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This paper studies the amplitude of large-scale coherentwave-packet structures in jets,modeled by the parabolized

stability equations (PSEs). Linear PSEs can retrieve the shape of thewave packets, but linearity leads to solutionswith

a free amplitude, which has traditionally been obtained in an ad hoc manner using limited data. We systematically

determine the free amplitude as a function of frequency and azimuthal wave number by comparing the fluctuation

fields retrieved from PSEs with coherent structures educed from large-eddy simulation data using spectral proper

orthogonal decomposition. Thewave-packet amplitude is shown to decay exponentially with the Strouhal number for

axisymmetric and helical modes at both Mach numbers considered in the study: 0.4 and 0.9. Analytical fit functions

are proposed, and the scaledwave packets provide reasonable reconstructions of pressure and velocity spectra on the

jet centerline and lip line over a range of streamwise positions.

Nomenclature

A = scaling factor
a�ξ� = hydrodynamic wave number
aj = amplitude captured my mode j
Ca, Cb = exponential function coefficients
c0 = ambient sound speed
D = jet diameter
E = error
f, g = generic functions
M = Mach number
m = azimuthal wave number
P = pressure fluctuation
q = flow variables
q̂pse = fluctuation flowfield calculated from parabolic stabil-

ity equations in the frequency domain

q̂spod = flow fluctuations for the leading spectral proper
orthogonal decomposition in the frequency domain

q 0 = flow fluctuations in the time domain
�q = time-averaged component of q
~q = shape function of the fluctuation amplitude
r = radial coordinate
St = Strouhal number
T = temperature
t = time
Uj = jet exit velocity

ur = radial velocity
ux = axial velocity
uθ = azimuthal velocity
W = Chebyshev quadrature weights
W 0 = diagonal weight matrix
x = axial coordinate
β = normalized projection coefficient
γ = heat capacity ratio
θ = azimuthal coordinate
λ = spectral proper orthogonal decomposition eigenvalue
ρ = density
ϕ = polar coordinate
ψ j = basis functions of q 0

ω = angular frequency of the fluctuations

Subscripts

f = end of analyzed domain
0 = nozzle exit

Superscript

H = Hermitian transpose

I. Introduction

J ET noise remains a challenging problem in the aerospace com-
munity due to increasingly stringent noise-emission regulations.
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Historically, it was thought that the main source of sound in jet flows
was related to small eddies (Laurence [1]) associatedwith turbulence;
but, more recently, large-scale structures have been shown to be a
dominant source of sound. These structures initially grow exponen-
tially through the Kelvin–Helmholtz mechanism, reach a peak, and
then decay downstream, forming a wave packet. Wave packets have
been observed and studied extensively; further information can be
found in the works of Jordan and Colonius [2] and Cavalieri et al. [3]
for linear studies and Wu an Huerre [4], Sandham and Salgado [5],
and Zhang and Wu [6] for non-linear studies.
Wave-packet models have been developed to predict the behavior

of large-scale turbulent structures in jets and their associated noise.
The parabolized stability equations (PSEs), described by Herbert [7]
andMalik et al. [8], were initially used to describe laminar–turbulent
transition in slowly diverging flows. But, as shown by Gudmundsson
and Colonius [9] and Sasaki et al. [10], PSEs can be used to model
coherent structures in turbulent jets, especially in the near-nozzle
region characterized by amplitude growth. Central in such compar-
isons is spectral proper orthogonal decomposition (SPOD) of flow
fluctuations, as described by Picard and Delville [11] and Lumley
[12]. As recently shown byTowne et al. [13], the leading SPODmode
is expected to match the optimal flow response when white-noise
forcing is considered; and this optimal response can be obtained using
PSEs for flows with strong convective amplification, as first pointed
out by Jeun et al. [14]. This provides a basis to understand why PSE
results compare favorably with the leading SPOD mode of jets.
The linear PSE has solutions with free amplitudes, which must be

