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Radial basis function-finite differences (RBF-FD) are used to solve the incompressible
Navier-Stokes equations on scattered nodes. We present a semi-implicit fractional-step method
that uses a staggered grid arrangement. The RBF-QR method devised by Fornberg and Piret
[1] is used to obtain theRBF-FDweights for the spatial derivatives. We propose a rigorous error
analysis strategy to identify optimal combinations of the shape parameter, n , and the stencil size,
=. Amodifiedwavenumber analysis shows that the accuracy of theRBFdifferentiationmatrices
based on the optimal parameters is comparable to 4th-order Padé-type finite differences, for
bothfirst and secondderivatives. The internal flow in a lid-driven cavity is studied as an example.
We demonstrate that stable solutions are obtained without the need for hyperviscosity.

I. Nomenclature

U, V = grid indices
G, G	 = interpolation matrices
JL = global RBF-based differentiation matrix
%L = local RBF-based differentiation matrix
n = shape parameter
ΔA = characteristic distance
ΔC = time step
: = wavenumber
:∗ = modified wavenumber
_ = RBF coefficient
L = linear operator
<, = = local stencil size
", # = total amount of nodes
? = pressure
q(A), k(A) = radial functions
Re = Reynolds number
D = horizontal velocity
E = vertical velocity
F = RBF weights
x = node location

II. Introduction
The radial basis functions (RBFs) method is a flexible tool to approximate functions on scattered nodes. A

shape parameter describes the flatness of a smooth radial function and significantly impacts accuracy and numerical
conditioning. The RBF methodology was originated from the idea of scattered data interpolation by Hardy [2]. The
pioneering work by Powell [3] acknowledges that the interpolation matrices of Gaussian RBFs are nonsingular regardless
of the shape parameters. The dependence of the interpolation error on the shape parameters is studied by Larsson and
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Fornberg [4] both theoretically and numerically. The idea of incorporating RBFs and the classical finite difference (FD)
method was first proposed in a conference presentation by Tolstykh [5]. The so-called RBF-FD method generalizes the
classical FD methods to arbitrary node layouts by approximating the desired function based on polyharmonic RBFs.
Since good geometric flexibility and computational efficiency are achieved, the RBF-FD method is highly competitive
to other high-order spectral methods and has been applied to solve partial differential equations (PDEs) on unstructured
meshes. Flyer and Wright [6] studied the shallow water flows on a sphere based on the RBF-FD method and gave
comparisons to other spectral element methods. Later, the numerical stability of this algorithm is improved by Flyer et al.
[7] through the implementation of hyperviscosity [8]. When the radial function is nearly flat, the RBF discretizations
suffer from the ill-conditioning of the interpolation matrices. To overcome this problem, Fornberg and Piret [1] proposed
a numerically stable scheme for nodes on the surface of a sphere, which utilizes the QR-factorization to convert the
original basis functions to a well-conditioned base. This so-called RBF-QR method is then generalized by Fornberg
et al. [9] for arbitrary scattered nodes in up to three dimensions using Gaussian RBFs. As an extension, Larsson et al.
[10] investigated the use of the RBF-QR approach for computing differentiation matrices and demonstrated the results
by solving a two-dimensional Poisson’s equation in an irregular domain. Fornberg and Flyer [11] summarized the
procedure for solving PDEs with the RBF-based methods and presented different test cases, including the compressible
Navier-Stokes equations. In this work, we implement the RBF-QR method to approximate the spatial derivatives based
on an unstructured staggered grid, introduced next.

