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We study the dynamics of harmonically-forced jets under different forcing am-
plitudes covering linear and nonlinear response regimes. Using a combination of
Particle Image Velocimetry (PIV) measurements, Spectral Proper Orthogonal
Decomposition (SPOD) and Bispectral Mode Decomposition (BMD), we educe
coherent structures on the different forcing regimes and analyse how strong non-
linear interactions affect their dynamics. The forced jets provide a simplified
scenario where energy exchange between frequencies can be traced back to a few
prominent triadic interactions. These are identified through the mode bispec-
trum and the associated BMD modes are found to be in good agreement with
the most energetic structures computed through SPOD. The mode bispectrum
also provides insight into the relative importance of linear and nonlinear mecha-
nisms, with respect to the mean of the forced jet, in determining the amplitudes
of velocity fluctuations at the forcing frequency and its harmonics. Unforced
jets have a broad signature in the bispectrum, reflecting the broadband nature
of nonlinear energy exchange in the unforced jets.

I. Nomenclature

Re = Reynolds number
Uj = Jet exit velocity
c∞ = Sound speed
Ma = Mach number
St = Strouhal number
D = Jet diameter
x = Streamwise coordinate
r = Transverse coordinate
θ = Shear-layer momentum thickness
q = State vector
Ŝωk

= Cross-spectral density matrix
Ψωk

= SPOD eigenmodes
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λωk
= SPOD eigenvalues

W = Quadrature weights
b(fk, fl) = Integral bispectrum measure for a pair of frequencies fk and fl
φk+l = Bispectral Modes
φk◦l = Cross-frequency modes
Q̂ωk

= Vector of ensemble flow realisations
a1 = BMD expansion coefficients
B = Bispectral density matrix
λ1 = Numerical radius of B

II. Introduction
Many studies on harmonically-forced jets have been conducted in the past, for a wide range of forcing

frequencies. The goal of these experiments has often been to study the dynamics of instability waves, also
referred to as wavepackets. The forcing provides a phase-locking mechanism that raises those structures
above the level of background turbulence, making their eduction easier. For sufficiently low levels of forcing
amplitudes, the jet response has been found to be linear, and the dynamics of the forced wavapackets are
essentially the same as those from unforced jets [1, 2]. This hypothesis has formed the basis for many early
studies that aimed at inferring the dynamics of wavepackets and their associated sound field in unforced jets
from their forced counterparts [3–9].

More recently, the understanding and modelling of wavepacket dynamics in unforced jets has made
meaningful strides, supported by the advancement in measurement techniques, notably Particle Image
Velocimetry (PIV) [10, 11], advanced signal processing tools such as Spectral Proper Orthogonal Decomposition
(SPOD) [12] and modelling tools, such as the Parabolised Stability Equations (PSE) [10, 13, 14] and Resolvent
Analysis [15–17].

These studies have shown that many important features of jet dynamics and sound radiation can be
successfully explained by linear models. However, these models also possess severe limitations due to the
lack of nonlinear phenomena. In particular, the absence of information about nonlinear forcing term in the
context of resolvent analysis prevents these models from predicting the amplitude of the wavepackets, or to
fully understand the mechanisms by which they become spatially desynchronised when convected by the flow,
leading to increased acoustic efficiency.

Even in most forced-jet studies, nonlinearity in the jet response with high-amplitude forcing is usually
only lightly addressed. Nonlinear response to harmonic forcing has been reported to cause significant changes
in broadband near-field turbulent fluctuations [18] and broadband far-field noise [19], but there is conflicting
evidence between different studies as to what are the precise dynamics underpinning such phenomena, and
under what upstream conditions [20]. An important issue is the the distinction between linear and nonlinear
behaviour. A thorough characterisation of the onset of nonlinearity with increasing forcing amplitude and how
it changes the dynamics of coherent structures has not often been done, with a few exceptions [21–23]. Even
with a modern tool adapted to educe coherent structures, such as SPOD, distilling nonlinear mechanisms
is not straightforward, as it cannot provide any information about the energy exchange across different
frequencies.