scaled with results from experiments or numerical simulations. This
can be done in an ad hoc manner using a limited number of available
measurements or in a more theoretically consistent manner by
obtaining the amplitude of the Kelvin–Helmholtz mode near the
nozzle exit by a projection using the adjoint mode (Rodríguez et al.
[15]). Each combination of Strouhal number St and azimuthal mode
m leads to a free amplitude. How such amplitudes scale with the
Strouhal number St andm remains an open question. If onewishes to
predict spectra of flow fluctuations using the aforementioned linear
models, the frequency dependence of the amplitude is important. For
lack of available information, Tam and Chen [16] assumed that wave
packets are excited by white noise in time and space. Similar hypoth-
eses have been applied in linearized models used to model wall-
bounded turbulence, but it is now known that the use of “colored”
excitation improves the agreement with reference data (Jovanovic
and Bamieh [17], Chevalier et al. [18], and Zare et al. [19]).
In the present study, we explore how initial wave-packet amplitudes

change as a function of Strouhal number and azimuthal wave number.
Empirical scaling laws of wave-packet amplitude are extracted from
large-eddy simulation (LES) data, allowing us to infer how they may
have been excited in the flow; possible candidates involve disturb-
ances within the nozzle boundary layer (Kaplan et al. [20]) and/or
nonlinear interactions with other turbulent structures (Towne et al.
[13]). The present analysis is intended to help to clarify the mecha-
nismsunderpinning the excitation ofKelvin–Helmholtzwavepackets.
To derive empirical scaling laws, we will use data from the large-

eddy simulations of Brès et al. [21,22]. Because the LES provides full
flow information, it is suitable for detailed comparisons with PSE
results. Here, we identify the free amplitude of the PSE results by
minimizing the difference between the leading SPODmode from the
LES and the PSE solutions using a scalar amplitude variable. This
allows us to explore how the free amplitude of the PSE wave packets
change with Strouhal number St, m, and Mach number, providing
insight on themechanisms bywhichwave packets are excited.With a
better understanding of wave-packet amplitudes, we believe scaling
wave-packets, as done by source models (Wong et al. [23], Papamo-
schou [24], and Maia et al. [25]), can be done without the need of
detailed experiments or simulation.
This paper is organized as follows. In Sec. II, we present the LES

results and the PSE model, and we describe how the free amplitude
of PSE solutions can be found using the leading SPOD mode from
LES data. In Sec. III, we show some validation results for PSEs; then,
we proceed with the determination of the wave-packet amplitudes
as a function of the Strouhal number St and m, and we compare the

spectrum using the identified amplitude function with LES and
experimental results. The paper is completed with conclusions in
Sec. IV.

II. Methods

A. Large-Eddy Simulation Database

This work relied on the numerical simulations described by Brès
et al. [21] andBrès andLele [26]. These are large-eddy simulations of
isothermal subsonic jets, which exhaust from a converging-straight
round nozzle, shown in Fig. 1. The boundary layer inside the nozzle is
already turbulent; this was accomplished by synthetic turbulence
injected at the position where a boundary-layer trip was used in
accompanying experiments. For the turbulent boundary layer, a wall
model was used, as described by Brès et al. [27].
Simulations were performed for Mach numbers of M �

�Uj∕c0� � 0.4 and 0.9, based on jet exit velocity Uj and ambient

sound speed c0. A range of Mach numbers 0.4, 0.7, 0.8, and 0.9 was
simulated and validated against experimental measurements [21,26].
Here, the focus is on the Mach 0.4 and 0.9 cases as representative of
low- andhigh-subsonic jets. The correspondingReynolds numbers are

4 ⋅ 105 and 106, respectively, using the jet diameterD as the reference
length; the reference density and temperature are taken at the nozzle
exit. The coordinate system used throughout this work is the same as
wasused inRef. [21] and is shown inFig. 1,where x, r, θ, andϕ are the
axial, radial, azimuthal, and polar coordinates, respectively, and the
origin is at the center of the nozzle exit. All LES results are in close
agreement with accompanying experiments, which were conducted at
the Pprime Institute [21,26,28]. The measured turbulent flow spectra
are broadbanded, and the LES results are in close agreement with
experimental spectra up to a Strouhal number of 2.7.

B. Spectral Proper Orthogonal Decomposition

To isolate the dominant wave packets at each frequency and
azimuthal wave number, spectral proper orthogonal decomposition
was applied to the LES data. This procedure is explained in detail by
Towne et al. [13]. For the round jets considered in this paper, SPOD
decomposes the flow fluctuations into spatial modes that are func-
tions of x and r for each azimuthal wave number m and Strouhal
number St, i.e.,

q̂spod�x; r;m; St� �
X∞
j�1

aj�m; St�ψ j�x; r;m; St� (1)

The SPOD procedure expands the Fourier-transformed fluctua-
tions q̂spod into orthogonal modes that optimally capture the flow

energy. In Eq. (1), ψ j are the basis functions of q̂spod and aj is the
amplitude captured by the mode j. The total energy is recovered by

the sum over jajj2. For this work, only the first SPOD mode at each

Strouhal number St, m pair is considered because it represents the
leading wave-packet properties (Schmidt et al. [29]). The SPOD
modes used here are those computed by Schmidt et al. [29].