Staggered-grid avoids numerical instability from odd-even decoupling, a discretization error occurring on collocated
grids, by arranging different variables at different locations. The choice of a staggered grid is natural for a finite
volume method, where the flux is defined across the cell edge. Several finite volume methods with different staggering
arrangements successfully solved incompressible Navier-Stokes equations on unstructured meshes in previous works.
For example, Despotis and Tsangaris [12], Hwang [13, 14], Rida et al. [15] located the velocities at the middle of a
cell’s faces and pressure at the center of the cell with unstructured triangular meshes; Thomadakis and Leschziner [16]
proposed an unstructured staggered grid with the velocity at the vertex of the cell and the pressure at the cell centroid;
Shu et al. [17] switched the previous arrangement to have pressure at the vertex of cell and velocity at the cell centroid.
We present a different staggering strategy in this work, which evaluates the pressure at the vertex of the cell and velocity
at the cell interface. Rather than using the finite volume method, we take advantage of the RBF discretizations to
compute differentiation matrices bases on the obtained scattered nodes.

Error analysis for RBF is not straightforward and is often done in a problem-specific manner. A large amount of
works, most empirically, has been devoted to investigating optimal parameters for RBFs, including node arrangement,
basis function, shape parameter, and stencil size (see e.g. [2, 18–22]). In this work, we propose a rigorous error analysis
to optimize the RBF-QR method based on the idea of modified wavenumber known from classical finite difference [23],
which is a measure of accuracy at different wavenumbers. The modified wavenumber analysis is widely used to examine
the truncation error of different finite different methods and is also adapted for unstructured-grid schemes, see e.g. Park
and Mahesh [24], Nishikawa [25]. Based on sinusoidal test functions, we establish the use of the nondimensionalized
shape parameter and stencil size as appropriate parameterizations of the optimization. Furthermore, the accuracy of the
optimal combinations is quantified by the modified wavenumber analysis on the unstructured staggered grid. Finally, the
comparisons are made to well-established Padé type schemes.

This paper is organized as follows. §III gives a brief review of the RBF-QR method. §IV describes the generation of
the unstructured staggered grid using the Matlab algorithm DistMesh [26]. §VI establishes the error analysis and the
obtained optimal parameters. As an example, the lid-driven cavity problem is explored in §VII without implementing
hyperviscosity. The results are compared to the benchmark data provided by Ghia et al. [27]. Finally, §VIII concludes
and summarizes the paper.

III. Radial basis functions (RBFs)
The method of radial basis functions (RBFs) approximates a given function 5 (x) using a set of smooth radial

function q(A). The idea of RBF is to seek the interpolant

B(x) =
=∑
9=1
_ 9q(‖x − x 9 ‖) (1)

such that B(x8) = 5 (x8) for 8 = 1, 2, · · · =, where {x}=
9=1 is a set of scattered nodes, and ‖ · ‖ denotes the standard

Euclidean norm. Here, the local stencil size = can be different from the total number of grid points # . The interpolation
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coefficients _1, · · · , _= can be found by solving the linear system problem
q(‖x1 − x1‖) q(‖x1 − x2‖) · · · q(‖x1 − x=‖)
q(‖x2 − x1‖) q(‖x2 − x2‖) · · · q(‖x2 − x=‖)

...
...

...

q(‖x= − x1‖) q(‖x= − x2‖) · · · q(‖x= − x=‖)

︸                                                                   ︷︷                                                                   ︸
G


_1

_2
...

_=


=


5 (x1)
5 (x2)
...

5 (x=)


, (2)

where G is the interpolation matrix. The obtained RBF interpolant B(x) can then be used to approximate the given
function function 5 (x).

A. RBF-FD method
The use of RBFs can be applied to compute differentiation matrices based on the function values 5 (x) at the desired

stencils. Using the idea from the standard finite difference (FD) method, which approximates the derivative as a linear
combination of the data values at the node points, we seek a set of weights F 9 such that

L 5 (x0) =
=∑
9=1
F 9 5 (x 9 ), (3)

where L is a given linear operator. By approximating the function value 5 (x) by the RBF interpolant B(x), defined in
equation (1), the corresponding weight vector w = (F1, · · · , F=)) can be obtained by solving a linear system problem

 G



F1

F2
...

