplification mechanisms near the stagnation point using the resolvent framework. Section5 expands the
results to investigate compressible flows, withMach number up to 1.2. Section6 presents the final conclusions.
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Fig. 1 Illustration of the geometry and the coordinate systems used. Red and blue lines illustrate parabolic and body-fitted
coordinates, respectively. The thick black line indicates the body surface. The dotted circle is tangent to the leading edge. The
arrow indicates the freestream velocity. Points with a distance of multiples of 0.5 length units from the stagnation point are shown
for reference

2 Paraboloid body

The body surface studied is given by

x = (z2 + y2) − 1/4, (1)

with the free-stream flow moving towards +z. The flow parameters are made non-dimensional using the
freestream density, viscosity, and velocity. As the reference length, we use the curvature diameter of the
leading edge.

Three coordinate systems are considered. All computations use cylindrical coordinates, which will be
detailed later. Paraboloid coordinates (σ, τ ) are used and defined in Sect. 2.1 to obtain an inviscid potential
flow analytically. Finally, body-fitted coordinates (s, d) are defined as the distance from the leading edge
along the body surface and the distance from the body surface. The latter are used for visualization and
post-processing only. Figure1 illustrates the problem and coordinate systems used.

2.1 Inviscid and incompressible flow

The potential flow around the body is obtained analytically using parabolic coordinates, (σ, τ, φ), defined as,

z + ir = (σ + iτ)2, r =
√

(x2 + y2), φ = tan−1(y/x). (2)

The body surface is located at σ = σ0 = −1/2.
The flow potential function, ψ , satisfies the Laplace equation,

∇2
σ,τ,φψ = 1

σ

d

dσ

(
σ
dψ

dσ

)
+ 1

τ

d

dτ

(
τ
dψ

dτ

)
+ d2ψ

dφ2 , (3)

with, as boundary conditions, no penetration at the body surface and the convergence to the free-stream
conditions far from the body. These conditions read

dψ

dσ
= 0, for σ = σ0 and (4)

ψ = z = (σ 2 − τ 2), for σ → ∞. (5)

The solution to (3) under (4) and (5) is given by

ψ = σ 2 − τ 2 + 2σ 2
0 log(σ ). (6)
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Table 1 List of Reynolds numbers investigated for the incompressible case

Reynolds numbers

100 500 1000 5000 30000 60,000 120,000 180,000 240,000 300,000

Fig. 2 Potential flow around the paraboloid body

The velocity field is then recovered as

Uz = ∂ψ

∂x
= ∂ψ

∂σ

∂σ

∂x
+ ∂ψ

∂σ

∂τ

∂x
, (7)

Ur = ∂ψ

∂y
= ∂ψ

∂σ

∂σ

∂y
+ ∂ψ

∂σ

∂τ

∂y
. (8)

The potential flow is illustrated in Fig. 2, where the stagnation point and subsequent flow reacceleration are
observed.

2.2 Viscous incompressible flow

A 2D axisymmetric model was used to obtain base flows for the viscous problem. No-slip boundary
conditions were applied at the body surface; Neumann boundary conditions for the velocity (open boundary
condition) were used on the right-most edge of the domain, and the potential flowwas imposed on the left-most
edge as an inflow condition, reducing the domain size required to converge the solutions. The problem was
time-marched using the open-source code Nek5000 [8] until the norm of the velocity time derivative became
smaller than 10−8.

This process was repeated for several Reynolds numbers between 100 and 300,000, listed in Table 1. The
domain size was adapted for each Reynolds number: larger domains were used at lower Reynolds numbers to
minimize blockage effects, and smaller domains at larger Reynolds numbers to avoid unnecessary computa-
tional costs. The Reynolds-number range was chosen to reach values sufficiently high for an asymptotic trend
to be observed and lower values where the behavior deviates from the trend.

Figure3 illustrates the base flows obtained. For Re � 5000, the flow is qualitatively similar to the potential
flow shown in Fig. 2 but with the formation of a boundary layer around the body surface. The base flows are
similar but with thinner boundary layers for higher Reynolds numbers.

Figure4b shows the wall-tangential velocity profile for s = 1, i.e., at unit distance from the stagnation
point. A thicker boundary layer is formed for lower Reynolds numbers, and the flow at its edge has larger
velocities than the potential flow, compensating for the loss of mass flow closer to the wall. This effect reduces
with Re and is negligible for Re > 5000. As expected, the flow converges to the potential solution away from
the wall for higher Reynolds numbers.

