
Computer Physics Communications 307 (2025) 109432

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Robust spectral proper orthogonal decomposition ✩

Antonio Colanera a,b,∗, Oliver T. Schmidt c, Matteo Chiatto a

a Department of Industrial Engineering, University of Naples “Federico II”, P.le tecchio 80, Naples, 80125, Italy
b Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
c Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Low-dimensional models
Modal analysis
Turbulent flows

Experimental measurements often present corrupted data and outliers that can strongly affect the main coherent 
structures extracted with the classical modal analysis techniques. This effect is amplified at high frequencies, 
whose corresponding modes are more susceptible to contamination from measurement noise and uncertainties. 
Such limitations are overcome by a novel approach proposed here, the robust spectral proper orthogonal 
decomposition (robust SPOD), which implements the robust principal component analysis within the SPOD 
technique. The new technique is firstly presented with details on its algorithm, and its effectiveness is tested on 
two different fluid dynamics problems: the subsonic jet flow field numerically simulated, and the flow within an 
open cavity experimentally analyzed in [48]. The analysis of the turbulent jet data, corrupted both with salt and 
pepper and Gaussian noise, shows how the robust SPOD produces more converged and physically interpretable 
modes than the classical SPOD; moreover, the use of the robust SPOD as a tool for de-noising data, based on 
the signal reconstruction from de-noised modes, is also presented. Applying robust SPOD to the open cavity flow 
has revealed that it yields smoother spatial distributions of modes, particularly at high frequencies and when 
considering higher-order modes, compared to standard SPOD.
1. Introduction

Data corruption is a significant obstacle to systems modeling and 
forecasting; noisy and gappy measurements can severely affect the 
learned models and lead to invalid conclusions. The ability to handle 
this data type has a significant role in developing reduced-order mod-
els (ROMs) and in the inference of physical insights from experimental 
investigations.

A typical way to obtain a ROM is to extract physically important 
features or modes that characterize the flow topology and project the 
Navier-Stokes equations (Galerkin projection) onto a subset of these 
modes, resulting in a system of ordinary differential equations, [28]. 
Choosing a restricted set of modes among those available makes it pos-
sible to build a reduced model that can predict the flow field behavior 
with a lower computational cost. In particular, different techniques can 
be used to obtain the main flow coherent structures [32,41], which may 
suffer the presence of outliers and gappy data.

In recent studies, variational autoencoder architectures combined 
with transformers have demonstrated potential in developing compact 
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and near-orthogonal reduced-order models for chaotic fluid flows, show-
casing improved interpretability and prediction performance over tra-
ditional methods [38].

Among the modal analysis techniques, spectral proper orthogonal 
decomposition (SPOD) has gained much interest in the last years due to 
its ability to extract the main spectral features of a flow field, optimally 
capturing the two-point space–time correlations, thus providing modes 
that evolve coherently in space and time [34,42,35]. SPOD algorithm 
has been employed in various fluid dynamics applications, mainly for 
post-processing numerical and experimental data. This technique is a 
valuable tool to investigate the flow topology itself [8,6,10,27,15,9,1]
and even to evaluate the flow receptivity and the effectiveness of an 
applied control strategy [7].

Nowadays, one of the most used experimental measurement tech-
niques is the particle image velocimetry (PIV), which can suffer from 
erroneous measurements due to inadequate illumination, optical issues, 
reflections, and sharp gradients in field properties [17]. Experimental 
measurements have to deal with the trade-off between the quantity 
and quality of PIV data; thus, acquired flow fields often have corrupt 
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and even missing measurements. Standard filtering and reconstruction 
techniques involve interpolation methods that rely only on local flow 
information [45], least square methods, and Kriging [29].

The problem of gappy measurements has traditionally been ad-
dressed with approaches based on proper orthogonal decomposition, 
POD, [12,43,14]. Recently, Nekkanti and Schmidt [26] have demon-
strated the gappy SPOD capability in reconstructing flow fields. Even 
machine learning techniques such as Physics-informed neural networks, 
PINNs [44], long short-term memory (LSTM) networks [49], deep gener-
ative adversarial model, deep generative adversarial model, deep-GAN 
[4] and autoencoders [11] can be efficiently employed to generate miss-
ing data in turbulence and processing PIV data.

On the other hand, the problem of the presence of outliers in data 
whose location is not known a priori was efficiently faced using matrix 
completion, which separates the sparse noise from the data [5] through 
different algorithmic approaches such as augmented Lagrange multi-
plier (ALM) and alternating directions method (ADM) ([47] and [21]). 
These techniques have been proven helpful for experimental data post-
processing and modal decompositions [33].

1.1. Aim and organization of the paper

The algorithm of the SPOD technique represents the frequency do-
main version of the standard space-only POD [19], which is not robust 
to outliers and corrupted data. This work aims to overcome this limita-
tion by introducing the robust spectral proper orthogonal decomposition 
(robust SPOD) and describing its algorithm in detail. The technique is 
applied to classical fluid dynamics problems to analyze different aspects 
of the algorithm: the subsonic jet flow field numerically computed by 
large-eddy simulations (LES) from [34] and the flow within an open 
cavity, obtained using PIV measurements from [48].

The work is organized as follows. In section 2, we review the stan-
dard and gappy SPOD technique and then introduce the robust SPOD 
procedure. Section 3 describes two different test cases used to evaluate 
the performances of the robust SPOD technique; finally, the results are 
reported in section 4.

2. Methodology

2.1. Standard SPOD

Following the works of Towne et al. [42] and Schmidt and Colonius 
[36], the standard SPOD algorithm is briefly summarized here. Let the 
snapshots ensemble 

{
𝒒𝑖
}

be the collection of instantaneous states of a 
generic field 𝒒(𝒙, 𝑡), defined in the space 𝒙 at time 𝑡𝑖 (with 𝑖 = 1, ..., 𝑀), 
organized to form a data matrix 𝑸 ∈ℝ𝑁×𝑀 , being 𝑁 the total length of 
the vector equal to the number of grid points times the number of flow 
variables. The data matrix 𝑸 is then divided into 𝑁𝑏 blocks 𝐐(𝑗), with 
𝑗 running from 1 to 𝑁𝑏, composed of 𝑁𝑓 snapshots, even overlapping 
each other; the number of overlapped snapshots is 𝑁𝑜. For each block, a 
(windowed) discrete Fourier transform (FFT) is computed. Each block-
wise Fourier component realization is stacked in a matrix 𝐐̂𝑓𝑘

∈ℝ𝑁×𝑁𝑏

for each frequency 𝑓𝑘, with 𝑘 = 1, ..., 𝑁𝑓 , and then a standard POD 
decomposition is carried out on these matrices, namely an eigenvalue 
decomposition of the cross-spectral density (CSD) matrix

𝐒𝑓𝑘 = 𝐐̂𝑓𝑘
𝐐̂∗
𝑓𝑘
𝑾 , (1)

in which 𝑾 is a spatial weight matrix considering the data’s non-
uniformity, see, e.g., [36]. With such decomposition SPOD modes corre-
spond to the columns of the matrix 𝚽𝑓𝑘

∈ℂ𝑁×𝑁𝑏 and are ranked accord-

ing to their corresponding eigenvalues given by the matrix 𝚲𝑓𝑘
∈ℂ𝑁×𝑁 .