F=


=



Lq(‖x − x1‖)
��
x=x0

Lq(‖x − x2‖)
��
x=x0

...

Lq(‖x − x=‖)
��
x=x0


. (4)

This so-called RBF-FD method, a generalization of the FD method, does not require structured mesh and improves
geometric flexibility significantly.

In this work, we use the Gaussian radial basis functions, i.e., q(A) = e−(n A )2 . Here, n is the shape parameter, which
describes the flatness. The infinite smoothness of the Gaussian functions guarantees the basis functions are continuous
in any derivatives. Furthermore, Fornberg and Flyer [11] showed that the interpolation matrix G is always non-singular
if Gaussian RBFs are used. In practice, however, the matrix G can still be ill-conditioned when near-flat RBFs are used,
i.e., n → 0. To overcome this problem, the RBF-QR method proposed by Fornberg and Piret [1] is often used, which
implements a basis conversion to improve the conditioning, described next.

B. RBF-QR method
The basic idea of the RBF-QR method is to expand the original Gaussian RBFs to a set of well-conditioned basis

functions {+8 (x)}<8=1 with < ≥ =, which spans the same function space. For general stencils, the new basis functions
can be selected as combinations of polynomial powers, Chebyshev polynomials, and trigonometric functions [9]. In
matrix notation, we have

�(x) =


q(‖x − x1‖)
q(‖x − x2‖)

...

q(‖x − x=‖)


=


21 (x1) · · · 2< (x1)
...

...

21 (xn) · · · 2< (xn)

︸                          ︷︷                          ︸
I


n ^1

. . .

n ^<

︸               ︷︷               ︸
K


+1 (x)
+2 (x)
...

+< (x)

︸    ︷︷    ︸
\ (x)

, (5)

where I is a $ (1) coefficient matrix, and K is a diagonal matrix with increasing powers of n , i.e. ^1 ≤ · · · ≤ ^<. The
QR-factorization of the coefficient matrix leads to I = WX, where W is unitary and X is upper triangular. The new
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basis functions are obtained as

	(x) =


k(‖x − x1‖)
k(‖x − x2‖)

...

k(‖x − x=‖)


= K−1

= W∗�(x) = K−1
= XK\ (x), (6)

where K−1
= denotes the first = × = part of K. Here, the matrix K−1

= XK is upper triangular and well-conditioned. The
main diagonal of this matrix only contains $ (1) elements. The new basis functions 	(x) improve the conditioning, and
remain the same function space as the original RBFs set. The linear system problem shown in equation (4) can be
written as 

| | |
	(x1) 	(x2) · · · 	(x=)
| | |

︸                                    ︷︷                                    ︸
G	


F1

F2
...

F=


=



Lk(‖x − x1‖)
��
x=x0

Lk(‖x − x2‖)
��
x=x0

...

Lk(‖x − x=‖)
��
x=x0


. (7)

The weight vector w can then be calculated easily without inverting a nearly singular matrix. Readers are referred to
Fornberg and Piret [1], Fornberg et al. [9] and Larsson et al. [10] for more details. The numerical implementation
provided in Larsson et al. [10] is used in this work.

C. Global Jacobians
Assume the given domain are discretized by two different sets of scattered nodes, {x (1)

8
}#
8=1 and {x

(2)
9
}"
9=1. We seek

a set of differentiation matrices J (U,V)L , which approximates the derivative L 5 (x (U) ) based on the function values at
node-set V as J (U,V)L 5 (x (V) ), for U, V = 1, 2. For example, the differentiation matrix J (2,1)L satisfies


F11 F12 · · · F1#

F21 F22 · · · F2#
...

...
...

F"1 F"2 · · · F"#

︸                               ︷︷                               ︸
J (2,1)L


5 (x (1)1 )
5 (x (1)2 )
...

5 (x (1)
#
)


=


L 5 (x (2)1 )
L 5 (x (2)2 )

...

