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We study the stationary, intermittent and nonlinear dynamics of nominally ideally
expanded, natural and forced supersonic twin-rectangular turbulent jets using spectral
modal decomposition. We decompose large-eddy simulation data into four reflectional
symmetry components about the major and minor axes. In the natural jet, spectral proper
orthogonal decomposition (SPOD) uncovers two resonant instabilities antisymmetric
about the major axis. Known as screech tones, the more energetic of the two is a steady
flapping instability, while the other is an intermittent double-flapping instability. We
test the hypothesis that symmetry breaking can be leveraged for control design. Time-
periodic forcing symmetric about the major and minor axes is implemented using a plasma
actuation model, and succeeds in removing screech from a different symmetry component.
We investigate the spectral peaks of the forced jet using an extension of bispectral
mode decomposition (BMD), where the bispectrum is bounded by unity and which
conditionally recovers the SPOD. We explain the appearance of harmonic peaks as three
sets of triadic interactions between reflectional symmetries, forming an interconnected
triad network. BMD modes of active triads distil coherent structures comprising multiple
coupled instabilities, including Kelvin–Helmholtz, core and guided-jet modes (G-JM).
Downstream-propagating core modes can be symmetric or antisymmetric about the major
axis, whereas upstream-propagating G-JM responsible for screech closure (Edgington-
Mitchell et al. J. Fluid Mech. 945, 2022, p. A8) are antisymmetric only. The dependence
of G-JM on symmetry hence translates from the azimuthal symmetry of the round jet to
the dihedral group symmetry of the twin-rectangular jet, and explains why the twin jet
exhibits antisymmetric but not symmetric screech modes.
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1. Introduction
In turbulent jets, wavepackets are known to play an important role in noise generation
due to their high spatiotemporal coherence and intermittency (Jordan & Colonius 2013).
However, a complete and unified theory of the mechanisms that link wavepackets to
observed noise remains elusive. The lack of such a theory is one factor that impedes the
progress towards systematic control strategies for robust jet noise reduction.

Of particular interest in supersonic jet noise mitigation is the control of jet screech.
Powell (1953a) first identified this intense, spectrally discrete acoustic phenomenon and
proposed a resonant feedback loop as its origin (Powell 1953b). This proposal has largely
withstood the scrutiny of later research, even if details concerning the precise feedback
mechanisms have evolved. It is generally accepted (Edgington-Mitchell 2019) that the
screech feedback loop is energised by the downstream-propagating Kelvin–Helmholtz
(KH) instability of the turbulent mean flow (Tam 1971). The upstream-propagating waves
that close the loop, however, are less well-understood, though a consensus is emerging
(Shen & Tam 2002; Edgington-Mitchell et al. 2018, 2022; Gojon, Bogey & Mihaescu
2018) that they are the subsonic instability waves, or guided-jet modes (G-JM), predicted
by Tam & Hu (1989), which have also been shown to contribute to resonance in high
subsonic jets (Tam & Ahuja 1990; Schmidt et al. 2017b; Towne et al. 2017; Jordan et al.
2018; Towne, Schmidt & Brès 2019).

While most investigations of jet screech focus on the canonical round jet, there is
increasing interest in more complex nozzle geometries, including the twin-rectangular
jet that forms the subject of this study. The instability waves of round jets are well
characterised by the leading azimuthal Fourier modes (Jordan & Colonius 2013). By
contrast, the rectangular nozzle shape and its associated mean flow support fundamentally
distinct instabilities due to the absence of axisymmetry (Tam & Thies 1993; Gutmark &
Grinstein 1999; Rodríguez et al. 2021; Nogueira et al. 2023). Nonetheless, previous
studies of actively controlled rectangular jets relied on the assumption of azimuthal
homogeneity or did not consider the nozzle symmetry (Samimy et al. 2023; Lakshmi
Narasimha Prasad & Unnikrishnan 2023, 2024; Samimy et al. 2024). In addition, closely
spaced twin-rectangular jets create opportunities for the two jets to couple and interact
(Raman & Taghavi 1998; Karnam, Baier & Gutmark 2020; Samimy et al. 2023; Jeun,
Wu & Lele 2024). Like the rectangular, elliptical and twin-round jets, the twin-rectangular
jet possesses two axes of reflectional symmetry and thus belongs in the dihedral group
D2 (see e.g. Sirovich & Park 1990). Screech mitigation for the twin-rectangular jet must
account for the unique instabilities that arise due to its D2 symmetry. To this end, we
carry out a large-eddy simulation (LES) investigation of a twin-rectangular jet flow using
a nozzle geometry identical to the experimental set-up of Samimy et al. (2023), which
was in turn derived from that of Karnam et al. (2020). By adhering to D2 symmetry, we
show that twin-rectangular jet screech naturally adopts two classes of flapping instabilities.
Based on this finding, we test – and subsequently confirm – the hypothesis that geometrical
symmetries can be leveraged to control natural instabilities.

Jet noise control has been investigated using a range of passive devices, including
chevrons (Heeb et al. 2010; Henderson & Bridges 2010; Bridges, Wernet & Frate 2011)
and steady microjet injections (Greska et al. 2005), as well as active devices. While
many types of active devices, including plasma actuators, possess control authority in
low-speed flows, the control of high-Reynolds number jets requires large-amplitude,
high-bandwidth forcing (Cattafesta & Sheplak 2011). These requirements are the basis
for the localised arc filament plasma actuators (LAFPAs), developed by Samimy et al.
(2004). LAFPAs produce intense localised thermal perturbations through arc discharge.
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First experimentally demonstrated in round jets (Samimy et al. 2004), LAFPAs have
recently been employed for noise control experiments in twin-rectangular jets (Samimy
et al. 2023, 2024). LAFPA-based control of single-rectangular jets has also recently been
explored using LES, in which the actuators are modelled as boundary heating (Lakshmi
Narasimha Prasad & Unnikrishnan 2023, 2024). We follow the approach pioneered
by Utkin et al. (2006) and later refined by Kleinman, Bodony & Freund (2009) and
Kim et al. (2009), and model the actuators as volumetric energy sources. To maximise
control authority, we fire the actuators in a pattern that respects the D2 symmetry of the
twin-rectangular jet.

Spectral proper orthogonal decomposition (SPOD; Lumley 1970; Towne, Schmidt &
Colonius 2018; Schmidt & Colonius 2020) and cyclostationary SPOD (CS-SPOD; Heidt &
Colonius 2024) extract spatiotemporally coherent structures that optimally represent flow
data in terms of energy. They have been used for physical discovery in natural (Schmidt
et al. 2018) and highly forced jets (Heidt & Colonius 2024), respectively. Unlike SPOD,
CS-SPOD is specialised for wide-sense cyclostationary flows, such as those that arise from
periodic forcing, and discards the assumption of uncorrelatedness among frequencies.
CS-SPOD targets triadic interactions involving the organised forcing and the stochastic
turbulence, which only occur at very high forcing amplitudes. Instead, we are interested in
the dynamics of the harmonic tones induced by the forcing. Using SPOD, we first examine
the energy distribution of the natural and forced jets into both frequency and D2 symmetry
components. We show that screech is active in two of the four symmetry components of
the natural jet: a flapping and a double-flapping component. To our knowledge, this result
has not been documented, as past investigations tended to focus on twin-circular jets under
different operating conditions (see Nogueira & Edgington-Mitchell 2021; Stavropoulos
et al. 2023 for recent examples). Forcing the jet in one of its inactive symmetry components
leads to effective mitigation of screech in the double-flapping component, but not the other.
In addition to studying energy spectra, it is also important to consider the intermittency
of coherent structures. For jet noise modelling, intermittency is usually studied using the
wavelet transform (Kœnig et al. 2013), which reveals only local behaviours. Here, we
show the intermittency of global structures by conducting SPOD-based time-frequency
analysis (Schmidt et al. 2017a; Towne & Liu 2019; Nekkanti & Schmidt 2021), finding the
double-flapping screech mode to be more intermittent than the flapping mode.