Here we intend to address some of these issues through an association of experimental data, SPOD and
Bispectral Mode Decomposition (BMD) [24], a novel technique design to educed flow structures issuing from
triadic interactions. The database consists of PIV measurements of turbulent jets forced harmonically at
different amplitudes, so as to explore linear and nonlinear response regimes. A database for an unforced jet is
used as baseline. Our goal is to characterise the dynamics of coherent structures in the different regimes in
order to gain insight into nonlinear mechanisms for future modelling work. Working with forced jets offers a
simplified scenario for analysis, since the flow energy is dominated by interactions issuing from only a few
triadic interactions, as opposed to the broadband character of the unforced jet.

The paper is organised as follows: in section §III we describe the experimental setup; in §IV we present
the mathematical description of the tools used, i.e, SPOD and BMD; this is followed by the results of the
analysis in §V and by concluding remarks in §VI.
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Fig. 1 Schematic of the experimental setup. Synthetic jets generated by loudspeakers force
the jet at the nozzle lip. The green-shaded area corresponds to the PIV measurement plane,
which spans the region −1.5 6 r/D 6 1.5, 0 6 x/D 6 6.

III. Experimental setup
The experiments were performed in a low-Mach-number facility at the Pprime Institute, in Poitiers,

France. The jet Mach (Ma = Uj/c∞) and Reynolds (Re = UjD/ν) numbers are 0.05 and 5×104, respectively,
with Uj the jet exit velocity, c∞ the ambient speed of sound and ν the kinematic viscosity of the air. The
nozzle diameter is 50mm. The jet is forced with axisymmetric disturbances generated by a system of eight
loudspeakers positioned in a conical structure that fits the nozzle. The loudspeakers generated synthetic jets
that exit through a 0.01D annular gap and force the main jet at the nozzle lip. Forcing amplitude modified
by varying the tension applied to the loudspeaker system. It is the same setup used by Maia et al. [25].

PIV measurements were performed in a plane parallel to the jet axis defined by −1.5 6 r/D 6 1.5,
0 6 x/D 6 6, where r and x are the radial and streamwise coordinates, respectively. The PIV system
consisted of two Photron APS-RS cameras and a 527 nm 30mJ Continuum TERA PIV laser. The sampling
frequency of the cameras was limited to 1.5kHz, and the measurement time was set to 2700 convective time
units, with a convective time unit defined by D/UJ . Complementary hot-wire measurements were also carried
out in a few positions of the measurement plane.

The measurements were performed in jets issuing from nozzles with both untripped and tripped boundary
layers. The former produces a laminar boundary layer at the exit which agrees well with the Blasius profile;
the latter, on the other hand, produces a fully-turbulent boundary layer. The tripping is achieved using a
strip of carborundum particles placed 2.5D upstream of the nozzle exit. In the initially-laminar jet, transition
to turbulence occurs approximately 0.5D downstream of the nozzle exit. Boundary layer profiles for the
initially-laminar and turbulent jets are reported by Maia et al. [25].

Prior to the PIV campaign, a series of hot wire measurements was made in order to identify the different
response regimes of jets forced at different amplitudes at frequencies corresponding to Strouhal numbers of
St = 0.3, 0.4, 0.5. For that, the hot wire was arbitrarily placed in the jet centerline two diameters downstream
of the nozzle exit. Figure 2 shows the response of the turbulent jet to harmonic forcing at St = 0.4, 0.5
as a function of the voltage applied to the forcing system. For sufficiently low forcing amplitudes, clear
linear regime, delimited approximately by the vertical dashed lines, are seen for the three forcing frequencies.
Pushing the amplitudes higher leads to saturation or nonlinear response. The same behaviour was observed
for the transitional jet.

For brevity, here we only report the results of the jet with turbulent boundary layer forced at Stf = 0.4.
Based on the response curves such as those of Figure 2, two forcing amplitudes were selected for further
investigation with PIV measurements: one falling within the linear part and another well within the nonlinear
response regime.
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Fig. 2 Response of the turbulent jet to harmonic forcing at St = 0.4, 0.5. The three plots show
the responses measured at each forcing frequency individually. Measurements were made at
x/D = 2, r/D = 0. The vertical dashed lines approximately delimit the linear response regime.