The decreasing velocity magnitude with the potential flow’s wall distance and the wall’s no-slip boundary
condition creates a velocity maximum at a distance dmax from the wall. We thus define the boundary layer
thickness for the problem as,

δ∗(s) =
∫ dmax

0

(
U‖,pot(s, d) −U‖(s, d)

U‖,pot(s, 0)

)
dd. (9)
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Fig. 3 Velocity magnitude of the baseflow for different Reynolds numbers. For clearness, only selected cases are shown

Fig. 4 Boundary layer profile and thickness for the flow around the paraboloid body

where U‖ indicates velocity component parallel to the wall, and U‖,pot corresponds to the potential solution.
Note thatU‖,pot (s, 0) = 1 for a flat plate, and (9) recovers the classical definition of the displacement thickness.

Figure4b shows the evolution of the boundary layer profile. Near the stagnation point, the boundary layer
is formed with a thickness that scales with Re−1/2, as predicted when the region is modeled by a Homann
flow [13,39]. Downstream, the boundary layer evolution reaches the asymptotic limit, scaling with Re−1/2 for
Re � 5000.

3 Numerical method

We will perform resolvent analysis on a 2D axisymmetric flow to study the perturbation amplification. The
numerical method is derived from that used by Schmidt et al [32] and Schmidt and Rist [30,31], with the
code adapted to use curvilinear coordinates. We refer readers to the original document for details of the code,
describing only its main features next.
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3.1 Resolvent analysis

The discretized linearized Navier–Stokes equations written in input–output form in the frequency domain

(−iω − A)û(ω) = B f̂ (ω),

ŷ(ω) = Cû(ω),
(10)

where A is the discretized representation of linearized Navier-Stokes operator around a fixed point, B and
C are matrices introduced to limit input (forcing) and output (responses) spaces. E.g., these can be used to
limit forcings and responses to regions near the boundary layer, avoiding the contamination of the results by
free-stream modes [25]. The forcing and response vectors are, respectively, f̂ = [ f̂ρ, f̂uz , f̂ur , f̂uθ , f̂T ]T , and
û = [ρ̂, ûz, ûr , ûθ , T̂ ]T .

A direct relation between input and the output is obtained as

ŷ(ω) = R(ω) f̂ (ω), (11)

where

R(ω) = C(−iω − A)−1B, (12)

is the resolvent operator [29].
A forcing term is said to be optimal if it maximizes the Rayleigh ratio,

σ(ω) =
∥∥ ŷ(ω)

∥∥
Wy∥∥∥ f̂ (ω)

∥∥∥
W f

=

∥∥∥R(ω) f̂ (ω)

∥∥∥
Wy∥∥∥ f̂ (ω)

∥∥∥
W f

, (13)

and can be obtained from a singular value decomposition (SVD) of the weighted resolvent operator R′(ω) =
W−1/2

y R(ω)W1/2
f , whereWy/ f are the weight matrices for responses and forcings, respectively [32]. The ratio

σ measures the gains in terms of the modes norm, while energy gains are given by σ 2. This study’s weight
matrices include integration quadrature weights and an energy norm for compressible flows. Two different
energy norms are used: kinetic,

‖ ŷ‖2 =
∫

ρ
(|ûz |2 + |ûθ |2 + |ûr |2

)
dV (14)

and compressible [4,12],

‖ ŷ‖2 =
∫ (

T

ργ Ma2
|ρ̂|2 + ρ|ûz |2 + ρ|ûθ |2 + ρ|ûr |2 ρ

T γ (γ − 1)Ma2
|T̂ |2

)
dV . (15)

norms, where the overline variables refer to the baseflow fields, γ is the adiabatic coefficient, and M is the
Mach number.

Different strategies to compute the SVD can be used. For problemswith only one inhomogeneous direction,
R(ω) is a small matrix, and standard tools are effective in obtaining the decomposition. On the other hand, for
three-dimensional problems, methods based on time-marching schemes are typically used [6,10,21,23]. For
two-dimensional problems where one direction is homogeneous, effective approaches use sparse matrices to
represent A, solving the linear system (10) to obtain the action of the resolvent operator on a vector. The latter
approach is used in this work.
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Fig. 5 Illustration of mapping between the computational (ξi ) and physical (xi ) meshes

3.2 Curvilinear coordinates

In order to construct the linearized operator, derivative matrices for the domain are required. These matrices
were constructed by mapping a square domain (described with coordinates ξi ), for which derivatives are com-
puted using standard finite differences, into the desired domain (described with coordinates xi ), as illustrated
in Fig. 5. Centered and uncentered fourth-order finite-difference schemes were used on the bulk of the domain
and at the domain boundaries, respectively.