Strong periodic actuation gives rise to harmonic peaks of the forcing frequency in
the symmetry component of the forcing, but also to tonal peaks in a second symmetry
component. These tonal peaks will be explained as inter-symmetry triad interactions. In
the present work, we are interested specifically in the occurrence or disappearance of tones
in different symmetries of the forced jet. The occurrence of tones is facilitated by the
nonlinearity of the Navier–Stokes equations, which establishes quadratic phase coupling
between frequencies and symmetries. To distil the coherent structures that partake in
nonlinear interactions, we use bispectral mode decomposition (BMD; Schmidt 2020).
By detecting phase coupling between three frequency and symmetry components that are
triadically compatible, BMD enables us to systematically catalogue dominant triads in the
framework of bispectral statistics. BMD has been used to study frequency triads present
in cylinder wakes (Schmidt 2020; Freeman, Martinuzzi & Hemmati 2024), flat plate and
aerofoil wakes (Schmidt 2020; Deng, Chen & Yang 2022; Patel & Yeh 2023), propeller
and turbine wakes (Wang et al. 2023; Kinjangi & Foti 2024), swirling flows (Schmidt &
Oberleithner 2023; Freeman et al. 2024), round impinging jets (Li et al. 2024a; Maia,
Fiore & Gojon 2024), rectangular jets (Lakshmi Narasimha Prasad & Unnikrishnan 2024),
and hypersonic boundary layers (Sousa et al. 2024). Its utility for both frequency and
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symmetry triads has also been demonstrated on disk wakes (Nekkanti et al. 2023a) and
round jets (Schmidt 2020; Nekkanti et al. 2023b), which are continuously symmetric, as
well as train wakes (Li et al. 2024b), which are discretely symmetric. In the present study,
we use BMD to extract structures associated with active frequency and D2 symmetry
triads.

The remainder of the paper is organised as follows. The numerical simulations and
plasma actuation modelling are introduced in § 2. The decomposition of data into D2
symmetry components is explained in § 3. Section 4 presents spectral analysis of the
natural and forced jets using SPOD. The nonlinear dynamics of the forced jet are explored
using BMD in § 5. Results from SPOD and BMD are discussed in § 6 and summarised
in § 7. Appendix A reports on the computational grids used. Appendix B details the
recovery of SPOD from BMD. Appendix C outlines alternative approaches to the
treatment of discrete spatial symmetries, such as D2. Appendix D compares the impact of
different spatial norms on the modal statistics. For completeness, Appendix E documents
the symmetry triads that are not active in the flow.

2. Numerical set-up
In this section, we outline the set-up of the LES for the natural and forced jet simulations,
and describe the modelling and implementation of plasma actuation in the forced jet.

2.1. Large-eddy simulations
The simulations of the turbulent supersonic twin-rectangular jet are carried out using
Cadence’s unstructured, compressible LES solver ‘Charles’ (Brès et al. 2017; Brès &
Lele 2019). The jet is nominally ideally expanded and cold. The nozzle exit conditions
are characterised by the jet Mach number, Mj = uj/cj = 1.5, acoustic Mach number,
Ma = uj/c∞ = 1.25, pressure, pj/p∞ = 1, temperature, Tj/T∞ = 0.69, and Reynolds
number, Rej = ρj uj De/μj = 1.07 × 106, where u is the streamwise velocity, c the speed
of sound, ρ the density, De/h = 1.6 the equivalent nozzle diameter, h the nozzle height, μ
the dynamic viscosity, and (·)j and (·)∞ refer to jet exit and ambient conditions,
respectively. The nozzle pressure (NPR) and temperature ratios (NTR) are pt/p∞ = 3.671
and Tt/T∞ = 1, respectively. The biconical nozzle geometry, with an aspect ratio of two,
is included in the computational domain and closely matches the experimental set-up of
Samimy et al. (2023). The centre-to-centre spacing between the nozzles is 3.6h. Each
nozzle has a cavity cut into the internal wall just upstream of the nozzle exit. Housed
within the cavity are eight pairs of electrodes per nozzle, allowing for up to eight plasma
actuators per nozzle. Due to the sharp throat and cavity of the nozzles, shocks are present
despite the jet being nominally ideally expanded. Aided by the high Reynolds number, the
cavity also facilitates a turbulent boundary layer state at the exit, captured using a wall
model. The computational grid contains approximately 77 million cells. The simulation
time step, dt c∞/h, is 0.002 for the natural jet and 0.001 for the forced jet (see § 2.2).
These parameters are summarised in table 1. For full details of the simulation, including its
validation against the experiments of Samimy et al. (2023), we refer the reader to Brès et al.
(2021, 2022). The flow variables are non-dimensionalised by the ambient conditions, ρ∞,
T∞ and c∞ = √

γ p∞/ρ∞, where γ is the ratio of specific heats. Lengths are non-
dimensionalised by h. Frequencies are non-dimensionalised by uj/De, and reported as
the Strouhal number, f De/uj . For notational compactness, we denote frequencies by f ,
but emphasise that f is dimensionless.
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Case Mj Ma Rej pt/p∞ pj /p∞ Tt/T∞ Tj /T∞ ncells dtc∞/h

Natural 1.5 1.25 1.07 × 106 3.671 1 1 0.69 76.6 × 106 0.002
Forced 1.5 1.25 1.07 × 106 3.671 1 1 0.69 77.0 × 106 0.001

Table 1. LES parameters for the natural and forced jets.

2.2. Plasma actuation model
To include the effect of plasma actuation in the LES, we adapt the model proposed by Kim
et al. (2009). We insert a cylinder-shaped, volumetric source term into the right-hand side
of the energy equation. The energy source is expressed as

S(r, z, t) = k(t)l(r)m(z)P/
(
πr2

0 L
)
, (2.1)

where P is the amplitude with the dimensions of power, r0 is the radius of the cylinder, L
is its length, and r and z are local coordinates. For notational simplicity only, in (2.1), we
have aligned the local z-axis with the axis of the cylinder, such that r = √

x2 + y2. The
exact geometry, including the locations and orientations of the actuators, can be found
from Samimy et al. (2023). In actual implementation, the cylinder – like the plasma arc –
is aligned with the nozzle lips. The envelope of the cylinder is given by the shape functions

l(r) = (1/2)[tanh(−σ(r/r0 − 1/2)) + 1] (2.2)

and

m(z) = −(1/2)[tanh (−σ(z + L/2)/r0) + 1] + (1/2)[tanh (−σ(z − L/2)/r0) + 1],
(2.3)

where σ is a smoothness parameter. The energy source is modulated in time by the
smoothed rectangular wave

k(t) = (1/2)[tanh((t − nτ − ton)/tr ) − tanh((t − nτ − toff)/tr )], (2.4)

where ton and toff are the time instants within each forcing period at which the signal is
switched on and off, respectively, tr is the rise time, τ is the forcing period, and n = �t/τ�.

We assume r0 to be half the depth of the cavity and L to be the distance between
each pair of electrodes. The value for σ is taken directly from Kim et al. (2009). The
amplitude, P , and temporal parameters, ton, toff and tr , are adapted from voltage and
current measurements by Samimy et al. (2023) of a typical actuation cycle. Due to the
short pulse duration, toff − ton, the rectangular wave, k, in (2.4) is similar to an impulse
train. In general, these parameters can be set independently for each actuator; in this
work, however, all actuators behave identically. The parameters are summarised in table 2.
Based on our previous plasma modelling effort (Brès et al. 2021), we apply additional
grid refinement to the vicinity of the cavity, locally reducing the cell width by a factor of
two relative to the natural jet (see Appendix A). The overall grid size is nearly unchanged.
However, due to explicit time integration, the reduced minimum grid spacing necessitates
a smaller time step (see table 1).

Since it is challenging to obtain experimental measurements of the local flow
environment around a plasma arc, rather than attempt to replicate a specific experiment,
we seek to demonstrate the control authority of plasma actuation by exciting specific
frequency and D2 symmetry components in the twin-rectangular jet, as motivated in § 1.
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P/ρ∞c3∞h2 r0/h L/h σ tonc∞/h toffc∞/h tr c∞/h f0

17.44 0.02 0.29 5 0 0.0015 2 × 10−5 0.29

Table 2. Non-dimensionalised plasma actuator modelling parameters. Ambient temperature and pressure are
assumed to be 293 K and 1 atm, respectively.