The problem (1) is frequently replaced by the smaller eigenvalue 
problem (snapshots method)
2

𝐐̂∗
𝑓𝑘
𝑾 𝐐̂𝑓𝑘

𝚿𝑓𝑘
=𝚿𝑓𝑘

𝚲̃𝑓𝑘
, (2)
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where 𝚲̃𝑓𝑘
∈ ℂ𝑁𝑏×𝑁𝑏 are the non-zero eigenvalues of (1), whereas the 

eigenvectors are 𝚽𝑓𝑘
= 𝐐̂𝑓𝑘

𝚿𝑓𝑘
𝚲̃−1∕2
𝑓𝑘

.

A low-rank field reconstruction can be obtained (either in frequency 
or in the temporal domain) considering a certain number of SPOD 
modes, as shown by Nekkanti and Schmidt [25].

2.2. Gappy SPOD

Recently Nekkanti and Schmidt [26] have developed an algorithm 
dealing with gappy data. Similarly to the standard SPOD procedure, the 
first step is to divide the time series into some blocks and then compute 
the Fourier components realizations for each block (because of the gaps, 
an FFT algorithm that can deal with a nonuniform temporal sampling 
must be employed). Considering the 𝑘𝑡ℎ gap, the procedure computes 
SPOD modes by employing only blocks unaffected by this gap. Once this 
SPOD basis has been computed, SPOD expansion coefficients for blocks 
affected by the 𝑘𝑡ℎ gap are calculated, projecting the Fourier compo-
nents realizations on this basis. Finally, with known SPOD basis and 
expansion coefficients, it is possible to reconstruct the flow field, also 
filling the gap, through an inverse Fourier transform (IFFT). The con-
vergence of the 𝑘𝑡ℎ gap is evaluated by means of the parameter:

𝑐𝑛 =
∑
𝑖∈𝐺𝑛

‖𝒒̃𝑔𝑗
𝑖
− 𝒒̃

𝑔𝑗−1

𝑖
‖22‖𝒒̃𝑔𝑗−1

𝑖
‖22 , (3)

in which 𝐺𝑛 is the snapshot ensemble affected by 𝑛𝑡ℎ gap, 𝒒̃𝑔 represents 
the reconstructed data in the gappy regions only, and superscript 𝑗 is the 
iteration index. The procedure must be repeated for all the gaps until 
global convergence is reached.

This technique is effective but assumes that gaps and corrupted data 
location are known a priori.

2.3. Robust SPOD

SPOD algorithm, as seen in the section 2.1, is based on the eigenvalue 
decomposition of the CSD matrix. In this way, if the original data include 
outliers, the latter will be retrieved (and even amplified) in the Fourier 
realizations, leading to corrupted and noisy modes. To avoid this oc-
currence, we propose using the robust PCA within the SPOD technique, 
introduced by Candes et al. [5] and reviewed by Scherl et al. [33].

Specifically, we present two distinct procedures: one applies robust 
PCA to the Fourier realization 𝐐̂𝑓𝑘

, while the other directly applies it to 
the snapshots blocks 𝐐(𝑗). The features and algorithms of these proce-
dures will be discussed in detail hereafter.

The robust PCA can be used to decompose the matrix of the Fourier 
realizations 𝐐̂𝑓𝑘

(or equivalently the snapshots blocks 𝐐(𝑗)), into

𝐐̂𝑓𝑘
= 𝐋̂𝑓𝑘

+ 𝐇̂𝑓𝑘
, (4)

with 𝐋̂𝑓𝑘
being a low rank structure and 𝐇̂𝑓𝑘

a sparse matrix containing 
outliers and corrupted data, [5]. In this way, the principal components 
of 𝐋̂𝑓𝑘

would not be affected by the presence of the incorrect data. To 
highlight how the robust PCA isolates outliers into the matrix 𝐇̂𝑓𝑘

, it 
is insightful to consider that, for the standard POD, the mathematical 
problem for the extraction of the desired low rank (𝑟) structures 𝐋̂𝑓𝑘
consists in the minimization of the Frobenius norm (‖ ⋅ ‖𝐹 ) of the term 
𝐇̂𝑓𝑘

= 𝐐̂𝑓𝑘
− 𝐋̂𝑓𝑘

:

min
𝐋̂𝑓𝑘

‖𝐐̂𝑓𝑘
− 𝐋̂𝑓𝑘

‖𝐹 subject to rank(𝐋̂𝑓𝑘
) ≤ 𝑟. (5)

The choice of the Frobenius norm makes the computation results highly 
sensitive to outliers.

For the robust PCA, instead, the optimization problem consists in:

min rank(𝐋̂ ) + ‖𝐇̂ ‖ subject to 𝐋̂ + 𝐇̂ = 𝐐̂ , (6)

𝐋̂𝑓𝑘 ,𝐇̂𝑓𝑘

𝑓𝑘 𝑓𝑘 0 𝑓𝑘 𝑓𝑘 𝑓𝑘
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in which ‖𝐇̂𝑓𝑘
‖0 is the cardinality of nonzero elements in 𝐇̂𝑓𝑘

(featuring 
the sparsity of 𝐇̂𝑓𝑘

). Problem (6) is non convex and typically is solved 
considering its convex relaxation [5]:

min
𝐋̂𝑓𝑘 ,𝐇̂𝑓𝑘

‖𝐋̂𝑓𝑘
‖∗ + 𝛼0‖𝐇̂𝑓𝑘

‖1 subject to 𝐋̂𝑓𝑘
+ 𝐇̂𝑓𝑘

= 𝐐̂𝑓𝑘
, (7)

in which ‖ ⋅ ‖∗ is the nuclear norm (i.e., the sum of the singular values) 
and ‖ ⋅ ‖1 is the 𝐿1 norm (i.e., the sum of the magnitudes of each entry 
in the matrix). The coefficient 𝛼0 is defined as,

𝛼0 = 𝛼∕
√
max(𝑁,𝑁𝑏), (8)

where 𝛼 has to be tuned and represents the filter intensity [33].
The problem (7) is known as principal component pursuit and may be 

solved using the augmented Lagrange multiplier (ALM) algorithm, see 
[21] and [47]. Following Candes et al. [5], in this work, the augmented 
Lagrangian has been defined as:

𝓁(𝐋̂𝑓𝑘
, 𝐇̂𝑓𝑘

,𝐘) = ‖𝐋̂𝑓𝑘
‖∗ + 𝛼0‖𝐇̂𝑓𝑘

‖1 + ⟨𝐘, 𝐐̂𝑓𝑘
− 𝐋̂𝑓𝑘

− 𝐇̂𝑓𝑘
⟩

+ 𝜇

2
‖𝐐̂𝑓𝑘

− 𝐋̂𝑓𝑘
− 𝐇̂𝑓𝑘

‖𝐹 , (9)

in which 𝐘 is the matrix of Lagrange multipliers, ⟨⋅, ⋅⟩ is the standard 
trace inner product and 𝜇 a parameter that counts the error in (4). In 
this work, the relaxation parameter 𝜇 has been chosen according to 
𝜇 = 0.25𝑁𝑁𝑏∕‖𝐐̂𝑓𝑘