Fig. 1 Jet LES simulation with coordinate system used throughout this
work.



C. Parabolized Stability Equations

1. Basic Equations

The SPOD modes taken from the large-eddy simulation do not
directly provide the amplitude of the Kelvin–Helmholtz wave pack-
ets because they also comprise other flow structures. For that matter,
the Kelvin–Helmholtz component needs to be derived, and this is
accomplished using the parabolized stability equations. The pro-
cedure is described in what follows.
The parabolized stability equations are used to predict the

fluctuation fields of the jet, using the mean turbulent field as a base
flow. The PSE was first developed by Bertolotti et al. [30]; unlike
the traditional Orr–Sommerfeld equation, it can be used to study the
linear stability of nonparallel flows with slow divergence in the
streamwise direction, including jets. The PSE procedure was tradi-
tionally used for transitional flows but, as shown in various works
(Gudmundsson and Colonius [9], Cavalieri et al. [31], and Sasaki
et al. [10]), it is also suitable for modeling large-scale structures in
turbulent flows.
Considering flow variables written as q�x; r; θ; t�, it is possible to

define a decomposition into an axisymmetric time-averaged compo-
nent �q�x; r�, which is used as the base flow, and a temporal fluctuation
component q 0�x; r; θ; t�:

q�x; r; θ; t� � �q�x; r� � q 0�x; r; θ; t� (2)

The vector q refers to the flow variables q � �ux; ur; uθ; T; ρ�T ,
where ux is the axial velocity, ur is the radial velocity, uθ is
the azimuthal velocity, T is the the temperature, and ρ is the density,
all in cylindrical coordinates. The jet is nonswirling, and so the
mean azimuthal velocity component �uθ is zero. The temporal fluc-
tuation can bewritten as a Fourier decomposition in θ and t, shown in
Eq. (3):

q 0�x; r; θ; t� �
X
ω

X
m

q̂pse�x; r;m; St�eimθe−iωt (3)

In the works of Gaster [32] and Crighton and Gaster [33] an
appropriate ansatz for the fluctuations Fourier decomposition q̂pse
is derived:

q̂pse�x; r; m; St� � ~q�x; r;m; St�ei
R

xf
x0

α�ξ� dξ
(4)

In Eq. (4), the term α�ξ� is a complex-valued hydrodynamic wave
number that varies with axial direction; its imaginary part is related
to exponential growth or decay of fluctuations. Also, m is the
azimuthal wave number, and ω is the angular frequency of the
fluctuations. In this ansatz, ~q�x; r;m; St� is the shape function,
which varies slowly in the streamwise direction; and the exponen-
tial term captures the fast variation related to exponential and
oscillatory behavior of the large-scale turbulent structures. The
combination of these two parts generates fluctuations in the shape
of a wave packet.
To obtain the values of α�ξ� and ~q�x; r;m; St�, the ansatz from

Eq. (4) is substituted into a matrix system with the linearized com-
pressible equations of continuity, momentum, and energy, resulting
in a system that can be cast in matrix form as

�AM� �q; α;ω; m� � BM� �q�� ~q� CM� �q�
∂ ~q
∂x

�DM� �q�
∂ ~q
∂r

� 0 (5)

Viscous terms were not considered due to the high Reynolds number
of the jets considered. Details of the equation system can be found in
the works of Gudmundsson and Colonius [9] and Gudmundsson
[34]. The PSE code used to generate the results is described in the
work of Sasaki et al. [10]. The initial fluctuation profile, in the nozzle
exit plane, is given by linear stability theory, where the Kelvin–
Helmholtz instability mode is found and then marched downstream
by the PSE. Note that other types of waves coexisting at the same
frequency and azimuthal wave number (e.g., acoustic waves or

disturbances growing through the Orr mechanism [35,36]) are not

captured by PSEs [37,38], leading to awave packet dominated by the
Kelvin–Helmholtz mode. For this case, the base flow used is a time-

averagedmean flow taken from the large-eddy simulation, whichwas

described in the previous section.
The domain was discretized numerically using 301 Chebyshev

nodes in the r direction, as well as by using the mapping function

fromLesshafft andHuerre [39] to concentrate points in the jet region.