Natural(a)

(c) (d)

(b) Forced

Figure 1. Instantaneous snapshots of the (a,c) natural and (b,d) forced jets: (a,b) Q-criterion isocontours of
Q = 5; (c,d) numerical schlieren, |∇ρ|, on the major-axis plane, y = 0. In panel (a,b), the contours are coloured
by temperature fluctuations, T ′. The colours saturate at |T ′| = ±0.05. In panel (c,d), the shading varies from
white, |∇ρ| = 0, to black, |∇ρ|� 10. Dashed lines mark the locations of grid density transitions.

2.2.1. Actuation strategy
As we will see in § 4, the natural jet emits a dominant screech tone at a frequency of
f = 0.29. This screech is associated with flapping instabilities, i.e. antisymmetric
oscillations about the major axis, y = 0. To test the hypothesis that the natural
antisymmetric instabilities may be disrupted, we force the twin jet symmetrically at the
same frequency, f0 = 0.29. We choose the screech frequency as the forcing frequency
because coupling between the twin jets is known to be sensitive to excitation at this
frequency (Samimy et al. 2023). Since the forcing specified by (2.4) is a rectangular
wave, the harmonics of the fundamental, f0, 2 f0, . . ., are simultaneously excited. The
experiments of Samimy et al. (2023) employed six actuators per nozzle – three on the top
lip, three on the bottom lip. We adopt the same strategy. Specifically, to achieve symmetric
forcing, all 12 actuators will fire in phase at frequency f0.

Instantaneous snapshots of the natural and forced jets are visualised in figure 1. For
both jets, the Q-criterion (Hunt, Wray & Moin 1988) isocontours display highly chaotic
flow fields that contain a broad range of spatial scales. The forced jet shows alternating
regions of high and low temperature due to the plasma actuation. In the numerical schlieren
images, shock cells are observed within the potential cores. The shear layers of the forced
jet reveal large-amplitude, symmetric perturbations as a result of the symmetric forcing
pattern. Both the Q-criterion and schlieren visualisations show evidence of grid density
transitions, as the LES filters fine-scale turbulence – a feature of LES subgrid models.
These transitions occur at the boundaries between different grid refinement regions (see
Appendix A), and are highlighted in figure 1(c,d). However, as we will see later, the
transitions have negligible impact on the large-scale structures in which we are interested.
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SS SA AS AAy(a) (b) (c) (d )y y y

z z z z

Minor

axis

Major

axis

Figure 2. D2 symmetry components. White and grey quadrants represent fluctuations of equal magnitude
but opposite signs.

3. Symmetries of the twin-rectangular jet flow
In the analysis of turbulent flows that enjoy statistical homogeneity in one or more spatial
directions, it is customary to Fourier transform the data along the homogeneous directions.
Doing so reduces computational effort, accelerates the convergence of the statistics
and, most importantly, enhances the interpretability of the results. For axisymmetric
jets, this procedure amounts to an azimuthal Fourier transform. Twin jets, however,
are inhomogeneous in all directions. Instead, they possess D2 symmetry, i.e. their
geometries are invariant under reflection about the major and minor axes, y = 0 and
z = 0, respectively. In such flows, D2 symmetry gives rise to four symmetry components
(Sirovich & Park 1990): SS, SA, AS and AA, where the first and second letters
denote symmetry (S) or antisymmetry (A) about the major and minor axes, respectively
(Rodríguez et al. 2018). These symmetry components are illustrated in figure 2. They are
analogous to the elliptic jet instabilities often referred to respectively as varicose, wagging,
flapping and double-flapping modes (Morris 1988; Kinzie & McLaughlin 1997; Nogueira
et al. 2023; Amaral et al. 2024). We express the D2 decomposition of pressure as

p = pSS + pS A + pAS + pAA, (3.1)

where the symmetry components are given by

pSS = 1
4

[
p(x, y, z, t) + p(x, −y, z, t) + p(x, y, −z, t) + p(x, −y, −z, t)

]
, (3.2a)

pS A = 1
4

[
p(x, y, z, t) + p(x, −y, z, t) − p(x, y, −z, t) − p(x, −y, −z, t)

]
, (3.2b)

pAS = 1
4

[
p(x, y, z, t) − p(x, −y, z, t) + p(x, y, −z, t) − p(x, −y, −z, t)

]
, (3.2c)

pAA = 1
4

[
p(x, y, z, t) − p(x, −y, z, t) − p(x, y, −z, t) + p(x, −y, −z, t)

]
. (3.2d)

As implied by (3.1), D2 decomposition entails no loss of generality: the original flow
field, p, can be exactly reconstructed by summing the four symmetry components in (3.2).
It is also possible to exploit statistical spatial symmetries by inflating the data record
with geometrically transformed copies of the snapshots (Sirovich 1987b). In Appendix C,
we outline this alternative procedure and justify our choice to enforce symmetry via D2
decomposition.

To provide concrete motivation for D2 decomposition, the long-time mean pressure of
the natural jet is shown in figure 3(a–f ) for different axial planes. On the x = 5 plane, the
mean profile bears overt resemblance to the twin-rectangular nozzle geometry. Much like
the nozzle geometry, the mean is invariant with respect to reflections about the major and
minor axes. Further downstream, the twin jets gradually begin to merge. The mixing of
the twin jets remains incomplete even at x = 30, where two distinct jet plumes are still
visible. Over the entire domain of interest, x ∈ [0, 30], the jet flow thus preserves its D2
symmetry. This underscores the necessity of accounting for D2 symmetry when analysing
the statistics of the twin-rectangular jet.
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x = 5

4

2

−2

−4

0y

4

4 2 −2 −40 4 2 −2 −40 4 2 −2 −40 4 2 −2 −40 4 2 −2 −40 4 2 −2 −40
zzz zzz

2

−2

−4

0y

x = 10 x = 15 x = 20 x = 25 x = 30

0.70

0.69

0.68

p–

(a)

(g) (h) (i) ( j) (k) (l)

(b) (c) (e) ( f )(d)

Figure 3. Long-time mean pressure of the natural (top row) and forced (bottom row) jets, visualised on axial
planes: (a,g) x = 5; (b,h) x = 10; (c,i) x = 15; (d,j) x = 20; (e,k) x = 25; ( f ,l) x = 30. All panels share the same
colour contours.

The mean pressure of the forced jet, visualised in figures 3(g)–3(l), undergoes an
analogous streamwise evolution. The twin jets are separate for x � 5 and partially mixed
for 5 � x � 30. The forced jet flow also remains D2-symmetric for all x . However, the
transverse mean profiles of the natural and forced jets reveal a stark difference, especially
near the nozzle. Whereas the mean of the natural jet is shaped similar to two rounded
rectangles, the mean of the forced jet resembles two ellipsoidal jets. Deformation of the
mean flow by the forcing presages significant differences between the instabilities found
in the natural and forced jets. We will begin examining some of these differences in § 4
using SPOD.

4. SPOD analysis
SPOD has become the predominant data-driven method for the analysis of a broad
range of turbulent flows, including turbulent jets (see e.g. Glauser, Leib & George 1987;
Schmidt et al. 2018; Brès & Lele 2019). Its theory and implementation have been amply
documented elsewhere (Lumley 1970; Towne et al. 2018; Schmidt & Colonius 2020), so
we will only briefly recapitulate the basics.

A time series made up of nt temporally and spatially discretised snapshots of a flow,
qi , i = 1, 2, . . . , nt , is segmented into nblk blocks of length nfft each, with an overlap
of novlp snapshots (Welch 1967). A discrete Fourier transform (DFT) is applied to each
block, yielding nblk Fourier realisations at each frequency, q̂(n)

k , n = 1, 2, . . . , nblk, k =
1, 2, . . . , nfft. For each frequency, the Fourier realisations are assembled in the data
matrix,

Q̂k =
[
q̂(1)

k , q̂(2)
k , · · · , q̂(nblk)

k

]
. (4.1)

The SPOD modes, Φk , and modal energies, diag(Λk), are the solutions to the weighted
eigenvalue problem

SkWΦk = ΦkΛk, (4.2)

where Sk = (1/nblk)Q̂kQ̂
∗
k is the cross-spectral density (CSD) matrix and (·)∗ denotes the

conjugate transpose. The diagonal matrix W contains the numerical quadrature weights
and ensures that the modes are optimal in the weighted 2-norm induced by the inner
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nx ny nz [xmin, xmax] [ymin, ymax] [zmin, zmax] nt �tc∞/h nfft novlp nblk

130 60 76 [0, 30] [−5, 5] [−5, 5] 10 000 0.2 1024 512 18

Table 3. Database and spectral estimation parameters for SPOD (§ 4) and BMD (§ 5). The natural and forced
jets share the same parameters.