‖1. It is worth noticing that 𝜇 does not affect the 
solution of the problem (6) but only the convergence speed. The set of 
(𝐋̂𝑓𝑘

, 𝐇̂𝑓𝑘
, 𝐘) that minimizes the (9) can be found in different ways, as 

reported in [5], [21] and [47]. In the present work the alternating direc-
tions method (ADM) has been employed. Once the robust PCA algorithm 
converges, the so-obtained de-noised Fourier realizations matrix 𝐋̂𝑓𝑘

is 
employed instead of 𝐐̂𝑓𝑘

in the standard SPOD procedure.
In case of the application of robust PCA directly on the snapshots 

blocks 𝐐(𝑗), it extracts the low-rank blocks matrices 𝐋(𝑗) and the sparse 
matrices 𝐇(𝑗) containing the noise. In this case, the denoised matrices 
𝐋(𝑗) are employed for the computation of the CSD matrix following the 
standard SPOD algorithm.

It is worth noting that the standard ADM method deals with real 
matrices, whereas in the case of the procedure considering the de-
composition of the matrices 𝐐̂𝑓𝑘

it has to deal with complex matri-
ces. For this reason shrinkage operator  is not defined as usual with 
(𝜏, 𝐁) = sign(𝐁) max(|𝐁| − 𝜏, 0) but as shown in the following Equation 
(10).

Both SPOD and Robust SPOD results rely on the accurate estimation 
of the CSD matrix, which is influenced not only by the quality of the data 
but also by the choice of various spectral estimation parameters present 
in the algorithms. For standard SPOD, there are different references that 
help in selecting these parameters, such as [36] and standard signal 
processing handbooks like [23] and [2]. In this work, we will focus on 
the choice of parameters for Robust SPOD, specifically the effect of 𝛼
parameters will be studied.

The robust SPOD algorithms considered in this work are reported 
hereafter. Algorithm 1, shows the robust SPOD algorithm with denois-
ing of the 𝐐̂𝑓𝑘

; the robust PCA procedure is reported in Algorithm 2, 
while Algorithm 3 illustrates the robust SPOD with principal compo-
nent pursuit on each block.

2.3.1. Robust SPOD algorithms

In this section, the major features of the proposed methodology will 
be outlined.

The algorithm corresponding to the application of the robust PCA 
algorithm before those of the FFT, directly on matrices 𝐐(𝑗) is reported 
in Algorithm 3. Indeed, if the FFT algorithm is carried out before the 
PCA, then the technique completely preserves the spectral information 
related to the dynamics occurring in small regions of the domain. On the 
contrary, applying the robust PCA technique before the FFT thoroughly 
3

filters the local dynamics.
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Algorithm 1 Robust spectral proper orthogonal decomposition algo-
rithm.

1. For each data block 𝑗 = 1, ..., 𝑁𝑏:
(a) assemble data matrices

𝐐(𝑗) =
[
𝒒
(𝑗)
1+(𝑗−1)(𝑁𝑓−𝑁𝑜)

,𝒒
(𝑗)
2+(𝑗−1)(𝑁𝑓−𝑁𝑜)

, ...,𝒒
(𝑗)
𝑁𝑓+(𝑗−1)(𝑁𝑓−𝑁𝑜)

]
,

with 𝑁𝑜 being the number of overlapping snapshots.
(b) Within each block perform weighted FFT

𝐐̂(𝑗) = 
{
𝐐(𝑗)𝑾 𝑇

}
,

where 𝑾 𝑻 is the matrix of the window weights. Columns of 𝐐̂(𝑗), 𝒒̂(𝑗)
𝑘

are the 𝑗𝑡ℎ realizations of the Fourier mode at the 𝑘𝑡ℎ discrete frequency 
𝑓𝑘 .

2. For each frequency 𝑓𝑘, with 𝑘 = 1, ..., 𝑁𝑓 :
(a) Collect Fourier transform realizations in the matrices

𝐐̂𝑓𝑘
=
√
𝜅
[
𝒒̂
(1)
𝑘
, 𝒒̂

(2)
𝑘
, ..., 𝒒̂

(𝑁𝑏)
𝑘

]
, where 𝜅 =Δ𝑡∕(𝑁𝑏‖𝑾 𝑇 ‖2𝐹 ).

(b) Split 𝐐̂𝑓𝑘
in ̂𝐋𝑓𝑘

and 𝐇̂𝑓𝑘
with robust PCA algorithm (see Algorithm 2). 

Store 𝐇̂𝑓𝑘
if needed.

(c) With the de-noised matrix 𝐋̂𝑓𝑘
calculate

𝐌𝑓𝑘
= 𝐋̂∗

𝑓𝑘
𝐖𝐋̂𝑓𝑘

.

(d) Perform the eigendecomposition of 𝐌𝑓𝑘

𝐌𝑓𝑘
=𝚯𝑓𝑘

𝚲𝑓𝑘
𝚯∗

𝑓𝑘
.

For the 𝑘𝑡ℎ frequency, store de-noised SPOD eigenvalues 𝚲𝑓𝑘
.

(e) Compute de-noised SPOD modes for the 𝑘𝑡ℎ frequency with

𝚽𝑓𝑘
= 𝐋̂𝑓𝑘

𝚯𝑓𝑘
𝚲−1∕2
𝑓𝑘

3. Return 𝚽𝑓𝑘
and 𝚲𝑓𝑘

.

Algorithm 2 Robust PCA algorithm with principal component pursuit 
by ADM (from [21] and [47]).

Given a matrix 𝐐̂𝑓𝑘
and the parameters 𝛼0 and 𝜇:

1. Initialize matrices 𝐇̂𝑓𝑘
, 𝐋̂𝑓𝑘

and Lagrange multipliers matrix 𝐘:

𝐇̂𝑖
𝑓𝑘
= 𝟎,

𝐋̂𝑖
𝑓𝑘
= 𝟎,

𝐘𝑖 = 𝟎.