The solution is advanced in the downstream x direction using an
implicit Euler method.
We are interested in determining the behavior of wave-packet

amplitudes as a function of the Strouhal number St andm. To define
these amplitudes in a consistent manner, the linear PSE solutions

must be normalized in a definite way. We have adopted, as the

normalization condition, that flow fluctuations at the nozzle exit
(x � 0) have unit norm. This is ensured by rescaling ~q0 � ~q�x �
0; r; m; St� such that

~qH0 W
0 ~q0 � 1 (6)

with W 0 as a diagonal weight matrix given by

W 0 � diag W �ρ0;W �ρ0;W �ρ0;W
�T0

γ �ρ0M
2
;W

�ρ0
γ�γ − 1� �T0M

2

!
(7)

where the superscript H denotes the Hermitian transpose, and the

subscript 0 denotes properties at the nozzle exit. The matrix W
contains Chebyshev quadrature weights for integration over the

radius. The inner product defined with W 0 corresponds to the Chu

norm used by Schmidt et al. [29]. The present definition thus normal-
izes the PSE solution such that the initial Kelvin–Helmholtz mode,

taken at x � 0, has unit norm.

2. Study of Wave-Packet Amplitudes Using PSE and SPOD Modes

The normalization described in the previous section leads to an

amplitude for the PSE solution that may not be representative of
flow fluctuations for the given Strouhal number St and m; the

PSE solutions require rescaling using simulation data. The values

in the near-nozzle region of the jet were used to calculate a scaling
factor between PSE results and the first SPOD mode educed

from the LES data. This scaling factor A is used to adjust the free

amplitude of the linear PSE solutions so as tominimize the difference
E given by

E ��� ���
λ

p
q̂spod − Aq̂pse

�� (8)

where λ is the SPOD eigenvalue whose value is equal to the power

spectral density (energy) of flow fluctuations for the corresponding

SPOD eigenfunction. Rescaling the orthonormal SPOD modes by���
λ

p
leads to amplitudes that are representative of the mode contribu-

tion to the full LES fields, as shown by Sinha et al. [40].
A is a complex-valued scalar value, and its optimal value is

obtained byminimizing the errorE separately at eachm and Strouhal

numberSt combination. Setting the derivative ofEwith respect to the

amplitude A to zero leads to

D ���
λ

p
q̂spod; q̂pse

E
− A

�
q̂pse; q̂pse

� � 0

and thus the optimal amplitude is

A �
� ���

λ
p

q̂spod; q̂pse
��

q̂pse; q̂pse
� (9)

The inner product in Eq. (9) induces the norm in Eq. (8), and thus

defines the sense in which the error is minimized. Since q̂spod and q̂pse



are functions of x and r, and depend parametrically on Strouhal
number St and m, we define the inner product as

hf�r; x; St; m�; g�r; x; St; m�i

�
Z

xf

xo

Z
∞

0

�f�x; r; St; m�g��x; r; St; m��r dr dx (10)

and consider only the pressure component in q̂spod and q̂pse. This is
due to a smoother behavior of A�St� observed when pressure is
taken as the relevant flow quantity. However, considering velocity
fluctuations or the full disturbance vector leads to similar results.
Since azimuthal modes are orthogonal to each other, no azimuthal
integration is required. This leads to an amplitude of A�St; m�,
depending on the Strouhal number and azimuthal wave number.
The argument of the complex-valued amplitude A in Eq. (9) also
allows us to set the phase of the PSE solution for a best match with
the SPOD mode. It is possible to apply this method by considering
the whole domain but, as illustrated in Sec. III, the PSE has good
agreement with the leading SPODmode for a limited axial range for
each Strouhal number St. Thus, limiting the domain will lead to
more precise results. The trapezoid rule is used to calculate the
integral in the inner product. The PSE uses a different grid from the
LES results, and therefore an interpolation was required to obtain
values for the same x.
Unlike global stability modes, the linear PSE does not provide a

basis for flow fluctuations; PSE results are the solution of a boundary-
value problem, with nonzero boundary conditions at the nozzle exit,
and not eigenfunctions of a linear operator. Hence, strictly speaking,
one cannot think of the aforementioned procedure as a projection, as
is often done for stability eigenfunctions (Rodríguez et al. [15,41]).
However, here, we are interested in the determination of the ampli-
tude of a single spatial function, and thus the approach can be used as
a method to estimate wave-packet amplitudes by considering a jet
region between xo and xf.