In general, the mapping between ξi and xi is given implicitly: for a given node in the original mesh, xi (ξ j )
corresponds to the coordinate of the same node on themapped domain. The inverse function, ξi (x j ), is likewise
available. Henceforth, we will refer to xi (ξ j ) simply as the mapping, and to ξi (x j ) as the inverse mapping.

The derivative of a function g is written using the chain rule as

∂xi g = Ji j∂ξ j g, (16)

where Ji j = ∂ξi
∂x j

are (i, j) entries of J, the Jacobian of the function that maps (x1, x2) to (ξ1, ξ2), i.e., the
inverse of the mapping function. As only differentiation matrices w.r.t. ξi are a priori available, we construct
first J−1

i j = ∂x j
∂ξi

. We then obtain J by inverting J−1.
Equation (16) can be iterated to obtain second-order derivatives. However, this increases the effective

stencil of the method, which increases the cost of solving the resulting linear systems. To avoid larger stencils,
we describe the second derivative as

∂xi ∂x j g = ∂xi
(
J jq∂ξp g

)

= (
∂xi J jp

)
∂ξp g + J−1

j p

(
∂xi ∂ξp g

)

= (
∂xi J jp

)
∂ξp g + J−1

j p Jiq∂ξq ∂ξ j g,

(17)

computing
(
∂xi Ji j

)
via the matrix identity

∂xi J = J
(
∂xi J

−1) J. (18)

Finally, the term ∂xi J
−1, reads

∂xi J
−1
lm = J−1

j i ∂ξi J
−1
lm = J−1

i j
∂2xl

∂ξi∂ξm
. (19)

With this approach, the stencil size in the physical domain (xi ) has the same size as that of the computational
domain (ξi ).

4 Receptivity

We start by investigating the receptivity of the Re = 30,000 baseflow. A Cartesian grid with 100× 100 points
was mapped around the body, with nodes clustered near the surface to resolve the boundary layer. Dirichlet
boundary conditions were used on all boundaries. A sponge zone was used to avoid spurious reflection near
the inflow/outflow boundaries. The convergence of all the results presented was checked, and variations less
than 1% when using a finer mesh were observed.
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Fig. 6 Gain variation with frequency for the Re = 30,000 flow. Leading/suboptimal gains in solid/dashed lines for different
azimuthal numbers m

Fig. 7 Leading gains (a) and suboptimal gains for the dominant azimuthal number (b). The unlabelled lines in a correspond to
Re = 100, 500, 1000, and 5000, from the bottom up

As will be shown next, the spatial support of the forcing/response modes can extend far up/downstream.
Fully capturing these structures requires a large domain, making the analyses too costly. Since the study aims
to investigate how free-stream disturbances penetrate the boundary layer, the downstream domain was limited
to s � 2. The domain upstream was limited to z � −6. Down/upstream of these limits, a sponge zone is used
to dampen perturbations before the boundary of the computation domain.

Figure6 shows the frequency dependency of the leading gains for different azimuthal wavenumbers. The
largest gain is found forω = 0, which suggests that the lift-upmechanism is dominant around the leading edge.
Henceforth, we concentrate the study on gains associated with zero-frequency disturbances. Note, however,
that this analysis is representative of low-frequency dynamics, as illustrated in Fig. 6.

Although zero-frequency disturbances can be considered as a new baseflow, the results presented are
representative of low-frequency perturbations, i.e., ω � 0.1. They also indicate the sensitivity of the baseflow
to steady disturbances, i.e., how much the baseflow is modified with a given (small) change in the forcing.

We next perform a systematic parametric investigation, computing gains at ω = 0 for different Reynolds
and azimuthal numbers. The numerical grid was adapted for each scenario as the boundary layer thickness
varied considerably between the different cases. The Cartesian grid size between 75 × 75 and 100 × 175
gridpoints were used, with the last number corresponding to the wall-normal direction near the body surface,
to discretize the boundary layer. The results are presented in Fig. 7a, which shows that both the maximum gain
and the corresponding azimuthal wavenumber increase with Re. Figure7b shows that the difference between
the leading and the suboptimal gains tends to also increase with Re, which points towards an increasing
selectivity of disturbances.