100
0.10

0.05

10−1

10−2λ

10−3

10−4

0 0.2 0.4 0.6

f

f0 = 0.29

Natural Forced

0.8 0 0.2 0.4 0.6

f
0.8 0 0.2 0.4 0.6

f
0.8 0 0.2 0.4 0.6

f
0.8 1.0

(a) (b) (d)(c)SS SA AS AA

Figure 4. Leading SPOD eigenvalue spectra of the natural (solid lines) and forced (faded lines) jets: (a) SS;
(b) SA; (c) AS; (d) AA symmetry components. The dotted line in panel (a) marks the SS forcing frequency, f0.
The inset in panel (c) zooms in on the frequency range f ∈ [0, 0.1] and shows λ on a linear scale.

product 〈q1, q2〉x = q∗
2Wq1. For most flow data, (4.2) can be more efficiently solved via

the method-of-snapshots (Sirovich 1987a), i.e.

(1/nblk)Q̂
∗
kWQ̂kΨ k = Ψ kΛk, with Φk = (1/

√
nblk)Q̂kΨ kΛ

−1/2
k . (4.3)

For each simulation (natural and forced), 10 000 snapshots of the LES are saved at a
time interval of �tc∞/h = 0.2. Prior to statistical analysis, the unstructured snapshots are
interpolated onto a Cartesian grid that spans x ∈ [0, 30], y ∈ [−5, 5] and z ∈ [−5, 5], and
is discretised by nx = 130, ny = 60 and nz = 76 points in the x , y and z directions. The
database interpolation and spectral estimation parameters are summarised in table 3. In
the remainder of this work, we will focus only on the pressure component of the data, but
have confirmed in Appendix D that an analysis based on the primitive variables yields
comparable results.

4.1. SPOD modal energies and modes
The leading SPOD eigenvalue spectra of the natural and forced jets are reported and
compared in figure 4. In both cases, the modal energy distribution evidently depends on
spatial symmetry. For the SS and SA symmetry components in figure 4(a,b), the energy
of the natural jet is predominantly broadband. Over the frequency range f � 0.04, the
energy decays with frequency, as is expected in a turbulent flow. At very low frequencies,
the energy rapidly falls off as f → 0 because the finite domain size limits the resolvability
of structures with the longest wavelength (and thus lowest frequency). In the SS spectrum,
a small peak can also be discerned at f = 0.28. For the AS and AA symmetries in
figure 4(c,d), however, the spectra of the natural jet reveal a prominent tone at f = 0.29
as a result of screech resonance. The screech mechanism is thus well represented by
AS and AA modes. For the present nozzle geometry and operating condition, screech
modes antisymmetric about the major axis were previously observed by Esfahani, Webb &
Samimy (2021). The screech tone is more energetic in the AS component – a flapping
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screech mode – than in AA – a double-flapping screech mode. Screech tones are also
present at higher frequencies, in particular at f ≈ 0.34 and 0.75, which are not harmonics
of the dominant screech tone. They have substantially lower energy and stem from
shock cells having non-uniform spacing (Edgington-Mitchell et al. 2022). Compared with
the other three symmetries, the AA spectrum has significantly reduced energy at low
frequencies, below f ≈ 0.1. Conversely, at low frequencies, the SS symmetry is the most
energetic. This is consistent with the strong in-phase coupling between the left and right
jets observed at low frequencies by Samimy et al. (2023). The suboptimal eigenvalues do
not display tones and are negligibly dependent on symmetry or influenced by forcing, and
thus are not reported.

Whereas in the natural jet, tones are found in the AS and AA symmetries, in the
forced jet, they have migrated to the SS and AS symmetries. These tones occur at the
fundamental forcing frequency, f0 = 0.29, as well as its harmonics. They make up part
of the response of the jet to the exogenous forcing. Non-harmonic tones found in the AS
spectrum of the natural jet are eliminated in the forced jet. The forced jet also responds
by completely suppressing the double-flapping tones in the AA component, producing a
broadband spectrum. Nonetheless, the appearance of additional tones in SS and AS means
that the present forcing strategy does not achieve overall noise reduction. The SA spectrum
remains broadband and is nearly unchanged from the natural jet. Given the SS symmetry
of the forcing, the generation of harmonics in the AS component and quelling of tones in
AA are clear signs that nonlinear mechanisms are at work.

For the AS symmetry in figure 4(c), a comparison between the natural and forced
jets shows that the leading modes of both cases possess approximately equal energy
at f0. Below f ≈ 0.1, however, the two display distinct characteristics. As the inset in
figure 4(c) makes clear, for 0.01 � f � 0.07, the forced jet has higher energy, suggesting it
exhibits a greater prevalence of slowly evolving structures. These changes are unsurprising
considering the drastically modified mean flow shown in figure 3. Below f ≈ 0.01, the
separation between the natural and forced spectra initially shrinks, but diverges again as
f → 0. In the f = 0 frequency bin, the forced jet has tenfold the energy of the natural jet.
By definition, the long-time mean cannot be spatially antisymmetric. As such, we attribute
the energy of the AS component of the forced jet in the f = 0 bin to coherent structures
energised by the forcing that oscillate at frequencies below the finite bin width, � f =
1/(nfft�t). For the remaining three symmetry components, we observe no significant
change to the low-frequency region of each of their spectra. We will revisit the modes
at near-zero frequencies in §§ 5.4 and 5.5.

The leading SPOD modes of the natural and forced jets at frequency f0 are shown in
figure 5. By construction, SPOD modes are normalised such that they have unit energy,
‖φ1‖2

x = 1. To facilitate comparison of the relative presence of the modes as they occur
in the data, we scale each mode by its SPOD amplitude, i.e. the square root of its
corresponding mode energy,

√
λ1. As the eigenvalue spectra in figure 4 reveal, only the

SS, AS and AA symmetry components of the natural or forced jet (or both) display tones.
For this reason, we focus on the modes of these three symmetries in figure 5.

The three-dimensional (3-D) mode shapes clearly demonstrate the contrasting coupling
behaviour of each symmetry component. For the SS symmetry, figure 5(a,d) shows the
contours of the amplitude-scaled leading mode,

√
λ1 Re{φ1(x)} = ±0.1, in red (positive)

and blue (negative). At this isovalue, no structure is visible in the natural jet due to the
low mode energy. Conversely, in the forced jet, we observe coherent structures phase-
locked to the strong SS excitation. The structures exit the twin nozzles independently,
then rapidly begin to merge, so that by x ≈ 5, they have morphed into a single, large
wavepacket that couples the left (z > 0) and right (z < 0) jets in phase with each other.

1018 A34-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
54

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10544


Journal of Fluid Mechanics

0 0 0

N
at

u
ra

l
F

o
rc

ed

5
x

z

SS(a) (b) (c)

(d) (e) ( f )

10
5
x

AS AA

10
5
x

10

4
2

−2
−4

0 z
4

2
−2 −2

−4
0 z

4
2

2
0
−2

2
0
−2

−4
0

y

y

Figure 5. Leading SPOD modes, scaled by their SPOD amplitudes, of the (a–c) natural and (d–f ) forced
jets at f = 0.29: (a,d) SS; (b,e) AS; (c, f ) AA symmetry components. For each mode, isocontours of√
λ1 Re{φ1(x)} = ±d are shown in red and blue. The isovalue, d, is shared in each column: (a,d) d = 0.1;

(b,e) d = 0.05; (c, f ) d = 0.02. Rectangles mark the exits of the twin nozzles.

For the AS symmetry, contours of
√
λ1 Re{φ1(x)} = ±0.05 are shown in figure 5(b,e).