IV. Tools

A. Spectral Proper Orthogonal Decomposition
We apply Spectral Proper Orthogonal Decomposition (SPOD) [12, 16] on the PIV database in order to

study the spatial organisation of coherent structures and how they are modified in the different regimes of
response to harmonic forcing. Given the state vector, q = [u, v]T (x, y) obtained from the experiment, the
SPOD modes for a given frequency ωk, Ψωk

are obtained through the eigendecomposition of the cross-spectral
density matrix, Ŝωk

,

Ŝωk
WΨωk

= Ψωk
Λωk

. (1)

The cross-spectral density matrix is computed as Ŝωk
= Q̂ωk

Q̂∗ωk
, where Q̂ωk

= [q̂(1)
ω1 q̂(2)

ω1 · · · q̂
(Nblk )
ωk

] is the
ensemble of Nblk flow realisations at ωk, with q̂(l)

ωk
denoting the lth realisation of the Fourier transform in time

at the kthe frequency. The eigenvalues, [λ(1)
ωk
, λ(2)
ωk
· · ·λnblkωk

] corresponding to the modal energy are organised
in decreasing order in the diagonal matrix Λωk

. The modes so obtained are orthogonal in an inner product
corresponding to the integral of squared velocity fluctuations on the PIV plane,

〈q1,q2〉 =
"

q∗1q2dxdr = q∗1Wq2; (2)

where W is a weight matrix containing the numerical quadrature weights.

B. Bispectral mode decomposition
Bispectral mode decomposition is a novel technique [24] that has been developed in order to educe

coherent structures associated with nonlinear triadic interactions. The main idea of the method consists in
the maximization of an integral measure of the point-wise bispectrum (as opposed to SPOD, which seeks a
maximization of the cross-spectrum) for a pair of frequencies fk and fl,

b(fk, fl) = E
[∫
Ω

q̂∗k ◦ q̂∗l ◦ q̂∗k+l
]
= E

[
q̂Hk◦lWq̂k+l

]
= E

[〈
q̂Hk◦l, q̂k+l

〉]
, (3)

where the inner product of the rightmost term takes the same definition as that used for SPOD. Here ◦
denotes a Hadamard product, and the compact notation

q̂k◦l ≡ q̂(x, fk) ◦ q̂(x, fl) (4)

denotes the point-wise product of two realizations of the flow at frequencies fk and fl. The method further
defines two linear expansions,
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φ
[i]
k◦l = Q̂k◦lai, (5)

φ
[i]
k+l = Q̂k+lai, (6)

with the same set of expansion coefficients, a. Q̂ is the matrix containing the data blocks, as described above.
These expansions allow the distinction between modes that are formed by the product of the interacting
frequencies (cause), φk◦l, and modes that originate from that interaction (effect), following the triad

fj ≡ fk + fl. (7)

The latter are called bispectral modes, and can be thought of as observable flow structures.
The bispectrum mode decomposition then computes modes that optimally represent the data in terms of

the global bispectrum, b(fk, fl). This is achieved by seeking a set of expansion coefficients, a1 that maximize
b(fk, fl). Mathematically, this can be expressed as Rayleigh quotient

a1 = arg max
∣∣∣∣aHBa

aHa

∣∣∣∣ , (8)

where B is the bispectral density matrix, given as,

B(x, fk, fl) ≡
1

Nblk
Q̂k◦lWQ̂k+l. (9)

This problem is solved by computing the numerical radius of B, which is equivalent to the largest eigenvalue,
λmax that the Hermitian matrix

H(θ) =
1
2

(
eiθB + e−iθBH

)
, (10)

can attain for some angle 0 6 θ 6 2π. Then, the numerical radius is λ1 = λmax (H (θ)) and the expansion
coefficients, a1, maximize the Rayleigh coefficient 8. The reader is referred to Schmidt [24] for details about
the numerical procedure. The maps of λ1(fk, fl) illustrate regions of the spectrum where there are significant
quadratic phase-coupling between different frequencies, allowing the identification of three-wave interactions.
In the framework of resolvent analysis, BMD can be interpreted as a maximization of the phase-alignment
between a given quadratic, forcing term, Q̂k◦l, and an associated response, Q̂k+l, respecting a given frequency
triad.