III. Results

A. Showing the PSE Results

The first step is to obtain PSE wave packets and validate them by
comparison with the first SPOD modes educed from the LES data.
The PSE codewas run forMach numbers of 0.4 and 0.9, aswell as for
Strouhal numbers St varying from 0.0488 to 1.6113 for theM � 0.4
case and from 0.0868 to 2.778 for theM � 0.9 case. These Strouhal
number ranges were chosen due to the range of expected agreement
between the PSE and the SPOD data [9,10] so as to capture the
exponential behavior with less influence from fluctuations other than
theKelvin–Helmholtz wave packet that showup invery low and high
Strouhal numbers St. We thus focus on the parameter range with
dominance of linear behavior, justifying the neglect of nonlinear
terms in PSEs.
The Strouhal numbers used are those of the SPOD results to

facilitate comparison. The first three azimuthal modes are calculated
(m � 0; 1; 2). A comparison of pressure fluctuations is shown for
two representative Strouhal numbers St, and it is restricted to the
axisymmetric mode of m � 0 for brevity. The Strouhal numbers are
St � 0.44 and 1.22 for M � 0.4, and St � 0.61 and 1.39 for
M � 0.9. The amplitude and phase of the PSE solutionwere adjusted
using Eq. (9). These results are shown in Fig. 2.
It is possible to see a close agreement between the PSE and the first

SPOD modes for a good range of frequencies, especially in the
upstream region, characterized by amplitude growth associated with
the Kelvin–Helmholtz mechanism. For downstream points, there is a
growing mismatch, which was explored by Tissot et al. [36]. The
present code was previously used by Sasaki et al. [42] and showed
agreement for an LES data Strouhal number as high as four.

B. Amplitude Scaling

The results from Sasaki et al. [42] are used to select appropriate
integration limits in the definition of the inner product [Eq. (10)],
which define the regions where the PSE solutions and SPOD modes

Fig. 2 Pressure fluctuation contour for azimuthal modem � 0 for Mach numbers 0.4 and 0.9, for two sample Strouhal numbers St each.



are compared to determine the desired amplitudes. Sasaki et al. [42]
showed a normalized projection coefficient β between SPOD and
PSE results at each x station of the jet. The expression for β is

β�x; St; m� � jhq 0
spod�x; r; St; m�; q 0

pse�x; r; St; m�ij
kq 0

spod�x; r; St; m�kkq 0
pse�x; r; St; m�k (11)

where the inner product considers only radial integration in Eq. (10)
so as to indicate a local level of agreement at a station x. β � 1 is in
perfect agreement, and β � 0 is obtained when the PSE result at a
given station x is orthogonal to the corresponding SPOD result. Such
an agreement metric is shown in Fig. 3 for M � 0.4 and in Fig. 4
forM � 0.9.
To ensure that the amplitude scaling is trustworthy, the region of

the jet flow used is delimited by the yellow rectangles in Figs. 3 and 4;
these upstream regions correspond to exponential growth of wave
packets associated with the Kelvin–Helmholtz mechanism [41], as

well as with good agreement between PSEs and experimental or
numerical results (Gudmundsson and Colonius [9], Cavalieri et al.

[31], Tissot et al. [36], Sasaki et al. [42]). Therefore, the ranges of the

scaling will be x∕D ∈ �xo � 0.5; xf � 1.5�, St ∈ �0; 1.6� for

M � 0.4, andSt ∈ �0; 2.5� forM � 0.9. The amplitude identification

was performed for M � 0.4 and 0.9, as well as the first three

azimuthal modes of m � 0; 1; 2. These lower azimuthal wave num-

bers are known to dominate the peak of far-field spectra [21,43]. As

commented earlier, the pressure fluctuations were used to obtain the

amplitudes.
The absolute value of the amplitudes calculated using this choice

of inner product are shown in Fig. 5 forM � 0.4 andM � 0.9. Even
though observable oscillations are present in these plots, there is

clearly an exponential decay of the absolute value of the amplitude

with the increasing of the Strouhal number St. An exponential fit was
applied to the data, yielding a function jAj�St� that may be used to

scale the wave-packet models. The fitting function is given by

Fig. 3 Metric for agreement between SPODmode and PSE form � 0, 1, 2 forM � 0.4; yellow rectangles indicate the regions used for amplitude scaling
in the present work.