L 5 (x (2)
"
)


. (8)

For the 9 th row of the matrix J (2,1)L , 9 = 1, 2, · · · , ", we select the stencil for node x (2)
9

as the nearest = � # nodes
{x (1)

81
, x (1)

82
· · · , x (1)

8=
}. The corresponding weights F 981 , · · · , F 98= can then be obtained from equation (7), and the rest

of the weights are set to be zero. The resulting assembled matrix, J (2,1)L , is sparse with " × = nonzero elements.
In this work, we implement the RBF–QR method to construct the global spatial derivatives for flow simulations.

Discretization of the computational domain and the numerical scheme used for the evolution of incompressible flows
are discussed in the following sections.

IV. Spatial Discretization
To avoid numerical instabilities in the flow simulations, we implement the RBF-QR method on an unstructured

staggered grid, constructed using a single set of scattered nodes. We first discretize the computational domain Ω into
" scattered nodes for the pressure component ? using the Matlab algorithm DistMesh developed by Persson [26].
This algorithm generates unstructured triangular meshes in 2-D with the input distance function, which can be used
for the desired local refinement. Inspired by the standard finite-volume methods, which define the flux across the cell
boundaries, we arrange the velocity components on the cell edges. By collecting the midpoints of all edges of the
triangular cells, we obtain a new set containing # scattered nodes for the horizontal and vertical velocity components, u
and v in vector notation, respectively. This is different from the standard staggered grid, which evaluates the horizontal
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and vertical velocities at different locations. By this construction, the ratio of the pressure grid to the velocity grid is
around 1:3.

Fig. 1 Schematic of constructing the staggered grid: velocity grid (blue cross) and pressure grid (black dot).

Figure 1 shows the schematic of constructing the staggered grid. The characteristic length for each node-set, ΔA , is
determined as the locally averaged distance between the adjacent nodes. In the following, we use the notation (·) (1) for
the velocity grid and (·) (2) for the pressure grid, respectively.

Fig. 2 Staggered grid near a corner.

To enforce the Neumann boundary condition on the wall, locally orthogonal grid near the boundary used in Shu
et al. [28, 29] and a layer of ghost nodes are placed [30]. Identical to the arrangement for scattered nodes, the velocity
grid is set at the midpoints of each adjacent pressure node pair. Figure 2 shows an example of the staggered grid near a
corner. An SVD truncation with a threshold at 10−6 is used for the inversion of the interpolation matrix. This operation
will only exclude orthogonal nodes to the derivative direction but not affect the scattered interior nodes. The transient
flow simulations are obtained based on this staggered grid discretization, described next.
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V. Numerical scheme
Start with the Navier-Stokes equations and the continuity equation,

mD

mC
= −

(
D
mD

mG
+ E mD

mH

)
− m?
mG
+ 1

Re

(
m2D

mG2 +
m2D

mH2

)
, (9)

mE

mC
= −

(
D
mE

mG
+ E mE

mH

)
− m?
mH
+ 1

Re

(
m2E

mG2 +
m2E

mH2

)
, (10)

mD

mG
+ mE
mH

= 0. (11)

which govern the motion of a general incompressible two-dimensional Newtonian fluid. All variables are nondimen-
sionalized by the velocity scale + as well as length scale !, and Re denotes the Reynolds number. A variant of the
fractional-step method used by Kim and Moin [31], a semi-implicit scheme, is employed to advance the incompressible
flow in time. We propagate the flow field from 9 th time step to ( 9 + 1)th time step by the following three-stage approach.
The primitive variables D, E, ? are expressed in the vector form u, v, p, respectively.

1) We first use the second-order Adam-Bashforth method to descritize the nonlinear convective terms in time
explicitly, which gives

u∗ − u 9

ΔC
=

3
2
I 9 (u 9 ) −

1
2
I 9−1 (u 9−1), (12)

v∗ − v 9

ΔC
=

3
2
I 9 (v 9 ) −

1
2
I 9−1 (v 9−1), (13)

where the functions I 9 is defined as

I 9 (q) = −
[
u 9 ◦

(
J (1,1)G q

)
+ v 9 ◦

(
J (1,1)H q

)]
. (14)

Here, the quantity q represents the input velocity components, u or v, and the symbol ◦ denotes the Hadamard
product.