V. Analysis

A. SPOD Eigenspectrum and coherent structures
Let us begin the analysis by identifying coherent structures present in the unforced jet through the SPOD

modes (the eigenfunctions of Ŝωk
) and studying how their shapes and energy are modified by forcing at

different amplitudes. Figure 3 shows the eigenvalue spectra of the SPOD for the forced and unforced jets.
In the unforced case, the energy is seen to be mostly contained in the first two modes for a large portion
of the spectrum covering St . 0.8. Beyond this frequency band, however, the energy is distributed much
more equally among the modes, indicating that the flow does not exhibit any preference towards a physical
mechanisms contained in a particular mode. As expected, the forcing produces an energy amplification at
St = 0.4, as seen by the peaks at that frequency shown in 3(b) and 3(c). This amplification occurs, however,
almost solely for the leading SPOD mode, whose associated physical mechanism then becomes dominant. The
flow is then said to display low-rank behaviour [16]. At the lower level of forcing, amplification only occurs
at the forcing frequency, demonstrating that the assumption of linear flow response is valid. At the higher
forcing amplitude, on the other hand, energy is poured at other frequencies through nonlinear interactions.
This is evidenced by the peaks at the harmonics of the forcing frequency which can be observed in 3(c).
Unlike the energy increase at the harmonics, which are due to a purely nonlinear process, the enormous
amplification at the forcing frequency Stf = 0.4 from the low-amplitude to the high-amplitude can be caused
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Fig. 3 Eigenvalue spectra of the SPOD. Color shading from black to white represent increas-
ing mode numbers ( , Λ1 > Λ2 > ...ΛN). The forcing amplitude increase from left to right.

both by linear and nonlinear processes. Nevertheless, the relative importance of each to the global dynamics
cannot be easily assessed through SPOD, which does not give any information about the flow of energy across
different frequencies. This is analysed in more depth in section §V.B.

The spatial structures of the leading SPOD modes of forced and unforced jets are shown in Figure 4
for Strouhal numbers corresponding to the forcing frequency and its harmonics. At St = 0.4, the leading
SPOD mode of the unforced jet exhibits the traits of coherent structures with large spatial lengthscales,
which are commonly found in many shear flows. The periodic forcing reinforces the physical mechanism
associated with those structures, enhancing their signature and spatial organisation and producing clear
axisymmetric wavepackets. These are a typical feature of unforced turbulent jets [26, 27], but are made
more easily detectable through the forcing. As mentioned in §II, it is this enhanced organisation that has
motivated the use of harmonic forcing for coherent structure detection in early studies [1–4, 7–9, 18, 28–32].

At higher Strouhal numbers, St = 0.8, 1.2, 1.6, the SPOD modes of the unforced jet have spatial support
in the shear-layer and exhibit decreasing levels of organisation as frequency is increased. The structure of
these modes is not strongly altered with the low-amplitude forcing (except for some modification seen in
4(e)), but show considerable change with the high-amplitude forcing. Rather than highlighting the dynamics
in the shear-layer, nonlinear interactions exploit a different mechanism, generating wavepackets in the core of
the jet (Figure 4(f), 4(i), 4(l)). Such structures are generated by triadic interactions between the forcing
frequency and its harmonics. In the next section, we identify the salient triadic interactions generated in the
forced jets and we asses to what extent the BMD modes can reproduce the physical mechanisms of the most
energetic structures revealed by SPOD.