To illustrate the forcing and response modes, Fig. 8 shows their support for the highest gain observed
for Re = 5000 and m = 9. Although this case has a moderate gain, the relatively thick boundary layer
facilitates visualization of the flow features. In this, and all other similar figures to be presented, the modes
were normalized such that the maximum absolute value of a response/forcing component is equal to one. Note
that, as observed for the lift-up mechanisms in flat plates, the azimuthal and streamwise velocity components
are out-of-phase, and thus, in Fig. 8, the θ components are small. Figure9 shows a 3D visualization of the
flow, in which the phase difference between ûθ and ûx can be observed.

The modes for higher Reynolds numbers are qualitatively similar. Both forcing and response modes are
concentrated in the z and r components. The forcing mode excites vorticity perturbations upstream of the
leading edge. Over the surface, the response mode is mostly dominated by the streamwise velocity component.
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Fig. 8 Leading forcing and response modes (a) and the curl of the forcing mode (b) for Re = 5000 and m = 9. The modes are
normalized by their largest absolute value. Color scales indicate the real part of the modes

Fig. 9 Three-dimensional visualization of Fig. 8. Isocontours of the u component of forcing and response modes are shown in
blue/yellow, with light and dark colors representing isovalues of −0.5 and 0.5, respectively. The red and blue color scale shows
the azimuthal component of the response mode at the plane normal to the axis of symmetry, saturated at a value of ±0.4

Fig. 10 Leading and suboptimal forcing and response modes. Results for Re = 5000 and m = 9. The modes are normalized by
their largest absolute value. Color scales indicate the real part of the modes

These observations suggest that the dominant mechanism at play consists of free-stream streamwise vortices
penetrating the boundary layer at the stagnation point and creating streamwise streaks via the lift-upmechanism.
The r component of the vorticity creates streaks near the stagnation point, and the z component acts further
downstream, where the flow becomes more aligned with the z axis. Although for the low Re case discussed
here, the forcing mode has support over a large part of the body, as will be shown later, this support is
increasingly concentrated near the symmetry axis, suggesting that the resulting perturbations are convected
into the boundary layer via the stagnation point.
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Fig. 11 Spatial support of the leading forcing and response modes. From top to bottom, results for Re = 5000, 30,000, and
60,000, with azimuthal wave number corresponding to the highest gain for each Re. The modes are normalized by their largest
absolute value. Color scales indicate the real part of the modes

Fig. 12 Three-dimensional visualization of the leading response mode for Re = 120,000 (m = 39). Contours are equivalent to
Fig. 9, but here isocontours are saturated at ±0.1

Fig. 13 Isocontours of half of the leading response mode peak value for different Reynolds numbers. The displacement thickness
for Re = 300,000 is shown for reference

The spatial support of the forcing modes extends upstream with the Reynolds numbers, and thus, resolving
it requires large domains. We limit the upstream domain, as it captures the relevant physical mechanism.

Figure10 compares the support for the optimal and suboptimal force and response modes. The suboptimal
modes exhibit nodes in the radial direction for both the forcing and response modes, similar to the streak force
and response modes in jets [38]. The sub-optimal modes for all cases studied here presented a similar structure.

The evolution of the modes with Reynolds number is shown in Fig. 11. As Re increases, the boundary
layer’s initial size decreases; thus, a smaller region of the flow around the centerline is convected within it.
The forcing modes are concentrated in these regions to exploit the lift-up mechanism in the boundary layer.
Figure12 shows a 3D visualization of the leading mode for Re = 120,000.

Figure13 shows the contour of the response modes scaled by the boundary layer thickness using the
wall-fitted coordinates (s, d), previously shown in Fig. 1. The modes are distributed around the boundary
layer displacement thickness. A slight wall-normal displacement of the modes is observed for the highest Re
numbers. Whether this trend persists for higher Reynolds numbers or its implication is unclear.