2) In the second stage, the viscous terms are advanced by the second-order implicit Crank-Nicholson scheme in
time as

u∗∗ − u∗
ΔC

=
1

2Re
J (1,1)
Δ
(u∗ + u∗∗) , (15)

v∗∗ − v∗
ΔC

=
1

2Re
J (1,1)
Δ
(v∗ + v∗∗) , (16)

which eliminates the time-step constraints imposed by viscosity. The use of Crank-Nicholson scheme also
ensures that the fractional-step method still remains the overall accuracy at second-order in time.

3) In the third stage, we use the pressure correction to enforce incompressibility. We first calculate the divergence
of velocity at the pressure grid as

L 9+1 = J (2,1)G u∗∗ + J (2,1)H v∗∗. (17)

Next, we determine the pressure correction as the solution of the Poisson’s equation

J (2,2)
Δ

p 9+1 =
1
ΔC

L 9+1. (18)

The velocity components at the ( 9 + 1)th time step are then calculated as

u 9+1 − u∗∗

ΔC
= −J (1,2)G p 9+1, (19)

v 9+1 − v∗∗

ΔC
= −J (1,2)H p 9+1. (20)

Appropriate boundary conditions are prescribed in the integration process and are included in the differentiation
matrices.

As stated above, four kinds of differentiation matrices are used to transfer the flow quantities between the staggered
grid:
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1) J (1,1)G , J (1,1)H , and J (1,1)
Δ

with dimension # × # from velocity grid to velocity grid;
2) J (2,1)G , J (2,1)H with dimension " × # from velocity grid to pressure grid;
3) J (2,2)

Δ
with dimension " × " from pressure grid to pressure grid;

4) J (1,2)G , J (1,2)H with dimension # × " from pressure grid to velocity grid.
To approximate these spatial derivatives with the lowest truncation error, we propose a rigorous error analysis to obtain
the optimal combination of the shape parameter, n , and the stencil size, =, discussed next.

VI. Error analysis
We start with the modified wavenumber analysis, which is commonly used to measure the accuracy of different

numerical schemes, see Moin [23]. For a given finite difference scheme, the modified wavenumber, :∗, is derived by
the discrete differentiation of a sinusoidal function 6(G) = ei:G . Given the grid spacing ΔG, the comparison between
:∗ΔG and :ΔG shows how well a finite difference scheme behaves at different wavenumbers. In the following, we
adapt this analysis for scattered nodes to gauge the accuracy of the RBF-QR method. Prior to performing the modified
wavenumber analysis, we identify the optimal parameters using a fixed nondimensionalized wavenumber, :ΔA = 1. The
test function takes the form

6(G) = cos
(
G

ΔA[

)
cos

(
H

ΔA[

)
, (21)

where [ is the index of the base grid. The corresponding wavelength is _ = 2cΔA[ . The relative error of the RBF-QR
method is determined in an average form as

4 (U,V) =
1
#

#∑
9=1

|% (U,V)
9

6(x (V) ) − L6(x (U) ) |
max{|L6(x) |} , (22)

where % 9 represents the local RBF differentiation operation at the 9 th node. The best approximations are then found as
the local minima of the error by varying the nondimensionalized shape parameter, nΔA, and the stencil size, =. Later
we will show that the accuracy of the obtained optimal differentiation matrices is comparable to the 4th-order Padé
scheme, which is well-suited for direct numerical simulations. The use of the nondimensionalized shape parameter as
parameterization is discussed in Appendix.

The stencils used for the RBF-QR method are selected as the nearest = nodes. Figure 3 shows the examples of
stencils used for the four different cases. A randomly generated mesh consisting of nodes with constant spacing is used
for the error calculation.