B. BMD: linear and nonlinear mechanisms
The mode bispectrum reveals the regions of the spectrum where three-wave resonant interactions translate

into high values of the numerical radius, λ1(fk, fl) of the bispectral matrix, B [24]. Figure 5 shows the mode
bispectrum for forced and unforced jets. Due to its broadband energy content, the bispectrum of the unforced
turbulent (5(a)) jet exhibits an extended signature of high nonlinear activity, which peaks roughly in the zone
Stk . 0.4, |Stl| . 0.3. This signature is little affected by the low-amplitude forcing (5(b)), except for a local
maximum generated at (Stk, Stl) = (0.4, 0) confirming once again the hypothesis of linear response regime.
With the high-amplitude forcing, on the other hand, a grid pattern is produced, featuring local maxima
at the intersection of the forcing frequency and its harmonics. Figure 5(4) shows a zoom on the region of
the grid pattern, where the most prominent triads are circled. The interaction of the fundamental forcing
frequency with itself generates the first harmonic, (fk, fl, fk + fl) = (0.4, 0.4, 0.8), which in turn interacts with
the fundamental to generate the second harmonic, (fk, fl, fk + fl) = (0.8, 0.4, 1.2), and so forth. It can also be
seen that the self-interaction of the fundamental with its negative counterpart generates a maximum at the
zero-frequency triad (fk, fl, fk + fl) = (0.4,−0.4, 0), which accounts for the mean-flow distortion provoked by
the high-amplitude forcing. A quantification of mean flow distortion and the bispectral modes that emerge
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Fig. 4 Leading SPOD modes of the unforced and forced jets at Strouhal numbers corre-
sponding to the forcing frequency and its harmonics: (a) St = 0.4; (b) St = 0.8; (c) St = 1.2; (d)
St = 1.6. The streamwise velocity component, u, is shown. Contours are saturated at ±90% of
the maximum values, for better visualisation.

from it are illustrated in Appendix §A.
The dashed line shown in 5(d) indicates a diagonal of constant frequency Stk+l = Stf = 0.4, i.e., it

represents all the frequency triads that produce an effect at the forcing frequency. On this line, two local
maxima stand out: one at (fk, fl, fk + fl) = (0.4, 0, 0.4), which is reminiscent of a linear process (as are all
points lying on the horizontal line sitting on the abscissa) of energy extraction from the mean flow, and one
at(fk, fl, fk + fl) = (0.8,−0.4, 0.4), which represents ta nonlinear exchange between the first harmonic on the
fundamental. The relative magnitude of those two maxima gives us insight into the relative importance of
linear and nonlinear amplification processes to the total energy of the velocity fluctuations at the forcing
frequency, with respect to the mean flow of the forced jet. In order to quantify this more clearly, we show in
Figure 6 the magnitude of the mode bispectrum along the diagonals (Stk + Stl = Stf = 0.4) for the forced
and unforced cases. The linear triad (0.4, 0, 0.4) is identified through vertical dashed lines. The magnitude
of λ1 decays exponentially with increasing Stk for the unforced jet. A slight peak exists at the linear triad,
but its magnitude hardly stands out with respect to the other triads. This changes with the low-amplitude
forcing, which greatly raises the amplitude of the linear piece, making it dominate the bispectrum at that
frequency. A small peak can also be seen at the intersection of the fist harmonic with the fundamental, but
its amplitude is five time smaller than that of the linear triad.

In the high-amplitude forced jet, the bispectrum is largely dominated by the (Stk, (Stl, (Stk+l) = (0.4, 0, 0.4)
and (Stk, (Stl, (Stk+l) = (0.8,−0.4, 0.4) triads, which account for linear and nonlinear portions of the
amplification of the velocity fluctuations at the forcing frequency, respectively. The nonlinear piece is
predominant, but the linear part remains far from negligible, its magnitude being almost 70% that of the
nonlinear triad.
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(d)

Fig. 5 Magnitude mode bispectra for the unforced jet (a) and the forced jets (b,c). Figure
(d) shows a zoom around the region containing the most prominent triadic interactions. The
dashed diagonal line represents constant frequency triads (Stk + Stl = Stf = 0.4).

Bispectral modes issuing from triadic interactions that form at the harmonics of the forcing frequency are
shown in Figure 7 for the strongly-forced jet. The modes correspond to the streamwise velocity component,
φuk+l. SPOD modes at frequency fk+l are also shown for comparison. The SPOD and BDM modes are in
excellent agreement, showing that BMD correctly computes the observed coherent structures associated with
nonlinear interactions.