Fig. 4 Metric for agreement between SPODmode and PSE form � 0, 1, 2 forM � 0.9; yellow rectangles indicate the regions used for amplitude scaling
in the present work.
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Fig. 5 Curve fit for scaling factor, in semilog scale, forM � 0.4: dashed lines denote original scaling factor obtainedbyEq. (9) with (squares) data points,
and solid lines denote exponential fit of the black curve, with values shown in Table 1.



jAj�St� � CeκSt (12)

withC and κ coefficients reported in Table 1. The exponential fits are
shown in Figs. 5 and 6, which refer toM � 0.4 and 0.9, respectively.
An accurate representation of the amplitude behavior is obtainedwith
the fitting functions. However, the azimuthal mode ofm � 2 for the
Mach 0.4 jet has more marked oscillations whose origins are unclear
at this time. However, even in the latter case, the general trend of
amplitude decaywith increasing Strouhal number St is retrievedwith
coefficients that are similar to the other cases.
Only the absolute value of A is relevant, since the phase in a

specific point is arbitrary due to the stochastic nature of the jet. The

leading SPOD modes are eigenfunctions, and thus have an arbitrary

phase for each frequency; such a phase is retrieved in the argument of

A and allows a visual comparison such as in Fig. 2, but the precise

value of phase is not of particular interest.

C. Modeled Spectra

The Strouhal number dependencies obtained in the previous

section can be used to estimate power spectra at given positions

of the flow; an accurate representation of spectra is a useful con-
sistency check and shows whether the proposed exponential fits,

once taken as initial PSE amplitudes, may accurately describe flow
fluctuations for a range of Strouhal numbers St. Pressure spectra on
the jet lip line and centerline were chosen to plot and compare the
spectra between the PSE model and the LES. These spectra are
representative of near-field disturbances within the jet. Results are

shown in Figs. 7–10. Figures 7 and 8 display centerline compar-
isons for M � 0.4 and 0.9, respectively. Corresponding lip-line
spectra are shown in Figs. 9 and 10. Centerline comparisons are

restricted tom � 0 because this is the sole azimuthal wave number
with nonzero amplitude on the jet axis. Spectra on the lip line are

shown for m � 0, 1, and 2.
There is an overall good agreement between PSE results scaled

with the amplitude fits in Table 1 and the pressure spectra, except for
low Strouhal numbers, at which a mismatch between PSE and
turbulent jet data can be associated with mechanisms other than

Kelvin–Helmholtz (Schmidt et al. [29] and Lesshafft and Huerre
[39]). For St < 0.2, some discontinuity appears, in view of the fact
that the domain is not large enough.
For higher Strouhal numbers St, there is also a mismatch, possibly

due to flow structures other than Kelvin–Helmholtz wave packets
with significant contributions at the considered positions. For the
Mach 0.9 jet, oscillations in the spectra near the nozzle are observed;

these are related to trapped acoustic waves (Towne et al. [44] and
Schmidt et al. [45]), which are not modeled in the PSE solution;
however, the downstream spectra are dominated by the Kelvin–

Helmholtz contribution, and thus accurately represented by PSEs,
with the amplitudes in Table 1.
Our results were obtained by solely considering pressure fluctu-

ations in determination of the amplitude described in Sec. II.C.2.

The same approach was also applied by considering the streamwise
velocity ux, and similar results were obtained. Similar trends
can be seen in the comparison between the velocity spectrum of

the scaled PSE and the experimental results by Cavalieri et al. [31],

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
St

10-7

10-6

10-5

10-4

10-3

|A
|

a) M = 0.9, m = 0 b) M = 0.9, m = 1 c) M = 0.9, m = 2
St

10-7

10-6

10-5

10-4

10-3

|A
|

St

10-7

10-6

10-5

10-4

10-3

|A
|
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Fig. 7 Centerline (r∕D � 0) spectrum using scaling factor of pressure fluctuations for M � 0.4 case, for m � 0 and x∕D � 1, 2, 3: PSE results (solid
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Table 1 Fit obtained from amplitude in function of
Strouhal number St, where C and κ are the coefficients

of the exponential equation jAj�St� � CeκSt

M m C κ

0.4 0 1.85 ⋅ 10−3 −2.02
0.4 1 1.40 ⋅ 10−3 −1.97
0.4 2 8.42 ⋅ 10−4 −1.60
0.9 0 6.34 ⋅ 10−4 −3.01
0.9 1 5.10 ⋅ 10−4 −3.05
0.9 2 2.07 ⋅ 10−4 −2.52



where good agreement is obtained again for the Mach 0.4 jet

in Fig. 11.