Because the natural and forced jets possess almost equal energy at f = 0.29 in this
symmetry (as the spectra in figure 4c indicate), the modes of both cases resemble each
other. Like the SS modes, the AS modes represent in-phase coupling between the left
and right jets. Unlike SS, however, the AS modes are antisymmetric about the major-axis
plane, y = 0. The AA modes in figure 5(c, f ) display stark differences between the natural
and forced cases. Whereas in the natural jet the contours of

√
λ1 Re{φ1(x)} = ±0.02

reveal distinct structures, in the forced jet, no discernible structure is present for the same
isovalue. This is a direct consequence of the suppression of screech in the AA symmetry
by the forcing. The envelope of the AA mode in the natural jet is qualitatively similar to
the AS mode. That said, the former is distinguished by its antisymmetry about the minor-
axis plane, z = 0. The left and right jets are coupled perfectly out of phase, with a phase
difference of π between each other. For the modes considered in figure 5, while the mode
amplitudes are (in the cases of SS and AA) significantly altered by forcing, the mode
shapes of the natural and forced jets are similar.

As we will see, SPOD and BMD modes of the twin-rectangular jet at the same frequency
appear visually indistinguishable. Both methods successfully capture the most prevalent
flow structures. We therefore defer a more detailed discussion of the physical mechanisms
revealed by the modes until § 5.

4.2. Intermittency
For the natural jet, the tonal peak at f = 0.29 in the AS and AA symmetry components
(see figure 4) signifies the prevalence of (double)-flapping structures in the flow, but only
in a statistical sense. In figure 6, we investigate the temporal dynamics of these structures
by conducting a time-frequency analysis of each symmetry. Specifically, we leverage the
ability of the time-continuous SPOD expansion coefficients to provide insights into the
global (as opposed to pointwise) evolution of modal structures (Schmidt et al. 2017a;
Towne & Liu 2019). For computational efficiency, we determine the expansion coefficients

A{i}
k = Φ∗

kWQ̂
{

i− nfft
2 ,...,i+ nfft

2 −1
}

k (4.4)
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Figure 6. SPOD-based time-frequency analysis of the (a–d) natural and (e–h) forced jets: (a,e) AS and (b, f )
AA symmetry components; the (c,g) left and (d,h) right jets primarily located in the z > 0 and z < 0 half-
domains, respectively. All panels share the same colour contours.

for the time index i , with the Fourier transform Q̂k taken one snapshot at a time
(Nekkanti & Schmidt 2021). The magnitudes of the complex-valued expansion coefficients
are the time-dependent SPOD amplitudes. The coefficients corresponding to the leading
mode are shown in figure 6(a,b) for the AS and AA symmetries, respectively, in the
form of a time-frequency diagram. In figure 6(a), the AS symmetry displays a dark
band at f = 0.29, as expected from the dominant screech tone. The persistence of the
band with only small fluctuations suggests the strength of the AS screech tone remains
relatively stable over time. The frequency of the tone also remains fixed. However, the
AA screech tone shown in figure 6(b) is intermittent. While its frequency is steady, its
strength fluctuates significantly such that it vanishes, and later re-emerges, several times
in the data record. Compared with the AA screech, the dominance and steadiness of the
AS screech suggest the absence of competition between the two screech symmetries that
would have otherwise led to symmetry-switching. This is in accordance with observations
by Wong et al. (2023) that twin-round jets exhibit steady jet coupling at high NPR. The
corresponding time-frequency diagrams for the forced jet are also shown in figure 6(e, f ).
As expected, the tonal peaks at frequency f0 and its harmonics are clearly visible in
the AS component and do not manifest intermittency. No peak is visible in the AA
component.

For completeness, we also perform independent time-frequency analyses of the left and
right jets. For the left jet, SPOD modes are computed from the data in the z > 0 half-
domain, without recourse to D2 symmetry decomposition. The time-continuous expansion
coefficients are obtained from (4.4) as before. For the right jet, modes and coefficients are
calculated in an analogous manner, just in the z < 0 half-plane. For the natural jet, the
expansion coefficients of the left and right jets are reported in figure 6(c,d), respectively.
The magnitudes of these coefficients are larger than those belonging to the AS and
AA symmetries, because the left and right jets include all four symmetry components.
Both the left and right jets share the same screech frequency. They appear intermittent
and lack a clear phase relationship between each other. At the screech frequency, we
have confirmed that the magnitudes of the expansion coefficients of the two jets exhibit
low correlation with each other. The corresponding coefficients for the forced jet are
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displayed in figure 6(g,h). The harmonic peaks are visible and not intermittent, again as
expected.

In light of the absence of symmetry-switching – as demonstrated by figure 6(a,b) – and
to simplify our analysis, in the remainder of this work, we focus exclusively on results
where D2 symmetry is enforced.

5. Nonlinear dynamics
For the natural jet, the SPOD spectra in figure 4 do not manifest significant nonlinear
activity. The spectra of the forced jet, however, uncover significant energy concentration
and low-rankness at harmonics of the fundamental forcing frequency, f0, 2 f0, . . .. This
behaviour hints at the potential for nonlinear interactions among the harmonic frequencies
in the forced jet. However, by construction, SPOD does not account for possible correlation
between frequency components (Towne et al. 2018; Heidt & Colonius 2024). In contrast,
BMD (Schmidt 2020), like the classical bispectrum on which it is based, is designed
to discriminate between waves that are independently excited and thus uncorrelated,
and those that maintain an approximately constant phase relationship over time and are
statistically dependent (Kim & Powers 1979). Application of BMD to the forced jet allows
us to assess both the importance of nonlinear dynamics as well as how such dynamics may
depend on frequency and spatial symmetry.

5.1. Methodology

5.1.1. BMD with bicoherence normalisation
For a one-dimensional, statistically stationary random signal, q(t), and its Fourier
transform, q̂( f ), the classical bispectrum is defined as the triple correlation

b( fk, fl) = E{q̂∗( fk)q̂
∗( fl)q̂( fk + fl)}, (5.1)

where E{·} is the expectation operator. The frequency triplet, ( fk, fl , fk + fl), constitutes
a triad. BMD generalises the classical bispectrum to flow fields, q(x, t), by defining the
spatially integrated bispectrum,

b( fk, fl) = E

{∫
Ω

q̂∗(x, fk)q̂
∗(x, fl)q̂(x, fk + fl) dx

}
= E

{〈
q̂k+l , q̂k◦l

〉
x

}
, (5.2)

where q̂ are the spatially resolved, temporal Fourier modes computed from the data,
q̂k◦l := q̂k ◦ q̂l , ◦ denotes a Hadamard product and (·)∗ denotes the conjugate (transpose).
The weighted inner product, 〈·, ·〉x , is the same as that used for the SPOD in § 4. Our
goal is to measure the expected quadratic phase coupling between the components q̂k+l
and q̂k◦l , independently of the power of each component. To this end, we normalise

each component by the square root of its average integral power,
√

E{‖q̂k+l‖2
x} and√

E{‖q̂k◦l‖2
x}, respectively, with the norm defined as ‖q‖2

x = 〈q, q〉x . Thus normalised,
the integrated bispectrum becomes equivalent to the integrated bicoherence,

b( fk, fl) = E
{〈

q̂k+l , q̂k◦l

〉
x

}
√

E
{∥∥q̂k+l

∥∥2
x

}
E

{∥∥q̂k◦l

∥∥2
x

} . (5.3)

Like the classical bicoherence for one-dimensional signals, the magnitude of the integrated
bicoherence is bounded. Specifically,
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|b( fk, fl)| =
∣∣E {〈

q̂k+l , q̂k◦l

〉
x

}∣∣√
E

{∥∥q̂k+l

∥∥2
x

}
E

{∥∥q̂k◦l

∥∥2
x

} (5.4a)

�
E

{∣∣〈q̂k+l , q̂k◦l

〉
x

∣∣}√
E

{∥∥q̂k+l

∥∥2
x

}
E

{∥∥q̂k◦l

∥∥2
x

} (triangle inequality)

�
E

{∥∥q̂k+l

∥∥
x

∥∥q̂k◦l

∥∥
x

}
√

E
{∥∥q̂k+l

∥∥2
x

}
E

{∥∥q̂k◦l

∥∥2
x

} � 1. (Cauchy-Schwarz inequality)

In the following, we will assume the Fourier modes have been normalised to unit expected
integral power.