Figure14 shows the trends associated with the optimal gains, σopt , and the corresponding azimuthal
wavenumbers, mopt , with Re. For Re ≥ 30,000, σopt follows a Re1/2 scaling, while mopt scales with Re0.34.
We believe that the trend for the optimal m is due to the axisymmetric geometry: a given value of m implies a
different “spanwise wavelength” (2πr/m) for different positions at the body. Different azimuthal numbers are
optimally amplified locally at each position as the boundary layer thickness increases with the distance to the
stagnation point. A trade-off between different amplification rates at different positions may be responsible
for the observed trend.
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Fig. 14 Reynolds number scaling of the maximum gain and the corresponding azimuthal number. Dotted lines show a linear fit
for Re ≥ 3 × 104

5 Compressibility effects

Having explored the receptivity of the incompressible paraboloid flow, we now assess the effect of compress-
ibility for increasing Mach numbers. We investigate Mach numbers 0.3, 0.6, 0.9, and 1.2, and fix the Reynolds
number to the value of 30,000, for which the asymptotic trend observed in Fig. 14 is reached. In this study,
we consider ideal gases, with an adiabatic exponent γ = 1.4 and the viscosity dependency on the temperature
given by Sutherland’s empirical formula

μ(T ) = μrefT
3/2 1 + Ts

T + Ts
(20)

where μref(Tref = 280K) = 1.735 × 10−5 kg/ms and Ts = 110.4K/Tref for standard air, is used to obtain
the dynamic viscosity from the temperature. Finally, thermal conductivity is obtained by assuming a constant
Prandl number, Pr = 0.7.

Baseflows are obtained using the software StarCCM+. Freestream values and adiabatic walls are used
as boundary conditions. Baseflows were converged until the residuals were smaller than 10−8. The resulting
baseflows are illustrated in Fig. 15.

As mentioned by Edgington-Mitchell et al [5], the effect of shocks in linear stability analysis still carries
some uncertainties with it. For this reason, we limited the analysis to weak shocks, Mach 1.2, and smoothed
the shock discontinuities, as shown in Fig. 15. We also used a finer mesh (200 × 200 grid points) than in the
previous analysis.

We considered two cases, one using a kinetic energy norm (14), i.e., restricting the force- and response-
mode norm to the velocity components, and another considering temperature and density variations, using a
compressible energy norm (15). While it can be argued to be more generic, it has been argued that velocity
perturbations are more likely to trigger flow transition. We thus choose to study both.

Figure16 shows the gains associated with flows with increasing Mach numbers. Results are similar to
those of the incompressible flow, with a monotonic increase in value with Mach number, which is consistent
with the results presented by Tumin and Reshotko [36]. The reduction of the optimal spanwise wavenumber
shown in their study is also observed in Fig. 16. The trend of the peak gain for each condition is summarized
in Fig. 17.

Polynomial and exponential curves were fitted to the data. The results suggest an exponential trend of the
leading gain with Mach number, shown in 17. We emphasize that this result should be considered preliminary,
both due to the small number of points available (4 points for 3 parameters), and due to the limited mach
number range considered. Nevertheless, this points to a strong amplification effect for higher Mach numbers.

The support of the optimal forcing and response modes are shown in Fig. 18. The support of the forcing
terms of the momentum equations remains qualitatively similar, and the shock, located around z ≈ 2, does
not seem to affect these terms. Extra forcing terms for the continuity and energy equations appear, showing
a transition for the regions before and after the shock. Again, the flow responses are qualitatively similar, but
with density and temperature fluctuations becoming more pronounced for higher Mach numbers.
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Fig. 15 Illustration of the velocity profiles for different Mach numbers for Re = 3 × 104

Fig. 16 Gains for the leading zero frequency mode for different Mach numbers. Solid lines indicate results where forcing and
responses are restricted to the momentum equations and velocity components. Dashed lines consider temperature and density
fluctuations

Fig. 17 Optimal gain trend with Mach number
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Fig. 18 Forcing and response modes for m = 21 modes for the compressible flow cases. Color scales indicate the real part of the
modes



Perturbation amplification near the stagnation point 949

6 Conclusions

We have presented a parametric investigation of non-modal mechanisms at the leading edge of blunt bodies.
Reynolds- and Mach-numbers trends associated with the perturbations optimally amplified by the flow were
identified.

Optimal perturbations were obtained using resolvent analysis. To study a paraboloid body, a curvilinear
grid formulation was implemented in a linear stability code. The baseflow used for analysis was obtained by
time marching the non-linear flow equations.

Close to the stagnation point, maximum perturbation amplification occurs for zero-frequency disturbances,
indicating the potential role of low-frequency disturbances. Optimal forcing and response modes indicate a
receptivity mechanism associated with free-stream vorticity that enters the boundary layer near the stagnation
point and then exploits the lift-up effect to create streaky structures at the body surface.