A. Velocity grid
We first look at the differentiation matrices J (1,1) , which corresponds to case (a) in figure 3. Figure 4 shows the

relative error contour for different parameters. As the local stencil is not homogeneous in the G and H directions, the
resulting error contour plots are different for G and H derivatives, as expected. Despite the inhomogeneity of the mesh,
we find that the same stencil size, = = 15, is optimal for the first derivatives in both the G and H directions. This result
indicates that this stencil size may be optimal for first derivatives in arbitrary directions, which can always be expressed
in terms of G and H derivatives. We will show later this conjecture also holds for J (2,1) , J (2,2) and J (1,2) . This finding
is encouraging since the local topology of an unstructured mesh, in principle, can have arbitrary orientations. Similarly,
the same optimal nondimensionalized shape parameter, nΔA1 = 0.38, is also found for the first derivatives. However, this
no longer holds for the pressure grid. For the Laplace differentiation matrix, J (1,1)

Δ
, figure 4(c) shows that the optimal

shape parameter is largely independent of the stencil size. Although the local minimum is achieved at = = 27, a smaller
stencil size, e.g., = = 23, can also be used in the computation without losing much accuracy.

We further perform the modified wavenumber analysis for the optimal differentiation matrices to gauge the truncation
error at different wavenumbers. The modified wavenumbers are calculated as

:∗ =
1
#

#∑
9=1
−i

(
%Gei^x

)
◦ e−i^x for G derivatives, or :∗ =

1
#

#∑
9=1
−i

(
%Hei^y

)
◦ e−i^y for H derivatives,

(23)
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Fig. 3 Stencils (red circles) used to obtain the differentiation matrices (a) J (1,1) with = = 15 ; (b) J (2,1) with
= = 6; (c) J (2,2) with = = 17; (d) J (1,2) with = = 14 at the given nodes (blue stars).

Fig. 4 Relative error contours for: (a) J (1,1)G ; (b) J (1,1)H ; (c) J (1,1)
Δ

. The local minima are marked as magenta
stars. The combination (=, nΔA1) = (15, 0.38) is optimal for the first derivatives, and (=, nΔA1) = (27, 0.32) is
optimal for the Laplacian.

where the exponential function is evaluated element-by-element. Figure 5 displays the modified wavenumber diagrams
for the optimal differentiation matrices, J (1,1) . Results for the 4th and 6th Padé-type methods are shown as comparisons.
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Fig. 5 Modified wavenumber diagrams for the optimal differentiation matrices J (1,1) . The operator L takes
the form of (a) first-order and (b) second-order derivatives. Results for Padé-type methods are shown as
comparisons.

For the first derivatives, figure 5(a) shows that the the optimal differentiation matrices, J (1,1)G and J (1,1)H , provide
accuracy better than the 4th-order Padé scheme. For the second derivatives in the H direction, the optimal differentiation
matrix performs almost identical to the 4th-order Padé-type scheme. In the G direction, the accuracy is still comparable
to the 4th-order Padé scheme up to :ΔA = 2.

Fig. 6 Relative error contours for: (a) J (2,1)G ; (b) J (2,1)H . The local minima are marked as magenta stars. The
combination (=, nΔA1) = (6, 0.56) is optimal for both cases.

We then move to case (b) in figure 3, which is used to compute the divergence of velocity on the pressure grid. In
this case, we are focusing on the error of the RBF-QR method when approximating the first-order derivatives, shown in
figure 6. It can be seen that the combination (=, nΔA1) = (6, 0.56) is optimal for both the G and H derivatives. This
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stencil size corresponds to the first layer of surrounding velocity nodes; see figure 3(b). As discussed above, this optimal
combination can then be used to approximate the derivatives in arbitrary directions.