For each triad, to estimate the BMD mode and mode bispectrum, nblk independent
realisations of the Fourier modes are assembled in the weighted data matrices,

Q̂k◦l =
W1/2

[
q̂(1)

k◦l , q̂(2)
k◦l , · · · , q̂(nblk)

k◦l

]
∥∥∥W1/2

[
q̂(1)

k◦l , q̂(2)
k◦l , · · · , q̂(nblk)

k◦l

]∥∥∥
F

(5.5a)

and Q̂k+l =
W1/2

[
q̂(1)

k+l , q̂(2)
k+l , · · · , q̂(nblk)

k+l

]
∥∥∥W1/2

[
q̂(1)

k+l , q̂(2)
k+l , · · · , q̂(nblk)

k+l

]∥∥∥
F

, (5.5b)

which have been normalised such that ‖Q̂k◦l‖F = ‖Q̂k+l‖F = 1, where ‖ · ‖F is the
Frobenius norm. In principle, a factor of 1/

√
nblk is present in the numerator and

denominator of each Q̂, which cancels out when Q̂ is normalised. For both Q̂k◦l and Q̂k+l ,
by definition,

∥∥Q̂
∥∥

F =
√

tr(Q̂
∗
Q̂) =

√∑nblk
i=1

(
q̂(i))∗Wq̂(i)

∥∥W1/2
[
q̂(1)

, q̂(2)
, · · · , q̂(nblk)

]∥∥
F

, (5.6)

where tr(·) denotes the trace. The Frobenius norm thus expresses the square root of the
average power in q̂, which we normalise to one. The weight and spectral estimation
parameters are identical to those used for SPOD (see table 3). We can define a single set of
expansion coefficients, ak,l , that relates the cross-frequency field, φk◦l = W−1/2Q̂k◦l ak,l ,
and bispectral mode, φk+l = W−1/2Q̂k+l ak,l , to the corresponding data matrices in (5.5).
BMD then seeks the particular set of expansion coefficients that maximises the magnitude
of the mode bispectrum estimated from φk◦l and φk+l . That is,

ak,l = arg max
‖a‖=1

|φ∗
k◦lWφk+l | = arg max

‖a‖=1
|a∗Bk,l a|, (5.7)

where Bk,l = Q̂
∗
k◦lQ̂k+l is the bispectral density matrix. The mode bispectrum is

recovered as

βk,l = a∗
k,lBk,l ak,l ∈C. (5.8)

Equation (5.7) is the numerical radius problem for Bk,l .
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Lef t and right jets coupled in phase
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Figure 7. Non-redundant D2 symmetry triads, colour-coded by symmetry. The mode bispectra of the SS–SS
interaction, (SS,SS,SS), AS–AS interaction, (AS,AS,SS), and SS–AS interaction, (SS,AS,AS), are shown in
figure 9. The remaining triads are shown in figure 19.

The magnitude of the BMD mode bispectrum is similarly bounded by unity, which can
be proven as follows. The numerical radius of a matrix is bounded by its spectral norm
(Goldberg & Tadmor 1982; Horn & Johnson 1985),

|β(Bk,l)|� ‖Bk,l‖2, (5.9)

with the latter also equal to the leading singular value, σ1(Bk,l). To obtain an upper bound
on |β(Bk,l)|, it thus suffices to consider ‖Bk,l‖2. From the submultiplicativity of the
spectral norm (Horn & Johnson 1985), it follows that

‖Bk,l‖2 = ∥∥Q̂
∗
k◦lQ̂k+l

∥∥
2 �

∥∥Q̂
∗
k◦l

∥∥
2

∥∥Q̂k+l
∥∥

2 = ∥∥Q̂k◦l
∥∥

2

∥∥Q̂k+l
∥∥

2. (5.10)

Since the spectral norm is bounded by the Frobenius norm (Horn & Johnson 1985),∥∥Q̂k◦l
∥∥

2

∥∥Q̂k+l
∥∥

2 �
∥∥Q̂k◦l

∥∥
F

∥∥Q̂k+l
∥∥

F = 1. (5.11)

In other words, the mode bispectrum is bounded by the square root of the product of the
average power in q̂k◦l and q̂k+l , in this case normalised to one.

In the original implementation of BMD by Schmidt (2020), the numerical radius is
calculated using the iterative algorithm of He & Watson (1997). The algorithm is not
guaranteed to converge. In practice, non-convergence often leads to a mode bispectrum
with a noisy appearance. In this work, we propose an improved implementation of BMD
that uses the iterative algorithm of Mengi & Overton (2005), which is guaranteed to
converge to the global maximum. The clean appearance of the mode bispectra later
reported is a direct consequence of the robustness of this new implementation.

In addition to considering frequency triads ( fk, fl , fk + fl), we will also use BMD
to investigate the nonlinear coupling among triadically compatible D2 symmetry
components. Using classical bispectral analysis, Walker & Thomas (1997) previously
uncovered experimental evidence for symmetry triads in supersonic single rectangular
jets, with the caveat that symmetry was only assessed about one axis, which precludes the
distinction between all four D2 symmetry components. In the present work, D2 symmetry
triads are examined by assembling the Fourier modes q̂k , q̂l and q̂k+l from different,
triadically compatible symmetry components. Ten of these non-redundant symmetry triads
exist and are illustrated in figure 7.

5.1.2. Recovery of SPOD along the abscissa or ordinate
In the limit of infinitely long data and high frequency resolution, if the long-time mean is
removed, the BMD mode bispectrum should vanish along fl = 0, fk = 0 and fk+l = 0. In
practice, for limited data, the bispectrum tends to display finite values along these lines,
indicative of unresolved low-frequency structures or slow trends captured by the zero-
frequency bin of the DFT. Since the zero-frequency Fourier mode is real, it carries no
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phase information. For any triad that includes frequency zero, i.e. ( f, 0, f ), (0, f, f ) or
( f, − f, 0), it can be shown that the triple correlation in the classical bispectrum defined
in (5.1) may be rewritten as

q̂∗( f )q̂∗(0)q̂( f ) = q̂∗(0)q̂∗( f )q̂( f ) = q̂∗( f )q̂∗(− f )q̂(0) = q̂(0)|q̂( f )|2, (5.12)

which is a real quantity. Here, we invoked the conjugate symmetry of the Fourier transform
of real data. The spatial integral of this triple correlation, equivalent to the inner product
〈q̂k+l , q̂k◦l〉x , is also real. The expectation, E{〈q̂k+l , q̂k◦l〉x}, which defines the integral
bispectrum in (5.2), thus cannot measure the strength of phase coupling for such triads.
Along these special lines, the classical and integral bispectra (and bicoherence) become
phase-blind and are sensitive only to a weighted (by the zero-frequency Fourier mode)
version of power.

This observation motivates an extension of BMD to recover the SPOD spectrum and
modes along the abscissa, fl = 0, or ordinate, fk = 0. For flow data with a spatially
uniform mean, q̄ , recovery of the SPOD can be achieved simply by not subtracting the
mean when solving the BMD problem. Neglecting block-to-block variations of the mean,
which are likely small relative to q̄ , the zero-frequency Fourier mode corresponds to the
constant scalar mean, q̄ . Along the abscissa, for fl = 0, the normalised bispectral density
matrix simplifies to

Bk,0 = Q̂
∗
k◦0Q̂k = Q̂

∗
kQ̂k . (5.13)

Because Bk,0 is now Hermitian and, by extension, normal, its numerical radius problem as
given by (5.7) coincides with the method-of-snapshots SPOD eigenvalue problem in (4.3)
(Goldberg & Tadmor 1982; Horn & Johnson 1985). Along fl = 0, BMD hence recovers
the leading SPOD eigenvalues and modes of the normalised data. Similarly, along fk = 0,

B0,l = Q̂
∗
0◦lQ̂l = Q̂

∗
l Q̂l , (5.14)

which recovers the same SPOD spectrum and modes.
No SPOD is recovered along fk+l = 0, even with the uniform mean included. Again

noting the conjugate symmetry of the Fourier transform of real data, the bispectral density
matrix may be written as

Bk,−k = Q̂
∗
k◦(−k)Q̂0 = (∣∣Q̂k

∣∣2)TQ̂0, (5.15)

where | · |2 denotes the element-wise squared absolute value. This is the correlation
between the mean and the squared magnitude of the Fourier mode q̂k , and is clearly not
Hermitian, and thus does not correspond to an SPOD problem.