2. Update matrices

𝐋̂𝑖+1
𝑓𝑘

=  (1∕𝜇 , 𝐐̂𝑓𝑘
− 𝐇̂𝑖

𝑓𝑘
−𝐘𝑖∕𝜇),

𝐇̂𝑖+1
𝑓𝑘

= (𝛼0∕𝜇 , 𝐐̂𝑓𝑘
− 𝐋̂𝑖+1

𝑓𝑘
+𝐘𝑖∕𝜇),

𝐘𝑖+1 =𝐘𝑖 + 𝜇(𝐐̂𝑓𝑘
− 𝐋̂𝑖+1

𝑓𝑘
− 𝐇̂𝑖+1

𝑓𝑘
),

in which operator  is the singular value thresholding operator:

𝐀 =  (𝜏,𝐁) =𝐔(𝜏,𝐒)𝐔𝐻 with [𝐔,𝐒,𝐕] = svd(𝐁),

and  is the shrinkage operator defined as:

𝐀 = (𝜏,𝐁) = 𝑒i𝑎𝑟𝑔(𝐁) max(|𝐁|− 𝜏 , 0) (10)

3. Compute the convergence parameter 𝜚:

𝜚 =
‖𝐐̂𝑓𝑘

− 𝐋̂𝑖+1
𝑓𝑘

− 𝐇̂𝑖+1
𝑓𝑘

‖𝐹‖𝐐̂𝑓𝑘
‖𝐹 . (11)

4. If 𝜚 is greater than an assigned tolerance, go to point (ii), else return 𝐋̂𝑖+1
𝑓𝑘

and 𝐇̂𝑖+1.

𝑓𝑘
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Fig. 1. Comparison between SPOD and robust SPOD reconstructions of a toy signal. Panel (a) reports the analyzed signal; panel (b) contains the perturbed signal with 
salt and pepper noise. Panel (c) reports the SPOD reconstruction by the whole spectrum of 1𝑠𝑡 SPOD mode. Panel (d) and (e) contain the robust SPOD reconstruction 
with de-noising stage before and past FFT, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Algorithm 3 Robust SPOD with principal component pursuit on each 
block.

1. For each data block 𝑗 = 1, ..., 𝑁𝑏:
(a) assemble data matrices

𝐐(𝑗) =
[
𝒒
(𝑗)
1+(𝑗−1)(𝑁𝑓−𝑁𝑜)

,𝒒
(𝑗)
2+(𝑗−1)(𝑁𝑓−𝑁𝑜)

, ...,𝒒
(𝑗)
𝑁𝑓+(𝑗−1)(𝑁𝑓−𝑁𝑜)

]
.

(b) Split 𝐐(𝑗) in 𝐋(𝑗) and 𝐇(𝑗) with RPCA algorithm (see Algorithm 2). Store 
𝐇(𝑗) if needed.

(c) Within each block perform weighted FFT

𝐐̂(𝑗) = 
{
𝐋(𝑗)𝑾 𝑇

}
,

where 𝑾 𝑻 is the matrix of the window weights. Columns of 𝐐̂(𝑗), 𝒒̂(𝑗)
𝑘

are the 𝑗𝑡ℎ realizations of the Fourier mode at the 𝑘𝑡ℎ discrete frequency 
𝑓𝑘 .

2. For each frequency 𝑓𝑘, with 𝑘 = 1, ..., 𝑁𝑓 :
(a) Collect Fourier transform realizations in the matrices

𝐐̂𝑓𝑘
=
√
𝜅
[
𝒒̂
(1)
𝑘
, 𝒒̂

(2)
𝑘
, ..., 𝒒̂

(𝑁𝑏)
𝑘

]
, where 𝜅 =Δ𝑡∕(𝑁𝑏‖𝑾 𝑇 ‖2𝐹 ).

(b) Calculate

𝐌𝑓𝑘
= 𝐐̂∗

𝑓𝑘
𝐖𝐐̂𝑓𝑘

.

(c) Perform the eigendecomposition of 𝐌𝑓𝑘

𝐌𝑓𝑘
=𝚯𝑓𝑘

𝚲𝑓𝑘
𝚯∗

𝑓𝑘
.

For the 𝑘𝑡ℎ frequency, store de-noised SPOD eigenvalues 𝚲𝑓𝑘
.

(d) Compute de-noised SPOD modes for the 𝑘𝑡ℎ frequency with

𝚽𝑓𝑘
= 𝐋̂𝑓𝑘

𝚯𝑓𝑘
𝚲−1∕2
𝑓𝑘

3. Return 𝚽𝑓𝑘
and 𝚲𝑓𝑘

.

2.4. Algorithms differences

To elucidate the differences between the latter two approaches, a 
toy signal denoted as ℎ(𝑥, 𝑡) = cos(𝑥 − 𝜔𝑡), with the angular frequency 
𝜔 = 2𝜋𝑓 and the frequency 𝑓 = 1, has been hereafter considered. The 
4

original signal has been reported in panel (a) of Fig. 1 for different time 
instances with a phase delay of 45◦ (the temporal order of the reported 
curves is black, red, and blue); in 𝑥 = 2 the signal has been set to the 
value cos(2𝜔𝑡) and a black rectangle highlights its location. Perturbing 
the signal with a salt and pepper noise (panel (b)) obtained summing to 
the 0.2% of corrupted data points a value equal to ±2 at each time step; 
one can appreciate the differences in the local dynamics. Despite this 
low perturbation level, the SPOD reconstruction (panel (c)) based on 
the entire first mode already appears particularly noisy. Panels (d) and 
(e) report the robust SPOD application considering the de-noising phase 
before and after the FFT application. As expected, the local dynamics 
introduced in 𝑥 = 2 has been completely removed in panel (d).

If one is not interested in preserving local sparse dynamics, Algo-
rithm 3 is preferred. In the following sections, the latter is employed 
for real-world data, the turbulent jet and the open cavity flow. In ap-
pendix A, a further comparison of the two introduced algorithms appli-
cation onto the turbulent jet data is reported.

3. Examples

3.1. Turbulent jet

The first application considered in this work regards a turbulent jet 
presented by Schmidt et al. [34]. The jet was numerically simulated 
through the unstructured flow solver “Charles” [3] at a subsonic Mach 
number (defined as the ratio between the mean inlet jet velocity 𝑈𝑗

and the speed of sound 𝑎𝑗 ) equal to 𝑀 = 0.4 and Reynolds number 
(𝑅𝑒 =𝑈𝑗𝐷𝑗∕𝜈, with 𝐷𝑗 the nozzle diameter and 𝜈 the kinematic viscos-
ity) of 𝑅𝑒 = 450000; the large-eddy computations include also the nozzle 
geometry where synthetic turbulence combined with a wall model is 
applied to obtain a fully turbulent boundary layer. The data were in-
terpolated onto a structured cylindrical grid of [0, 30] × [0, 6] × [0, 2𝜋], 
respectively, in the axial (𝑥), the radial (𝑟) and the azimuthal (𝜃) direc-
tions.

The analysis considers the pressure field 𝑝, which is decomposed in
𝑝(𝑥, 𝑟, 𝜃, 𝑡) = 𝑝̄(𝑥, 𝑟, 𝜃) + 𝑝′(𝑥, 𝑟, 𝜃, 𝑡), (12)
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Fig. 2. Mean pressure distribution in the turbulent jet. Top panel depicts the temporal mean of the 𝑚 = 0 pressure component (𝑝0), normalized as 𝑝∗ = (𝑝̄0 −
𝑝̄min)∕(𝑝̄max − 𝑝̄min). The bottom panel shows the normalized mean pressure 𝑝̄0 variation along the jet’s axis. ( black, yellow, red, 0 < 𝑝∗ < 1).