B. Pressure grid

Fig. 7 Relative error contours for: (a) J (2,2)G ; (b) J (2,2)H ; (c) J (2,2)
Δ

. The local minima are marked as magenta
stars. The stencil size = = 17 is optimal for all the three cases.

Next, we perform the error analysis for the differentiation matrices J (2,2) , which correspond to case (b) in figure
3. In this case, the same optimal stencil size, = = 17, is found for both first and second derivatives. For the Laplace
operator, it can be seen from figure 7(c) that the relative error is generally invariant with the stencil size. Similar to case
(c) in the figure, a constant nondimensionalized shape parameter, nΔA2 = 0.29, is optimal for the pressure grid.

Figure 8 shows the modified wavenumber diagrams for the differentiation matrices J (2,2) . Results for the 4th and
6th-order Padé-type methods are shown for comparison. For the first-order derivatives, figure 8(a) shows that the
obtained accuracy is comparable to the 6th-order Padé scheme up to :2ΔA2 = 1.5 in the G direction and the 4th-order
Padé scheme up to :2ΔA2 = 2 in the H direction, respectively. Note that only the optimal second-order differentiation
matrix, J (2,2)

Δ
, will be used when solving the pressure Poisson equation in the computation. We can see from figure 8(b)

that the accuracy of such a spatial discretization is almost the same as the 6th-order Padé scheme.
Figure 9 shows the error for case (d) in figure 3, which is used to enforce the incompressibility condition from the

pressure correction. The error contours for the first-order G and H derivatives are similar in this case, and the same
optimal combination, (=, nΔA1) = (14, 0.38), is found. Compared to figure 3(b), more surrounding nodes are required
to minimize the error in this case.

VII. Lid-Driven cavity flows
We study the internal flow of a lid-driven cavity to demonstrate the behavior of the proposed scheme shown in §V

and the optimal differentiation matrices obtained in §VI. Consider the flow inside a unit square cavity Ω driven by the
motion of the top wall with unit velocity. No-slip boundary conditions are prescribed at wall boundaries. The normal
derivative of the pressure is set to be zero at all boundaries. The time-marching calculations are started with the flow at
rest everywhere in the computational domain except at the top wall.
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Fig. 8 Modified wavenumber diagrams for the differentiation matrices J (2,2) with the optimal combination
(=, n). The operator L takes the form of (a) first-order and (b) second-order derivatives. Results for Padé-type
methods are shown as comparisons.

Fig. 9 Relative error contours for: (a) J (1,2)G ; (b) J (1,2)H . The local minima are marked as magenta stars. The
combination (=, nΔA1) = (14, 0.38) is optimal for both cases.

Figure 10 shows the discretization of the unit square cavity Ω = [0, 1] × [0, 1] with # = 13491 ≈ 1162 and
" = 4677 ≈ 682. The characteristic lengths for the two node-sets are ΔA1 = 0.008 and ΔA2 = 0.016, respectively. A
time step ΔC = 0.005, corresponding to CFL number at 0.625, is used in the computation. Results at Reynolds numbers
ranging from 100 to 3200 are investigated for comparison with the classical results byGhia et al. [27]. Stable solutions
are obtained without implementing hyperviscosity approaches.

Figure 11 shows the obtained steady-state velocity profiles through the horizontal and vertical centerlines of the
cavity. Compared to the benchmark data provided by Ghia et al. [27] using 1292 nodes, good agreements are found at
different Reynolds numbers. This result implies that the optimal differential matrices provide good performance in the
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Fig. 10 Computational grids in an unit square cavity: (a) velocity grid with # = 13491 ≈ 1162 nodes; (b)
pressure grid with " = 4677 ≈ 682 nodes.