Whether SPOD is recovered on the abscissa or ordinate of BMD depends also on D2
symmetry considerations. Because the mean flow has SS symmetry, SPOD can only be
recovered from the symmetry triads that include SS as the first or second component.
Specifically, among the non-redundant triads in figure 7, the BMD for (SS,SS,SS),
(SS,SA,SA), (SS,AS,AS) and (SS,AA,AA) recover the SPOD for SS, SA, AS and AA,
respectively. In the case of SS–SS interactions, both the abscissa and ordinate yield the
SPOD. For SS–SA, SS–AS and SS–AA interactions, due to the (arbitrary) ordering of the
symmetries, the ordinate yields the SPOD.

For inhomogeneous flows, the turbulent mean is unlikely to be truly uniform. However,
for the present jet data, the mean pressure is nearly uniform (see figure 3). Even close to
the nozzle, at x = 5, the mean pressure deviates locally from the ambient pressure, p∞, by
at most four and five percent for the natural and forced jets, respectively. The relationships
in (5.13) and (5.14) are therefore satisfied approximately, as we demonstrate in detail in
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Figure 8. BMD mode bispectra of SS–SS interactions: (a) the long-time mean is removed from the data;
(b) the long-time mean is included and SPOD is recovered on the fl = 0 axis (see Appendix B).

Appendix B. Figure 8 compares the BMD mode bispectra for SS–SS interactions when
the mean is removed or included. A full discussion of the bispectrum is deferred until
§ 5.2. Here, we only remark that the bispectrum with the mean included shows higher
magnitudes along fl = 0 and fk+l = 0 than the bispectrum without the mean. The mean-
included bispectrum also displays local maxima along fl = 0, consistent with the forced
SPOD spectrum for SS in figure 4(a). The remainder of the bispectrum is independent of
mean inclusion or removal. In what follows, we perform BMD exclusively with the mean
included, combining spectral and bispectral information, that is, energetics and triadic
coupling, in a single plot.

5.2. Notes on symmetries of the mode bispectrum under D2 decomposition
Prior to interpreting the physics, we remark on some important symmetries of the
mode bispectrum that the reader might observe. We note, however, that these bispectral
symmetries are not salient in the physical interpretation. For discussions of the physics,
the reader may safely skip to § 5.3.

Of the ten possible D2 symmetry triads illustrated in figure 7, only the (SS,SS,SS),
(AS,AS,SS) and (SS,AS,AS) triads reveal clear signatures of active nonlinear interactions.
The (SS,SS,SS) and (AS,AS,SS) triads involve interactions between coherent structures
with the same symmetry, which we term symmetry-self interactions. Symmetry-self
interactions, like AS–AS, yield a mode with SS symmetry. Conversely, the (SS,AS,AS)
triad involves interactions between structures with different symmetries, which we term
symmetry-cross interactions. The BMD mode bispectra of the SS–SS, AS–AS and SS–
AS interactions are shown in figure 9(a,b,c), respectively. Only the non-redundant regions
are shown (Schmidt 2020). Each bispectrum displays a grid pattern of local maxima that
indicate phase coupling between interacting waves. For the symmetry-self interactions in
figure 9(a,b), the mode bispectrum is symmetric about the red line, fl = fk , because the
first two symmetry components can simply be swapped. The white region, ( fk > 0, fl >

fk), can thus be recovered from a reflection of the non-redundant region about the red line,
i.e.

β( fk, fl) = β( fl , fk) for fk > 0, fl > fk . (5.16)
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Figure 9. BMD mode bispectra: (a) SS–SS interactions; (b) AS–AS interactions; (c) SS–AS interactions.
All three bispectra share the same contour levels. Each bispectrum displays only its non-redundant region.
The redundant regions can be recovered from the non-redundant regions via reflection (solid arrow, ) or
reflection and complex conjugation (dotted arrow, ).

Owing to the conjugate symmetry of the Fourier transform of real data, i.e. p̂∗( f ) =
p̂(− f ), the mode bispectrum is also symmetric about the blue line, fl = − fk . The grey
region, ( fk > 0, fl < − fk), can be recovered from a reflection of the non-redundant region
about the blue line, followed by complex conjugation, i.e.

β( fk, fl) = β∗(− fl , − fk) for fk > 0, fl < − fk . (5.17)

Similarly, the symmetry-cross interactions in figure 9(c) enjoy conjugate symmetry. In this
case, all of fl > − fk is non-redundant. The grey region, fl < − fk , can be recovered from
the former via a reflection about fk = 0, then another reflection about fl = 0, followed by
conjugation. Concisely,

β( fk, fl) = β∗(− fk, − fl) for fl < − fk . (5.18)

Implicit in figure 9(c) is an additional symmetry between SS–AS and AS–SS interactions.
It can be inferred from the form of the bispectral density that the mode bispectra of this
pair of interactions are identical to each other under reflection about fl = fk . In other
words,

βSS−AS( fk, fl) = βAS−SS( fl , fk). (5.19)

The subscript, (·)SS−AS , denotes the spatial symmetry corresponding to each frequency
component: SS and AS symmetries for the fk and fl components, respectively. The mode
bispectral symmetries illustrated here also generalise to other spatial symmetry triads of
the twin jet.

No bispectral symmetry exists for the SS–AS interaction in figure 9(c) about fl = fk .
That is,

βSS−AS( fk, fl) �= βSS−AS( fl , fk). (5.20)

In the non-redundant region, the strength of the ( fk, fl , fk+l) triad for the SS–AS
interaction is, on average, higher for fl > fk than for fl < fk . Though this is not important
to the present study, the likely explanation is that at the same harmonic frequency, the
SS component is more energetic than the AS component. Given the identity (5.19), the
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statistical asymmetry expressed in inequality (5.20) can be restated as

βSS−AS( fk, fl) �= βAS−SS( fk, fl). (5.21)

Specifically, for fl > fk , the ( fk, fl , fk+l) triad for the SS–AS interaction is more strongly
coupled than the same frequency triad but for the AS–SS interaction. For fl < fk , the
reverse is true.

The relationship between the signs of fk and fl allows us to further classify triadic
interactions as sum or difference interactions. Sum interactions are characterised by
frequency doublets that satisfy fk fl > 0. They couple primary waves at frequencies fk
and fl to a secondary wave at a higher frequency, fk+l = fk + fl (Phillips 1960; Kim &
Powers 1979). Conversely, difference interactions, which satisfy fk fl < 0, couple primary
waves to a secondary wave at a lower frequency. A special case of difference interactions
are mean flow deformations, which obey the condition that fk = − fl . Throughout this
work, we will sometimes refer to a triad whose secondary wave contributes to the primary
wave of another triad as the precursor or progenitor of the latter. When using nomenclature
like precursor or progenitor, we refer only to this primary–secondary relationship between
the two triads, and do not imply a causal relationship.

5.3. Bispectral analysis
As alluded to in § 2.2.1, all harmonics of f0 are directly excited by the rectangular-wave
forcing. However, in a linear system, SS forcing only gives rise to harmonics in SS.
The harmonic peaks in the AS SPOD spectrum (figure 4) are direct evidence that the
forced jet is in the nonlinear regime. In the case of SS harmonics, direct excitation and
nonlinear interactions play complementary roles. In the case of AS harmonics, nonlinear
interactions are solely responsible. BMD enables us to confirm the presence, and quantify
the significance, of these interactions.