The associated cross-frequency fields, φuk◦l have a less clear physical interpretation, since they cannot be
directly related to any flow structures. In the framework of resolvent analysis, where the equations of motion
are separated into a linear left-hand side and an inhomogenous, nonlinear forcing term, these modes they
can be thought of as the result of the projection of the forcing term on the forcing modes of the resolvent of
the Navier-Stokes operator. For completeness, the cross-frequency fields of the triads shown in Figure 7 are
depicted in Appendix §B.

C. Unforced jet: broadband nonlinear signature
In the forced jets, identification of the most important triads and associated BMD modes is straightforward

due to the grid pattern generated by the relatively few interactions of the forcing frequencies with itself
and its harmonics. The situation is less clear in the unforced jet, wherein its inherent broadband character
does permit singling out one (or a few) dominant nonlinear mechanisms. Nevertheless, the mode bispectrum
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Fig. 6 Mode bispectrum along diagonal of constant frequency (Stk + Stl = Stf = 0.4). The
bottom and top x-axes correspond to the k− th and l− th forcing frequencies, respectively. (a)
Unforced jet; (b) low-amplitude forced jet; (c) high-amplitude forced jet. The vertical dashed
line marks the triad (0.4, 0, 0.4), representing a linear amplification mechanism.(b)
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(a)
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Fig. 7 Comparison between SPOD modes (a,c,e) and bispectrum modes issuing from indi-
vidual triadic interactions. The streamwise velocity component, u, is shown. Contours are
saturated for better visualisation.

shown in Figure 5(a) suggests that a stronger nonlinear coupling in the region Stk . 0.4, |Stl| . 0.3. This
observation is consistent with previous studies [16, 17] which showed that both SPOD and resolvent analysis
predict a zone of high-rank behaviour at St < 0.3. In this region, linear and/or modal instability mechanisms
are not dominant (as opposed to the low-rank behaviour observed in the zone 0.3 . St . 2), and modelling
nonlinear mechanism becomes essential for an accurate representation of the salient flow dynamics.

It remains unclear, however, whether nonlinear effects are made stronger by the high energy of the flow
structures involved at low frequencies (as evidenced by the SPOD eigenspectra of Figure 3, or by the intensity
of the quadratic couplings themselves. In this sense, the bicoherence would provide a more precise metric
than λ1(fk, fl) to measure the extent of deviation from linearity; but a normalisation of the bispectral matrix,
B(x, fk, fl) is not straightforward in the framework of BMD. Instead, in an effort to remove some of this
ambiguity, we chose to normalise λ1(fk, fl) by the energy of the signal resulting from the phase-coupling,
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Fig. 8 Normalised mode bispectrum (a) and normalised summed mode bispectrum (b) for
the unforced jet. Comparison with Figure 5(a) shows that normalising by the energy of the
j − th frequency in the triad fj ≡ fk + fl flattens the bispectrum. The non-normalised summed
bispectrum (black solid curve) is also shown in (b) for comparison.

which we compute as the sum of the SPOD eigenvalues at the j − th frequency of a given triad,
∑

fj=fk+fl

Λj .

We also computed a normalised version of the summed mode bispectrum, which gives a more compact
representation of the mode bispectrum [24],

Λ1(fj ) =
1
Nfj

∑
fj=fk+fl

|λ1(fk, fl)| /
∑
fj

Λj , (11)

where Nfj
is the number of frequency doublets (fk, fl) that contribute to a given frequency fj = fk + fl.

Figure 8 depicts normalised mode and summed mode bispectra for the unforced jet. Comparison with
the non-normalised version of Figure 5(a) reveals that normalising by the energy considerably flattens the
bispectrum. The largest magnitudes are still found at lower frequencies, but the level of nonlinear activity
remains important with increasing St, in spite of the decreasing energy of the flow mechanisms involved.
This is something that should be kept in mind in future resolvent-based modelling studies.