Fig. 11 Velocity profiles at Re = 100 (red), Re = 400 (blue), Re = 1000 (black) and Re = 3200 (green) through
the: (a) horizontal centerline; (b) vertical centerline. The results obtained using the proposed scheme (solid)
are compared to Ghia et al. [27] (’+’).

simulation of two-dimensional incompressible flows.
To further validate that the proposed scheme can be utilized as a transient solver, we visualize the flow field at

different times in figure 12. It can be seen that stable solutions and highly-resolved flow patterns are obtained in the

12

D
ow

nl
oa

de
d 

by
 T

ia
ny

i C
hu

 o
n 

D
ec

em
be

r 
15

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

27
43

 



Fig. 12 Transient horizontal velocity (left column), vertical velocity (middle column) and vorticity (right
column) for Re = 3200 at: (a-c) C = 7.5; (d-f) C = 15; (g-i) C = 22.5. The vorticity vector is calculated as
8 = J (1,1)G v − J (1,1)H u.

computational process. The vorticity, l = mE/mG − mD/mH, is displayed in the right column of figure 12, and the
generation of the primary vortex can be observed. This result confirms that this scheme is well-suited for simulating the
unsteady incompressible flows.

VIII. Conclusions
In this work, we introduce a means of error analysis to identify the optimal parameters for the RBF-QR discretizations.

We propose an RBF-QR-based fractional-step method for the unsteady incompressible Navier-Stokes equations that
utilize the optimal discretizations. To achieve numerical stability, we construct an unstructured staggered grid that
assigns the velocities at the middle of cell edges and pressure at the cell vertices. We perform the wavenumber analysis
to gauge the accuracy of the optimal RBF-QR discretizations, and the results are comparable with the 4th-order Padé
scheme. We demonstrate the use of the proposed scheme and optimal parameters by studying the lid-driven cavity
problem at different Reynolds numbers. The obtained results are compared to Ghia et al. [27], and good agreements
are found for all cases. The long-term goal of this work is to use the optimal RBF-based differentiation matrices for
hydrodynamic stability analyses in complex geometries.
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Appendix: nondimensionalized shape parameter
In the following, we will motivate the use of nΔA as an appropriate parameterization of the optimization problem.

Consider a given location x0 and the associated neighborhood {x 9 }=9=1, which is characterized by the distance ΔA. A
scaled node-set {x̃ 9 }=9=1 with unit characteristic distance can be obtained under the linear transformation

x̃ =
1
ΔA

x + 3, (A.1)

where the entire topology is scaled by 1/ΔA, and 3 is a constant translation. The relative topology between each node
remains the same under this transformation. The form of the radial function q allows one to write

q̃(nA) ≡ q(A; n). (A.2)

We can then write

q
(
‖x8 − x 9 ‖; n

)
= q̃(n ‖x8 − x 9 ‖) = q(‖x̃8 − x̃ 9 ‖; nΔA)). (A.3)

Therefore, the radial function for the scaled node-set is described by the nondimensionalized shape parameter, nΔA.
The corresponding interpolation matrix G, defined in equation (2), is then a function of the nondimensionalized shape
parameter only. So as the nondimensionalized weight vector w̃ ≡ (ΔA)@w = G−1L̃�(x0), where L̃ = ((ΔA)@L) and @
is the order of the derivative. We seek the optimal parameters which minimize the relative error

�0 =
|∑=

9=1 F 96(:x 9 ;ΔA) − L6(:x0;ΔA) |
max {|L6(:x;ΔA) |} . (A.4)

Here, 6(:x;ΔA) is a sinusoidal function, where : is the characteristic wavenumber and W = :ΔA is a constant. The error
can then be written as

�0 = �̃0 =
|∑=

9=1 F̃ 96(Wx̃ 9 ; 1) − L̃6(Wx̃0; 1) |
max {|L̃6(Wx̃; 1) |}

, (A.5)

where �̃0 represents the error for the scaled node-set. It can be seen that the error only depends on the stencil size,
=, and the nondimensionalized shape parameter, nΔA. The optimization problem then becomes determining the
nondimensionalized parameters that provide the best accuracy for the scaled node-set. The the optimal combination
(=, nΔA) is therefore invariant if the local relative topology is fixed.
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