Fig. 3. Open cavity flows. Panel (a): geometrical sketch; panel (b): mean streamwise velocity component and streamlines distribution. Data courtesy of Zhang et al. 
[48]. ( blue, cyan, black, yellow, red, −1 < 𝑢̄∕‖𝑢̄‖ < 1).
∞

where (⋅̄) is the long time mean and (⋅)′ represents the fluctuating part. 
Moreover, 𝑝′ is further decomposed in azimuthal Fourier modes

𝑝′(𝑥, 𝑟, 𝜃, 𝑡) =
∑
𝑚

𝑝̂𝑚(𝑥, 𝑟, 𝑡)ei𝑚𝜃, (13)

𝑚 being the azimuthal wavenumber. The top panel of Fig. 2 presents 
the spatial distribution of the mean pressure 𝑝̄0 (𝑚 = 0 Fourier com-
ponent) within the turbulent jet, whereas the bottom panel reports the 
normalized pressure profile along the jet axis. The terms 𝑝̄max and 𝑝̄min
represent the maximum and the minimum of 𝑝̄0 , respectively. The pres-
sure is almost constant in the potential core region (0 < 𝑥∕𝐷𝑗 < 5); then 
it decreases in the developing jet region and finally starts to increase 
near the beginning of the self-similar region (5 < 𝑥∕𝐷𝑗 < 25).

The present analysis is carried out considering only the 𝑚 = 0 Fourier 
component; at each time instance 𝑡𝑖 the state vector 𝒒 contains the eval-
uation of 𝑝̂0 in each point of the domain (𝑥, 𝑟).

3.2. Open cavity flow

The second investigation concerns the flow field within an open cav-
ity, whose measurements have been acquired employing a time-resolved 
PIV technique. The standard SPOD tends to produce noisy outcomes, es-
pecially for non-leading modes. As demonstrated later in this paper, the 
application of robust SPOD enhances these modes’ smoothness and phys-
ical interpretability. The data-set reported in [48] has been considered 
here limited to a free stream Mach number (defined as the ratio be-
tween the incoming flow velocity 𝑈𝑐 and the speed of sound 𝑎𝑐) equal 
to 𝑀 = 0.6.

Panel (a) of Fig. 3 reports a sketch of the rectangular cavity. It has 
a length of 𝐿𝑐 = 158.8 mm, a depth of 𝐷𝑐 = 26.4 mm, and a width of 
𝑊𝑐 = 101.6 mm; the resulting nondimensional ratios are 𝐿𝑐∕𝐷𝑐 = 6 and 
𝑊𝑐∕𝐷𝑐 = 3.85.

As depicted in panel (b) of Fig. 3, which illustrates the temporal 
mean distribution of the streamwise velocity component, the incoming 
boundary layer separates at the leading edge of the cavity, forming a 
shear layer. This shear layer is convectively unstable, leading to the 
generation of Kelvin-Helmholtz instability waves. These waves travel 
downstream, impinge on the back edge of the cavity, and partially 
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reflect as acoustic waves. Then, they propagate upstream and lock-in 
with the Kelvin-Helmholtz instability at the leading edge, completing 
a feedback cycle [48,40,39]. This feedback process results in an aeroa-
coustic resonance whose main tones are known as Rossiter modes [31]. 
The characteristic dimensionless frequencies (in terms of the Strouhal 
number, 𝑆𝑡) associated with these modes can be predicted using the 
empirical relation from [16]:

𝑆𝑡𝑛 =
𝑓𝑛𝐿𝑐

𝑈∞
= 𝑛− 𝑎

1∕𝜅𝑟 +𝑀∕
√
1 + (𝛾 − 1)𝑀2∕2

. (14)

Here, 𝑈∞ represents the freestream velocity, 𝜅𝑟 = 0.65 is an empir-
ical coefficient, 𝑎 = 0.38 is the phase lag, and 𝑛 = 1, 2, … corresponds 
to the Rossiter mode index. Equation (14) predicts the dimensionless 
frequencies 𝑆𝑡𝑛 associated with the resonance modes in open cavities.

4. Application to fluid flows

4.1. Turbulent jet

The standard SPOD algorithm is initially used to determine the prin-
cipal frequencies of the turbulent jet, also reporting the main coherent 
structures of the 1𝑠𝑡 and 2𝑛𝑑 mode; later, the data is artificially corrupted 
by comparing the performance of the SPOD and robust SPOD procedures 
separately.

The snapshots have been sampled with a dimensionless time equal 
to 0.2, and a total of 𝑁𝑡 = 10000 snapshots were considered. For the 
SPOD analysis, 𝑁𝑓 = 128 snapshots have been used, considering a Ham-
ming temporal window and a 50% overlap among blocks. This resulted 
in 𝑁𝑏 = 155 blocks. It’s worth noting that in this particular test, where 
only the 𝑝̂0 component was considered, the spatial weights were de-
termined by considering only the integration quadrature, following the 
approach outlined by Schmidt and Colonius [36]. Fig. 4 displays the 
SPOD spectrum as a function of the Strouhal number 𝑆𝑡 = 𝑓𝐷𝑗∕𝑈𝑗 . The 
most prominent modal separation is observed at 𝑆𝑡 ≈ 0.4. Fig. 5 ex-
hibits the real part of the first two SPOD modes at different values of 
the Strouhal number. The pressure field forms a compact wavepacket 
in the initial shear-layer region of the jet, similar to a Kelvin–Helmholtz 
shear-layer instability as shown by Schmidt et al. [34].

To assess the robustness of the SPOD method, artificial data cor-

ruption was introduced by randomly selecting a certain percentage of 
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Fig. 4. SPOD spectrum for the turbulent jet. The red-shaded area highlights the separation between the first and the second mode.

Fig. 5. Real part of 1𝑠𝑡 and 2𝑛𝑑 mode at different 𝑆𝑡. Modes have been normalized with respect to their maximum. In all the panels, the abscissa and ordinate are 
the dimensionless axial coordinate 𝑥∕𝐷𝑗 and radial coordinate 𝑟∕𝐷𝑗 , respectively, omitted for clarity. (0 < 𝑥∕𝐷𝑗 < 20 and 0 < 𝑟∕𝐷𝑗 < 3, blue, cyan, black, 
yellow, red, −1 < 𝜙𝑓 ∕‖𝜙𝑓 ‖∞ < 1).
𝑘 𝑘

corrupted data points across the spatial domain at each time step. The 
pressure field hereafter represented is limited to the shear layer region 
only, 𝑥∕𝐷𝑗 < 4, with a grid of 𝑛𝑥 × 𝑛𝑦 = 137 × 45 = 6115 points. Note 
that the robust SPOD algorithm was unaware of the specific locations 
of these corrupted data points. Two kinds of data corruption have been 
considered:

• Gaussian noise with zero mean and 4𝑝max variance, 𝑝max being the 
maximum of the 𝑝̂0 component;

• Salt and pepper noise with values of ±4𝑝max.