The results show that the initial absolute value of the amplitude of

turbulent jet wave packets has an exponential dependence on the

Strouhal number St. Amplitudes change by about two orders of

magnitude in the Strouhal range considered. It is thus clear that the

excitation of wave packets at the nozzle exit cannot be considered as

white noise, with the same amplitude for all Strouhal numbers St.
This can be further appreciated if a Strouhal number St-independent
amplitude is considered for PSEs; lip-line m � 0 spectra generated

with such an assumption are shown in Figs. 12 and 13. Comparison

of these figures to the amplitude-scaled results in Figs. 9 and 10
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Fig. 9 Lip-line (r∕D � 0.5) spectrum using scaling factor of pressure fluctuations forM � 0.4 case, form � 0, 1, 2 and x∕D � 1, 2, 3: PSE results (solid
lines), and LES values (circles).
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highlights that the exponential decay of amplitude with increasing
Strouhal number St is an important dynamic feature required to

obtain spectral shapes accurately. Improvements on methods such

as that by Tam and Chen [16] may be obtained if the observed

exponential dependence in amplitude is included in models.

IV. Conclusions

The frequency dependence of turbulent jetwave-packet amplitudes

is studied by an approach that consists ofminimizing the difference in
amplitude between linear PSE results and the leading SPOD mode

educed from a well validated large-eddy simulation. This procedure,
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10-1 100

St

10-5

|u
x|2

10-1 100

St

10-5

|u
x|2

10-1 100

St

10-5

|u
x|2

a) M = 0.4, m = 0, x/D = 1 b) M = 0.4, m = 0, x/D = 2 c) M = 0.4, m = 0, x/D = 3

Fig. 11 Centerline (r∕D � 0) spectrum using the scaling factor of axial velocity fluctuations for the M � 0.4 case, for m � 0 and x∕D � 1, 2, 3: PSE
results (solid lines), and experimental data (triangles) [31].



which is applied for a region of the flow where linear PSE has been

shown to agree with numerical and experimental data, leads to wave-

packet amplitudes with an exponential dependence on Strouhal num-

ber. Exponential fits are obtained for azimuthal wave numbers of

m � 0, 1, and 2; and for Mach numbers of M � 0.4 and 0.9. These

fits were shown to accurately predict, in good agreement, the power

spectra of the flow, matching simulation and experimental data.
The amplitude scaling results may serve as a basis to study the

receptivity mechanisms of Kelvin–Helmholtz wave packets in turbu-

lent jets. An open question regarding such wave packets is related to

their excitation; the exponential dependence seen here can serve as a

test of proposed mechanisms and models, which should be able to

reproduce the amplitude scaling observed in the present paper. The

consistency of the same kind of fit for different Mach numbers is

another indication of the clear exponential scaling of thewave packets.
The next step is to understand how the wave packets with this

behavior are excited. In the current case, the turbulent boundary layer

inside the nozzle is a clear candidate for an excitationmechanism; this

has been explored byKaplan et al. [20] but requires further study. The

determination of the physical mechanism underpinning the observed

exponential decay of amplitude with increasing Strouhal number St
is a future prospect of this work. The determination of amplitudes

requires use of LES data, and is thus an empirical determination of

Kelvin–Helmholtz wave-packet amplitudes. Nonlinear models (Wu

and Huerre [4], Sandham and Salgado [5], and Zhang and Wu [6])

may directly provide such amplitudes from first principles, especially

if coupled to the nozzle boundary-layer dynamics.
The present results can be used to scalewave-packet models in jets

if detailed data from experiments or simulations are not available; a

recent example is the work of Wong et al. [23], where wave-packet

sourcemodels with a proper amplitude scaling are used in an acoustic

analogy to obtain broadband-shock-associated noise from supersonic

jets. The present results may be used in acoustic predictions based on

other kinematic sourcemodels’ jet wave packets, such as in theworks

of Papamoschou [24] or Maia et al. [25].
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