In the incompressible regime, a parametric investigation reveals that for increasing Reynolds number,
i.e., increasing bluntness, the maximum amplification factor increases with Re1/2. At higher Mach numbers,
compressibility effects were seen to increase the amplification further. A 20% increase in gain was observed
between the incompressible and Ma = 1.2 regimes. Potentially more importantly, the results show a trend
suggesting that compressibility effects sharply increasewithMa. The authors thus believe that further studies on
this trend, increasing the range ofMachnumbers investigated,mayprovide important insights for understanding
the transition reversal observed in hypersonic blunt bodies [27]. These trends reinforce the importance of non-
modal mechanisms for blunt bodies at high Reynolds numbers in the incompressible and compressible limits.

The results complement previous receptivity studies. The trends presented are consistent with the switch
from modal to non-modal transition mechanisms in hypersonic flows around blunt bodies [27]. In the low
Mach regime, the decreasing receptivity of Tollmien-Schlichting waves with bluntness [11] points towards a
similar phenomenon in incompressible flow: as bluntness increases, the role of non-modal mechanisms tends
to overcome that of modal mechanisms, potentially leading to a transition to turbulent close to the stagnation
point.

Finally, the linearmechanism bywhich free-streamdisturbances penetrate the boundary layer complements
previously studied transition routes for flow over a flat plate. While for moderate free-stream disturbances in
the incompressible limit, non-linear receptivity is the dominant mechanism by which perturbations enter the
boundary layerBrandt et al [2], a linear receptivitymechanism tends to dominate at lower turbulence intensities.
We have thus studied one such mechanism: the ingestion of vortical disturbances at the stagnation point.

The trends obtained here are consistent with previous studies on the blunt-body paradox in hypersonic con-
ditions. The paradox comes from observations that, in hypersonic flows, the transition pointsmove downstream
with increasing bluntness up to a critical bluntness, after which it quickly moves upstream. Although limited to
low Mach numbers, the amplification trends with Reynolds number presented in this work are consistent with
non-modal mechanisms underpinning the transition reversal. A follow-up study will extend the trend observed
here to higher Mach numbers.

Funding This work is part of the project TRANSITION supported by Région Nouvelle-Aquitaine under grant 2018-1R10220.
This work has been granted access to the HPC resources of IDRIS under the allocations A0092A10868 and A0112A10868 made
by GENCI (Grand Equipement National de Calcul Scientifique).

Author contributions E.M. wrote the manuscript and prepared the figures. E.M. and O.S developed the code used in the
analysis. C.C. provided the baseflow used in the study. E.M. G.L. and P.J. interpreted the results and investigated the physical
mechanisms at play.

Data availability No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

Ethical approval Not applicable.



950 E. Martini et al.

References

1. Andersson, P., Berggren, M., Henningson, D.S.: Optimal disturbances and bypass transition in boundary layers. Phys. Fluids
11(1), 134–150 (1999). https://doi.org/10.1063/1.869908

2. Brandt, L., Schlatter, P., Henningson, D.S.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech.
517, 167–198 (2004). https://doi.org/10.1017/S0022112004000941

3. Buter, T.A., Reed, H.L.: Boundary layer receptivity to free-stream vorticity. Phys. Fluids 6(10), 3368–3379 (1994)
4. Chu, B.T.: On the energy transfer to small disturbances in fluid flow (Part I). Acta Mech. 1(3), 215–234 (1965)
5. Edgington-Mitchell, D., Wang, T., Nogueira, P., et al.: Waves in screeching jets. J. Fluid Mech. 913, A7 (2021). https://doi.

org/10.1017/jfm.2020.1175
6. Farghadan, A., Towne, A., Martini, E., et al.: A randomized time-domain algorithm for efficiently computing resolvent

modes. In: AIAA Paper. American Institute of Aeronautics and Astronautics, pp. 2021–2896 (2021). https://doi.org/10.
2514/6.2021-2896

7. Fedorov, A., Tumin, A.: Evolution of disturbances in entropy layer on blunted plate in supersonic flow. AIAA J. 42(1), 89–94
(2004). https://doi.org/10.2514/1.9033

8. Fischer, PF., Patera. AT.: Parallel spectral element methods for the incompressible Navier-Stokes equations. In: Solution of
superlarge problems in computational mechanics, pp. 49–65. Springer (1989)

9. Goldstein, M.E.: Scattering of acoustic waves into Tollmien–Schlichting waves by small streamwise variations in surface
geometry. J. Fluid Mech. 154, 509–529 (1985). https://doi.org/10.1017/S0022112085001641