These noises introduce a high perturbation in the 𝐿2 norm of the flow 
even with a low percentage of corrupted data points. It is important to 
note that if salt and pepper noise is added to the entire 3D distribution, 
the averaging process inherent in computing the 𝑚 = 0 mode would 
alter the noise characteristics. The resulting noise will no longer have 
the distinct characteristics of salt and pepper noise. Instead, it would 
resemble a Gaussian-like distribution due to the central limit theorem.

The differences between the two techniques are highlighted in Fig. 6
which reports a comparison between the coherent structures of the 1𝑠𝑡
mode at different 𝑆𝑡 values, computed with the SPOD and robust SPOD 
technique; the results refer to the salt and pepper corruption of the 10%
of the data and consider different values of 𝛼, defined in Eq. (8). Panels 
in the first line contain the real part of the leading SPOD mode at 𝑆𝑡 =
0.4, 0.8, and 1.2, considering the corrupted data; they show how a quite 
small percentage of corrupted data results in noisy modes, particularly 
at higher frequencies. The use of robust SPOD relevantly improves the 
modes’ quality; the influence of the 𝛼 parameter, as discussed in [33], 
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can be observed regarding noise filtering. The higher the 𝛼, the lower 
the filtering effects. The value 𝛼 = 2 gives the modes corresponding to 
the uncorrupted configuration (not shown herein); see [34].

The effectiveness of the robust SPOD technique is also confirmed 
with Gaussian noise. Indeed, Fig. 7 clearly shows how the robust SPOD 
algorithm enhances the modes’ quality and accuracy.

To quantify the validity of the robust SPOD, the relative error, de-
noted as 𝜀𝑓𝑘, is introduced as:

𝜀𝑓𝑘 =
‖𝝓𝑐𝑜𝑟𝑟

𝑓𝑘
−𝝓𝑓𝑘

‖2‖𝝓𝑓𝑘
‖2 , (15)

in which 𝝓𝑓𝑘
denotes the original SPOD modes and 𝝓𝑐𝑜𝑟𝑟

𝑓𝑘
refers to the 

modes obtained from corrupted data using either SPOD or robust SPOD. 
This relative error measures the accuracy and reliability of the robust 
SPOD technique. The dependency of 𝜀𝑓𝑘 with respect 𝛼 and 𝑆𝑡 has been 
reported in Figs. 8 and 9, respectively. Fig. 8 refers to two different 
types of noise, various percentages of corrupted data points, and differ-
ent values of 𝛼, specifically at the leading frequency 𝑆𝑡 = 0.4. Solid lines 
in both panels represent the 𝜀𝑓𝑘 at several 𝛼, color-coded according to 
the percentage of corrupted data points. The dashed lines represent the 
SPOD error, specifically when 𝛼 approaches infinity. Each curve exhibits 
its unique minimum for 𝛼, but regardless of the error type or the per-
centage of corrupted data points, as in [33], the lowest values of 𝜀𝑓𝑘
are found when 𝛼 is O(1), approximately in the range of 1 ∼ 3. Fig. 9, 
instead, reports the results for the salt and pepper noise only, highlight-
ing the influence of the de-noising parameter 𝛼 on the mode error 𝜀 for 
the first four modes as a function of 𝑆𝑡. The effect of the de-noising pa-
rameter 𝛼 on the mode error varies with the frequency of interest; the 

relative performance of robust SPOD tends to be more pronounced and 
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Fig. 6. Comparison between SPOD and robust SPOD leading modes at different 𝑆𝑡. Salt and pepper noise with the 10% of corrupted data points. Panels in the first 
line refer to SPOD. Other rows show the effect of the de-noising parameter 𝛼 on the robust SPOD modes. Data corruption modeled as salt and pepper noise ±4𝑝max. 
In all the panels, the abscissa and ordinate are the dimensionless axial coordinate 𝑥∕𝐷𝑗 and radial coordinate 𝑟∕𝐷𝑗 , respectively, omitted for clarity. Field variables 
have been normalized with respect to their maximum. (0 < 𝑥∕𝐷𝑗 < 4 and 0 < 𝑟∕𝐷𝑗 < 1.5, blue, cyan, black, yellow, red, −1 < 𝜙𝑓𝑘

∕‖𝜙𝑓𝑘
‖∞ < 1).

Fig. 7. Comparison between SPOD and robust SPOD leading modes at different 𝑆𝑡. Gaussian noise with the 10% of corrupted data points. Panels in the first line refer 
to SPOD modes of corrupted data. Other rows show the effect of the de-noising parameter 𝛼 on the robust SPOD modes. Data corruption is modeled as Gaussian 
noise with ±4𝑝max variance. In all the panels, the abscissa and ordinate are the dimensionless axial coordinate 𝑥∕𝐷𝑗 and radial coordinate 𝑟∕𝐷𝑗 , respectively, 
omitted for clarity. Field variables have been normalized with respect to their maximum. (0 < 𝑥∕𝐷𝑗 < 4 and 0 < 𝑟∕𝐷𝑗 < 1.5, blue, cyan, black, yellow, red, 
7

−1 < 𝜙𝑓𝑘
∕‖𝜙𝑓𝑘

‖∞ < 1).
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Fig. 8. Relative error 𝜀 at 𝑆𝑡 = 0.4 computed with SPOD and robust SPOD techniques for different levels and types of noise, considering several values of 𝛼. Solid 
lines represent the 𝜀 at several 𝛼, color-coded according to the corrupted data points percentage. Dashed lines represent the SPOD error, namely 𝛼 approaching 
infinity.

Fig. 9. Effect of de-noising parameter 𝛼 on the error 𝜀𝑓𝑘 . Panels (a) to (d) go from the 1𝑠𝑡 to the 4𝑡ℎ SPOD mode. Salt and pepper noise with 10% of corrupted data 

points.

advantageous at higher 𝑆𝑡 values. For this case, the optimal choice of 𝛼
is 2.

The SPOD spectrum is strongly affected by 𝛼. Fig. 10 reports both 
the SPOD spectra of the clean (red lines) and corrupted (dashed magenta 
curves) configurations and those obtained by the robust SPOD at various 
filter levels (black curves). Even in a limited number of data points, 
the introduction of noise significantly perturbs the spectrum. At high 𝛼
values, the robust SPOD produces precisely the same spectrum of the 
SPOD technique; a reduction of 𝛼 is accompanied by a decrease in the 
noise levels and, thus, the robust spectrum tends towards the clean one 
(the optimum is at 𝛼 = 2). This optimal value balances noise reduction 
8

and preservation of relevant flow features.
Finally, robust SPOD can also be a valuable tool for de-noising data 
and reconstructing the signal from de-noised modes. This ability is re-
ported in Fig. 11, which contains a snapshot of the original pressure fluc-
tuation (left panel, first row), the corresponding perturbed field (central 
panel, first row) considering the 10% of corrupted data points, the SPOD 
reconstruction (right panel, first row) and various robust SPOD recon-
structions (panels in the second row). Based on the entire spectrum of 
the first three modes, the SPOD reconstruction shows noticeable noise 
levels. Lower panels demonstrate the de-noising effect achieved by ad-
justing the parameter 𝛼, which increases as 𝛼 reduces. For values lower 
than 5, the reconstructed snapshots exhibit a remarkable noise reduc-
tion, leading to a clearer representation of the underlying flow struc-

tures.
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Fig. 10. Effect of de-noising parameter 𝛼 on the robust SPOD spectrum. Panel (a) refers to 1𝑠𝑡 SPOD mode, and panel (b) to the 2𝑛𝑑 one. Black lines represent the 
robust SPOD spectra, and red lines the original SPOD spectrum. Dashed magenta lines are the SPOD spectra of corrupted data. Salt and pepper noise with 10% of 
corrupted data points.