VI. Concluding remarks
In this work we studied linear and nonlinear aspects of jet dynamics under varying degrees of external

harmonic forcing. Special attention is given to nonlinear phenomena, analysed through the Bispectral
Mode Decomposition technique. Working with forced jets can be considered as a first approach towards
understanding and modelling nonlinear interactions in unforced jets, insofar as the most energetic flow
structures issue from a reduced number of triadic interactions. These are identified through the mode
bispectrum and correspond to the interactions of the forcing frequency with itself and its harmonics. The
most energetic flow structures at the harmonics are computed through SPOD and are found to be in good
agreement with the bispectral modes. This allows the nonlinear interactions responsible for the most energetic
structures to be identified. By analysing the mode bispectrum along the diagonal line corresponding to the
forcing frequency, one can assess the relative importance, with respect to the mean of the forced jet, of i)
linear mechanisms of energy extraction from the mean and ii) nonlinear-exchange mechanisms across different
frequencies. The two mechanisms contribute in determining the amplitude of the most energetic coherent
structures. The unforced jet presents a much more challenging scenario for analysis and modelling, due to its
broadband energy content. High nonlinear activity is found in an extended zone of the bispectrum, and it
remains important even when the energy of the associated flow mechanisms is relatively small.

Future work will be focused on modelling of the nonlinear coherent structures revealed by SPOD and
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BMD using resolvent analysis. The resolvent framework will also allow a physical interpretation of the
cross-frequency BMD modes, which can be thought of as a quadratic forcing term.

A. Appendix: Mean flow distortion
Figure 9 addresses some features of mean flow distortion with the high-amplitude forcing. Mean flow

contours for the unforced and forced jets are depicted in (a) and (b), respectively. It can be seen that the
forcing shortens the potential core by more than one jet diameter. This is accompanied by thickening of the
shear-layer, as evidenced is (c), which shows the streamwise evolution of the momentum thickness,

θ =

∫ ∞
0

U (r)
Ur=0

(
1− U (r)

Ur=0

)
dr. (12)

where U is the mean streamwise velocity. 9(d) and (e) show the bispectral and cross-frequency modes
associated with the zero-frequency triad (Stk, Stl, Stk+l) = (0.4,−0.4, 0) that produces the deformation. The
bispectral mode is found to have spatial support in the shear-layer from about 1D, position at which the
thickening of the shear-layer starts to occur. It then spreads across the radial direction and towards the jet
axis as it develops downstream, following the shortening of the potential core.(b)

(c)

(a)

(d)

(e)

Fig. 9 Mean flow deformation with generated by the zero-frequency triad circled in Figure
5(d). (a) and (b) show mean flow contours of the unforced and forced jets, respectively. Con-
tours are equally distributed between U/Uj = 0.15 and U/Uj = 0.95. (c): Streamwise evolution
of the momentum thickness.(d) Bispectral mode issuing from the interaction of the forcing
frequency, St = 0.4 with itself. (e): Cross-frequency modes for the same triad. Mean flow
contours of the forced jet are superimposed in (d) and (e).

B. Appendix: Cross-frequency fields
Figure 10 shows the cross-frequency modes, φuk◦l, of the triads circled in Figure 5(d) that correspond to

harmonics of the forcing frequency, Stf = 0.4. Spatial support reveals a similar kind of core structure, as seen
in ghe bispectral modes 7. However, physical interpretation of these modes is not entirely clear, as we cannot
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assign them to an observable flow structure. In the framework of resolvent analysis, they can be understood
as the projection of the inhomogeneous forcing term on the forcing modes of the resolvent operator. Previous
studies [16, 17] have shown optimal forcing modes for turbulent jets to be concentrated around the jet lipline,
exploiting and Orr-like mechanism, and subsequent suboptimal modes to be spatially extended. The spatial
extent of the cross-frequency modes suggest the exploitation of multiple forcing mechanisms. But in the
absence of resolvent analysis with the current database, this point remains, for the moment, speculative. This
issue will be addressed in future modelling work.

(b)

(c)

(a)

Fig. 10 Cross-frequency modes corresponding to the triads (Stk, Stl, Stk+l) = (0.4, 0.4, 0.8),
(Stk, Stl, Stk+l) = (0.8, 0.4, 1.2), (Stk, Stl, Stk+l) = (1.2, 0.4, 1.6) (circled in the bispectrum of Fig-
ure 5(d))and which are responsible for the nonlinear energy amplification at the harmonics of
the forcing frequency. The streamwise velocity component is shown.
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