10. Gómez, F., Blackburn, H.M., Rudman, M., et al.: A reduced-order model of three-dimensional unsteady flow in a cavity
based on the resolvent operator. J. Fluid Mech. 798, R2 (2016). https://doi.org/10.1017/jfm.2016.339

11. Haddad, O.M., Corke, T.C.: Boundary layer receptivity to free-stream sound on parabolic bodies. J. Fluid Mech. 368, 1–26
(1998). https://doi.org/10.1017/S0022112098001311

12. Hanifi, A., Schmid, P.J., Henningson, D.S.: Transient growth in compressible boundary layer flow. Phys. Fluids 8(3), 826–837
(1996). https://doi.org/10.1063/1.868864

13. Homann, F.: Einfluß großer zähigkeit bei strömung um zylinder. Forschung auf dem Gebiet des Ingenieurwesens A 7(1),
1–10 (1936)

14. Kamal, O., Lakebrink, M.T., Colonius, T.: Global receptivity analysis: physically realizable input–output analysis. J. Fluid
Mech. 956, R5 (2023). https://doi.org/10.1017/jfm.2023.48

15. Lin, N., Reed, H.L., Saric, W.S.: Effect of Leading-edge geometry on boundary-layer receptivity to freestream sound. In:
Hussaini, M.Y., Kumar, A., Streett, C.L. (eds.) Instability, Transition, and Turbulence, pp. 421–440. Springer, New York,
NY (1992)

16. Lin, R.S., Malik, M.R.: On the stability of attachment-line boundary layers. Part 1. The incompressible swept Hiemenz flow.
J. Fluid Mech. 311, 239–255 (1996)

17. Lin, R.S., Malik, M.R.: On the stability of attachment-line boundary layers. Part 2. The effect of leading-edge curvature. J.
Fluid Mech. 333, 125–137 (1997)

18. Luchini, P.: Reynolds-number-independent instability of the boundary layer over a flat surface: Optimal perturbations. J.
Fluid Mech. 404, 289–309 (2000). https://doi.org/10.1017/S0022112099007259

19. Mack, C., Schmid, P.J.: Global stability of swept flow around a parabolic body: Features of the global spectrum. J. Fluid
Mech. 669, 375–396 (2011). https://doi.org/10.1017/S0022112010005252

20. Mack, LM.: (1965) The stability of the compressible laminar boundary layer according to a direct numerical solution(Stability
of compressible laminar boundary layer according to direct numerical solution), pp. 329–362 (1965)

21. Martini, E., Rodríguez, D., Towne, A., et al.: Efficient computation of global resolvent modes. J. FluidMech. 919, A3 (2021).
https://doi.org/10.1017/jfm.2021.364

22. Meneghello, G., Schmid, P.J., Huerre, P.: Receptivity and sensitivity of the leading-edge boundary layer of a swept wing. J.
Fluid Mech. 775, R1 (2015). https://doi.org/10.1017/jfm.2015.282

23. Monokrousos, A., Åkervik, E., Brandt, L., et al.: Global three-dimensional optimal disturbances in the Blasius boundary-layer
flow using time-steppers. J. Fluid Mech. 650, 181–214 (2010). https://doi.org/10.1017/S0022112009993703

24. Morkovin, MV.: (1969) On the many faces of transition. In: Wells, C.S. (ed.) Viscous Drag Reduction, pp. 1–31. Springer,
Boston, MA. https://doi.org/10.1007/978-1-4899-5579-1_1

25. Nogueira, P.A.S., Cavalieri, A.V., Hanifi, A., et al.: Resolvent analysis in unbounded flows: Role of free-stream modes.
Theoretical and Computational Fluid Dynamics, pp. 1–14 (2020). https://doi.org/10.1007/s00162-020-00519-x

26. Obrist, D., Schmid, P.J.: On the linear stability of swept attachment-line boundary layer flow. Part 2. Non-modal effects and
receptivity. J. Fluid Mech. 493, 31–58 (2003). https://doi.org/10.1017/S0022112003005780

27. Paredes, P., Choudhari, M.M., Li, F.: Blunt-body paradox and transient growth on a hypersonic spherical forebody. Phys.
Rev. Fluids 2(5), 053903 (2017). https://doi.org/10.1103/PhysRevFluids.2.053903

28. Paredes, P., Choudhari, M.M., Li, F.: Mechanism for frustum transition over blunt cones at hypersonic speeds. J. Fluid Mech.
894, A22 (2020). https://doi.org/10.1017/jfm.2020.261

29. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows, vol 142. Springer (2012)
30. Schmidt, O.T., Rist, U.: Linear stability of compressible flow in a streamwise corner. J. Fluid Mech. 688, 569–590 (2011).

https://doi.org/10.1017/jfm.2011.405
31. Schmidt, O.T., Rist, U.: Viscid-inviscid pseudo-resonance in streamwise corner flow. J. Fluid Mech. 743, 327–357 (2014).

https://doi.org/10.1017/jfm.2014.31
32. Schmidt, O.T., Towne, A., Rigas, G., et al.: Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953–982 (2018). https://

doi.org/10.1017/jfm.2018.675
33. Shahriari, N., Bodony, D.J., Hanifi, A., et al.: Acoustic receptivity simulations of flow past a flat plate with elliptic leading

edge. J. Fluid Mech. 800, R2 (2016). https://doi.org/10.1017/jfm.2016.433
34. Tam, C.K.W.: Excitation of instability waves in a two-dimensional shear layer by sound. J. Fluid Mech. 89(2), 357–371

(1978). https://doi.org/10.1017/S0022112078002645

https://doi.org/10.1063/1.869908
https://doi.org/10.1017/S0022112004000941
https://doi.org/10.1017/jfm.2020.1175
https://doi.org/10.1017/jfm.2020.1175
https://doi.org/10.2514/6.2021-2896
https://doi.org/10.2514/6.2021-2896
https://doi.org/10.2514/1.9033
https://doi.org/10.1017/S0022112085001641
https://doi.org/10.1017/jfm.2016.339
https://doi.org/10.1017/S0022112098001311
https://doi.org/10.1063/1.868864
https://doi.org/10.1017/jfm.2023.48
https://doi.org/10.1017/S0022112099007259
https://doi.org/10.1017/S0022112010005252
https://doi.org/10.1017/jfm.2021.364
https://doi.org/10.1017/jfm.2015.282
https://doi.org/10.1017/S0022112009993703
https://doi.org/10.1007/978-1-4899-5579-1_1
https://doi.org/10.1007/s00162-020-00519-x
https://doi.org/10.1017/S0022112003005780
https://doi.org/10.1103/PhysRevFluids.2.053903
https://doi.org/10.1017/jfm.2020.261
https://doi.org/10.1017/jfm.2011.405
https://doi.org/10.1017/jfm.2014.31
https://doi.org/10.1017/jfm.2018.675
https://doi.org/10.1017/jfm.2018.675
https://doi.org/10.1017/jfm.2016.433
https://doi.org/10.1017/S0022112078002645


Perturbation amplification near the stagnation point 951

35. Towne, A., Rigas, G., Kamal, O., et al.: Efficient global resolvent analysis via the one-way Navier-Stokes equations. J. Fluid
Mech. 948, A9 (2022). https://doi.org/10.1017/jfm.2022.647

36. Tumin, A., Reshotko, E.: Spatial theory of optimal disturbances in boundary layers. Phys. Fluids 13(7), 2097–2104 (2001).
https://doi.org/10.1063/1.1378070

37. Wanderley, J.B.V., Corke, T.C.: Boundary layer receptivity to free-stream sound on elliptic leading edges of flat plates. J.
Fluid Mech. 429, 1–21 (2001). https://doi.org/10.1017/S0022112000002548

38. Wang, C., Lesshafft, L., Cavalieri, A.V.G., et al.: The effect of streaks on the instability of jets. J. Fluid Mech. 910, A14
(2021). https://doi.org/10.1017/jfm.2020.963

39. Weidman, P.D.: Non-axisymmetric Homann stagnation-point flows. J. Fluid Mech. 702, 460–469 (2012). https://doi.org/10.
1017/jfm.2012.197

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely
governed by the terms of such publishing agreement and applicable law.

https://doi.org/10.1017/jfm.2022.647
https://doi.org/10.1063/1.1378070
https://doi.org/10.1017/S0022112000002548
https://doi.org/10.1017/jfm.2020.963
https://doi.org/10.1017/jfm.2012.197
https://doi.org/10.1017/jfm.2012.197

	Perturbation amplification near the stagnation point of blunt bodies
	Abstract
	1 Introduction
	2 Paraboloid body
	2.1 Inviscid and incompressible flow
	2.2 Viscous incompressible flow

	3 Numerical method
	3.1 Resolvent analysis
	3.2 Curvilinear coordinates

	4 Receptivity
	5 Compressibility effects
	6 Conclusions
	References