Fig. 11. De-noising with robust SPOD. The left panel, first row, contains a 𝑝̂0 sample snapshot. The central panel, first row, shows the 10% of corrupted data points 
with salt and pepper noise. The right panel, first row, reports an attempt at de-noising with SPOD by employing the spectrum of the first three modes. Panels in the 
second row represent the robust SPOD reconstruction by employing the spectrum of all the robust SPOD modes, highlighting the de-noising effect of the parameter 
𝛼. (0 < 𝑥∕𝐷𝑗 < 4 and 0 < 𝑟∕𝐷𝑗 < 1.5).

Fig. 12. SPOD spectrum of open cavity flows from [48]. Case with 𝑀 = 0.6. Vertical dashed lines represent Rossiter frequencies from Eq. (14). The red shaded area 
highlights the separation between the first and the second mode.
4.2. Open cavity flow

The open flow cavity data-set consists of TR-PIV data by Zhang et al. 
[48]. Velocity components were measured on a uniform grid with di-
mensions 𝑛𝑥×𝑛𝑦 = 156 ×55 and with a sampling frequency of 𝑓𝑠 = 16000
Hz. The analysis is based on 𝑁𝑡 = 16000 snapshots, with 𝑁𝑏 = 30 blocks 
and 𝑁𝑓 = 1024 frequencies. The corresponding spectrum has been re-
ported in Fig. 12; a good agreement between the leading frequencies and 
the Rossiter frequencies, predicted by Eq. (14) and indicated by vertical 
dashed lines, can be appreciated.

Fig. 13 presents the real part of the first SPOD mode at the two lead-
ing frequencies, 𝑆𝑡 = 0.75 and 𝑆𝑡 = 1.22. Panels (a) and (b) show the 
streamwise component of the mode, while panels (c) and (d) report the 
transversal component. The spatial structures at higher frequencies ex-
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hibit finer scales than those at lower frequencies. Panels (d) and (e), 
instead, contain the magnitude of velocity mode gradients, defined as 
the square root of the sum of squares of the individual velocity mode 
gradient components:

𝜉𝑓𝑘 (𝑥, 𝑦) =

√( 𝜕𝜙𝑢𝑓𝑘
𝜕𝑥

)2
+
( 𝜕𝜙𝑢𝑓𝑘

𝜕𝑦

)2
+
( 𝜕𝜙𝑣𝑓𝑘

𝜕𝑥

)2
+
( 𝜕𝜙𝑣𝑓𝑘

𝜕𝑦

)2
. (16)

It provides crucial information about the spatial distribution and in-
tensity of flow structures within the open cavity. This field variable will 
provide valuable insights for analyzing modes smoothness that will be 
carried out hereafter.

For this case, the robust SPOD analysis is based on the Algorithm 3, 
with a de-noising parameter 𝛼 = 1. Fig. 14 presents the spectra obtained 
from both SPOD (red lines) and robust SPOD (black lines) analysis. The 
robust SPOD analysis primarily focuses on reducing noise at high fre-

quencies, meaning that the obtained reconstructed signals exhibit less 
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Fig. 13. Leading SPOD modes of open cavity flows data from Zhang et al. [48]. Panel (a): real part of leading SPOD mode of 𝑢 at 𝑆𝑡 = 0.75. Panel (b): real part of 
leading SPOD mode of 𝑢 at 𝑆𝑡 = 1.22. Panel (c): real part of leading SPOD mode of 𝑣 at 𝑆𝑡 = 0.75. Panel (d): real part of leading SPOD mode of 𝑣 at 𝑆𝑡 = 1.22. Panel 
(e): magnitude of velocity mode gradient 𝑚𝑓𝑘

at 𝑆𝑡 = 0.75. Panel (f): magnitude of velocity mode gradient 𝜉𝑓𝑘 at 𝑆𝑡 = 0.75. White lines are the streamlines pattern 
viewed by an observer moving with the mean flow. Field variables have been normalized with respect to their maximum.

Fig. 14. Comparison between the SPOD spectrum (black) and the robust SPOD one (red) for the cavity flow. The reference blue dashed curve represents 𝑆𝑡−5∕3. 
Vertical dashed lines represent Rossiter frequencies. Note that for robust SPOD the Algorithm 3 has been employed.
noise contamination than those obtained from SPOD, particularly in the 
higher frequency range. To provide a reference for the spectral behav-

ior, the blue dashed line represents the Kolmogorov power law (𝑆𝑡−5∕3), 
which is a well-established representation of the energy spectrum in 
turbulent flows and serves as a benchmark for assessing the spectral 
characteristics of the analyzed data [46,18,30], showing how the curve 
tends to align with this well-known benchmark. As expected, the power 
law scaling is not valid at low frequencies, where relatively larger co-

herent structures characterize the flow.

Figs. 15 and 16 compare the leading 𝑢 and 𝑣 modes, respectively, 
obtained from both SPOD and robust SPOD analysis. The comparison is 
done for the first four Rossiter frequencies and a generic high Strouhal 
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number (𝑆𝑡 = 4).
It is worth noting that applying robust SPOD leads to considerable 
improvements in the smoothness of the extracted modes. Specifically, 
SPOD already performs well for the first mode at the leading frequen-
cies (𝑆𝑡 = 0.75 and 𝑆𝑡 = 1.70), producing relatively smooth modes. 
However, for the remaining modes, the employment of robust SPOD 
significantly enhances the smoothness of the modes. Moreover, at high 
frequencies, such as 𝑆𝑡 = 4, the coherent structures extracted with the 
SPOD technique are not easily recognizable, whereas the robust SPOD 
modes exhibit clearer and more distinguishable coherent structures. The 
structures extracted with RSPOD are in accordance with literature stud-
ies [39,24,37,20,22].

To quantify the roughness of the modes, following [13], it is con-
venient to compute the spatial standard deviation of the velocity mode 

gradient magnitude defined in Eq. (16):
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Fig. 15. Comparison between SPOD and robust SPOD leading 𝑢 modes at different 𝑆𝑡. Field variables have been normalized with respect to their maximum. Note that 
for robust SPOD the Algorithm 3 has been employed. De-noising parameter 𝛼 = 1. In all the panels, the abscissa and ordinate are the dimensionless axial coordinate 
𝑥∕𝐷𝑐 and radial coordinate 𝑟∕𝐷𝑐 , respectively, omitted for clarity. ( blue, cyan, black, yellow, red, −1 < 𝜙𝑓 ∕‖𝜙𝑓 ‖∞ < 1).
𝜎𝑓𝑘 = std(𝜉𝑓𝑘 ) =

√√√√√ 1
𝑛𝑥𝑛𝑦

𝑛𝑥∑
𝑖=1

𝑛𝑦∑
𝑗=1

(
𝜉𝑓𝑘 (𝑥𝑖, 𝑦𝑗 ) − 𝜉𝑓𝑘

)2
(17)

where 𝜉𝑓𝑘 = 1
𝑛𝑥𝑛𝑦

∑𝑛𝑥
𝑖=1

∑𝑛𝑦

𝑗=1 𝜉𝑓𝑘 (𝑥𝑖, 𝑦𝑗 ). Fig. 17 displays the 𝜎𝑓𝑘 values 
for the leading four modes obtained from both SPOD and robust SPOD 
analysis. Comparing the two sets of modes, it is evident that the robust 
SPOD modes exhibit greater smoothness, particularly at high Strouhal 
numbers (𝑆𝑡). The lower values of 𝜎𝑓𝑘 for robust SPOD modes indicate 
reduced roughness and enhanced coherence in flow field structures.

5. Discussion and conclusions

This work represents a step forward in analyzing experimental mea-
surements, where corrupted data and outliers can influence the extrac-
tion of coherent structures using traditional modal analysis techniques. 
This process is much more challenging at higher frequencies, where 
noise and uncertainties seriously affect data integrity.

A novel approach overcomes these limitations, the robust spectral 
proper orthogonal decomposition, here introduced, incorporating the 
robust principal component analysis within the SPOD algorithm. The 
investigation focused on evaluating the potential of this innovative 
method in improving the extraction of coherent structures from com-
11

plex data-sets. The effectiveness of robust SPOD was properly tested 
𝑘 𝑘

through two distinct fluid dynamics problems: the subsonic jet, inves-
tigated through numerical simulations, and the flow within an open 
cavity, analyzed through experimental measurements.

This work presents two alternative algorithms: one removes sparse 
noise on the realizations of Fourier modes, while the other does it di-
rectly on the snapshot blocks. The first approach preserves possible 
sparse local dynamics of the flow, while the second is preferred when 
prioritizing the smoothness of the modes over such preservation. It’s im-
portant to note that robust PCA performs better when a high number of 
snapshots are considered for this stage. This implies that given the num-
ber of snapshots available for analysis and once the optimal number of 
frequencies has been chosen along with the blocks overlap and subse-
quently the number of blocks, if the number of blocks greatly exceeds 
the number of snapshots per block, one should prefer Algorithm 1, while 
if the opposite holds true, Algorithm 3 is preferable.

A crucial parameter for robust SPOD, in both algorithms, is the de-
noising parameter 𝛼. In this work, it has been highlighted that the best 
practice for choosing 𝛼 falls within the interval of 1 ∼ 3, confirming the 
literature’s results suggesting that the optimal 𝛼 is of order 1.

Robust SPOD demonstrates superior performance by providing effec-
tively converged and physically interpretable modes compared to those 
of classical SPOD, especially at high frequencies. The new technique 
has been proved a powerful tool for data de-noising as well; indeed, by 

reconstructing signals from de-noised modes, it was demonstrated that 
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Fig. 16. Comparison between SPOD and robust SPOD leading 𝑣 modes at different 𝑆𝑡. Field variables have been normalized with respect to their maximum. Note that 
for robust SPOD the Algorithm 3 has been employed. De-noising parameter 𝛼 = 1. In all the panels, the abscissa and ordinate are the dimensionless axial coordinate 
𝑥∕𝐷𝑐 and radial coordinate 𝑟∕𝐷𝑐 , respectively, omitted for clarity. ( blue, cyan, black, yellow, red, −1 < 𝜙𝑓𝑘

∕‖𝜙𝑓𝑘
‖∞ < 1).
12

Fig. 17. Spatial standard deviation of the velocity mode gradient magnitude. Comparison between SPOD and robust SPOD.
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Fig. A.18. Comparison between robust SPOD algorithms using the turbulent jet data with a synthetic cosine signal at 𝑥∕𝐷𝑗 = 0.3. Salt and pepper noise with 
the 0.2% of corrupted data points has been considered. In all the panels, the abscissa and ordinate are the dimensionless axial coordinate 𝑥∕𝐷𝑗 (0 < 𝑥∕𝐷𝑗 < 1) 
and radial coordinate 𝑟∕𝐷𝑗 (0 < 𝑟∕𝐷𝑗 < 0.7), respectively, omitted for clarity. The left panel, first row, shows the leading SPOD mode at 𝑆𝑡 = 1.2 near the inlet 
section. The right panel, first row, displays the same SPOD mode obtained from the corrupt data-set. Panels in the second row illustrate the application of the two 
robust SPOD algorithms with the same denoising parameter 𝛼 = 2. Field variables have been normalized with respect to their maximum. ( blue, white, red, 
−1 < 𝜙𝑓 ∕‖𝜙𝑓 ‖∞ < 1).
𝑘 𝑘

robust SPOD mitigates the detrimental effects of noise and uncertainties, 
facilitating the data interpretation.

In conclusion, the robust SPOD technique represents a significant ad-
vancement in the field of modal analysis, in particular for the treatment 
of experimental measurements. It not only addresses the challenges 
posed by corrupted data and outliers but also extends its utility to remov-
ing data noise and improving the reliability of results. The promising 
outcomes from both numerical and experimental data-set suggest that 
robust SPOD holds exciting potential for advancing the understanding 
of complex fluid dynamics phenomena and improving the robustness of 
modal analysis in various practical applications.
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Appendix A. Different robust SPOD algorithms

This section compares the effects of the different robust SPOD al-
13

gorithms on the turbulent jet data (analyzed in Section 4.1). At the 
location 𝑥∕𝐷𝑗 = 0.3 along the axis 𝑟 = 0, a synthetic cosine signal with 
a forcing frequency corresponding to 𝑆𝑡 = 1.2 has been implemented. 
The left panel, first row, of Fig. A.18 presents a zoomed-in view near 
the inlet section (0 < 𝑥∕𝐷𝑗 < 1) of the leading pressure SPOD mode at 
𝑆𝑡 = 1.2. This mode exhibits the oscillating pressure pattern previously 
observed in the paper and captures the synthetic signal. Subsequently, 
salt and pepper noise is introduced to corrupt only 0.2% of the data-set. 
The right panel, first row, of the figure displays the same SPOD mode 
obtained from the corrupt data-set. While the synthetic signal remains 
detectable, the noise introduced by such a low number of corrupted data 
points results in significantly noisier modes. Panels in the second row 
represent the application of both robust SPOD algorithms, both with the 
same denoising parameter 𝛼 = 2. It is evident that Algorithm 1, while 
providing less smooth modes, preserves the local sparse dynamics; on 
the other hand, Algorithm 3 should be preferred if local behaviors are 
not of primary interest.
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