The (SS,SS,SS) triad in figure 9(a) reveals both sum and difference interactions. The
strongest nonlinear phase coupling identified is the difference interaction between SS
modes at the fundamental and third harmonic frequencies, with a mode bispectrum
magnitude of |βSS−SS(3 f0, − f0)| = 0.61. Overall, however, the sum and difference
interactions are of comparable coupling strength. However, the (AS,AS,SS) triad in
figure 9(b) is significantly biased towards difference interactions. No sum interaction
is detected along fk = fl . The most strongly coupled frequency triad is the difference
interaction between AS modes at the fundamental and second harmonic frequencies,
with a magnitude of |βAS−AS(2 f0, − f0)| = 0.29. The SS–AS mode bispectrum in
figure 9(c) shows strong sum interactions in the ( fk > 0, fl > 0) quadrant as well
as strong difference interactions in the ( fk < 0, fl > 0) quadrant, but weak difference
interactions in the ( fk > 0, fl < 0) quadrant. The strongest triad is the sum interaction
between an SS second harmonic mode and an AS fundamental mode, with a magnitude
of |βSS−AS(2 f0, f0)| = 0.37. In a BMD mode bispectrum, sum interactions are an
indicator of the classic frequency-doubling cascade that links the fundamental frequency
component to successively higher harmonics. Conversely, difference interactions are often
interpreted as the excitation of intermediate and lower frequencies (see e.g. Kim &
Powers 1979; Elgar & Guza 1985), though we reiterate that causal relationships cannot be
deduced from BMD. As figure 9 shows, both (SS,SS,SS) and (SS,AS,AS) symmetry triads
participate in such frequency-doubling cascades, whereas (AS,AS,SS) does not. This
observation supports the hypothesis that while SS–SS and SS–AS interactions nonlinearly
generate harmonics in SS and AS, respectively, AS–AS interactions do not generate
harmonics in SS.
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Figure 10. Dominant triads from figure 9: (a) SS–SS interactions; (b) AS–AS and SS–AS interactions. The
SS–SS and AS–AS interactions, which couple to modes with SS symmetry, are represented by red spheres.
The SS–AS interactions, which couple to modes with AS symmetry, are represented by green spheres.

In the following, we focus on symmetric mode couplings via the (SS,SS,SS) triad, and
antisymmetric-symmetric mode couplings via the (AS,AS,SS) and (SS,AS,AS) triads.
A representative set of dominant (SS,SS,SS) triads from figure 9(a) are reproduced in
figure 10(a), which we will interpret in the following. The triadic network is formed not
from a limited set of triadic cascades, but should rather be understood as the collective
interaction of all temporal and spatial scales identified by the BMD bispectrum and modes.
As such, we will not exhaustively catalogue all possible pathways. Instead, in § 5.4, we will
focus on the most salient interactions that link the dominant triads in figure 10(a).

The (AS,AS,SS) triad cannot form a closed triad network, that is, the network cannot be
visualised in a single bispectrum. This is because two primary waves with AS symmetry
contribute to a secondary wave with SS symmetry. This secondary wave, however, cannot
serve as the progenitor of another (AS,AS,SS) triad. Analogously, in an (SS,AS,AS) triad,
primary waves with SS and AS symmetries contribute to a secondary wave with AS
symmetry. This secondary wave cannot provide the SS component of another (SS,AS,AS)
triad, so the network is again unclosed. The combination of the two symmetry triads,
however, does form a closed network. SS–SS and SS–AS interactions contribute to
secondary waves with both AS and SS symmetries. The secondary AS waves may in turn
serve as the primary waves in another (AS,AS,SS) triad. Similarly, a pair of secondary AS
and SS waves may participate in another (SS,AS,AS) triad. To elucidate these inter-triad
relationships, we combine the dominant triads from the AS–AS and SS–AS bispectra in
figure 9(b,c) into a three-dimensional bispectrum, shown in figure 10(b). The dominant
(AS,AS,SS) triads are displayed on one pair of frequency axes, the dominant (SS,AS,AS)
triads on another. The pathways between them will be examined in detail in § 5.5.

The remaining seven symmetry triads not included in figure 9 are documented in
Appendix E. These triads involve the SA or AA symmetries, and do not manifest
significant nonlinear interactions. Using BMD, we have also confirmed that the natural
jet does not exhibit dominant triads. While nonlinear interactions do take place in the
natural jet, they are significantly strengthened in the presence of periodic forcing, which
provides a phase reference allowing for sustained phase coupling between symmetry and
frequency components.
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Figure 11. Five representative triads from the (SS,SS,SS) mode bispectrum in figure 9(a). Large red
spheres highlight the following triads: (a) ( f0, f0, 2 f0)SS−SS−SS ; (b) (2 f0, 2 f0, 4 f0)SS−SS−SS ; (c) (2 f0, f0,

3 f0)SS−SS−SS ; (d) (3 f0, − f0, 2 f0)SS−SS−SS . Their possible precursor triads are marked by the small red
spheres. All panels share the same axes. In each panel, the large sphere indicates the secondary wave at fk+l .
Red solid ( ) and dashed ( ) lines distinguish between fk and fl , respectively. Dotted lines ( ) connect fk
to fl . Arrows point towards or away from fk+l in sum or difference interactions, respectively. The translucent
sphere denotes a complex conjugate.
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Figure 12. Bispectral modes of the SS–SS interactions in figure 11. The corresponding interactions and modes
are labelled with the same panel indices, (a–d). The z = 1.8 plane is displayed. In this and the following figures
of BMD modes, the colours saturate at |φ|/ max |φ| = ±1. See supplementary movie 1 for an animation.

5.4. Symmetric mode interactions
The grid of local maxima in figure 9(a) implies an intricate network of interconnected
symmetry-self interactions between modes that possess SS symmetry. In figure 11, we
illustrate them using five representative triads. The corresponding bispectral modes are
shown in figure 12. For brevity, we display only the z = 1.8 plane, which passes through the
centreline of one nozzle and is parallel to the minor-axis plane. This choice is motivated by
the observation that the SS and AS spatial symmetries, which are the only two components
to engage in triadic interactions, are both symmetric about the minor-axis plane. They are
thus most easily distinguished by their opposing symmetries about the major-axis plane,
y = 0.

Figure 11(a) considers the ( f0, f0, 2 f0)SS−SS−SS triad, where a mode at the
fundamental forcing frequency, f0, is coupled to a mode at the second harmonic, 2 f0.
To each primary-wave frequency, fk or fl , a number of triads can contribute collectively,
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in particular, those indicated by the local maxima in the bispectrum along the diagonal
of slope −1 associated with that fk or fl . In this case, the first harmonic primary mode
of the ( f0, f0, 2 f0)SS−SS−SS triad coincides with the secondary modes of a number of
other triads, e.g. ( f0, 0, f0)SS−SS−SS and (2 f0, − f0, f0)SS−SS−SS . Here, we highlight the
pathway from ( f0, 0, f0)SS−SS−SS to ( f0, f0, 2 f0)SS−SS−SS . The ( f0, 0, f0)SS−SS−SS
triplet recovers the leading SPOD mode and modal energy at f0. As shown in figure 12(a),
excitations delivered by the plasma actuators to the initial shear layer are spatially
amplified by the well-known Kelvin–Helmholtz (KH) instability. The bispectral mode
captures symmetric KH-type wavepackets with extended spatial support in the streamwise
direction. The mode shape bears qualitative resemblance to the symmetric modes extracted
in the experiments of Samimy et al. (2023) from the same twin-rectangular jet, albeit
overexpanded and forced in a different pattern. Trapped in the potential core are waves
of a higher wavenumber. We have confirmed that these core modes are also present in
the SA component. Due to the low supersonic jet velocity, the core modes are equivalent
to the subsonic instability waves identified and extensively investigated by Tam & Hu
(1989) and Towne et al. (2017) in round jets. As they are transversely confined to the
supersonic jet core in both the major- and minor-axis planes, the subsonic instability waves
cannot propagate upstream (see supplementary movie 1 for an animation). Their maximum
amplitude is found much closer to the nozzle than similar waves in supersonic, nearly
shock-free round jets (Schmidt et al. 2018; Towne et al. 2019). For shock-containing jets,
these waves are documented in detail by Edgington-Mitchell et al. (2021). Evidence of
these modes has previously surfaced in single-rectangular (Zaman et al. 2015; Gojon et al.
2016, 2019; Semlitsch et al. 2020; Tam & Chandramouli 2020; Zaman, Fagan & Upadhyay
2022; Ferreira et al. 2023; Wu, Lele & Jeun 2023; Karnam, Saleem & Gutmark 2023) as
well as twin-rectangular jets (Samimy et al. 2023; Jeun et al. 2024). Here, the trapped
modes attain an amplitude comparable to the KH-type instability waves, suggesting they
too are indirectly energised by the symmetric forcing.

The fundamental forcing mode, ( f0, 0, f0)SS−SS−SS , is coupled to the second harmonic
mode via the self interaction ( f0, f0, 2 f0)SS−SS−SS . The second harmonic mode, at twice
the frequency of the fundamental, has approximately double the dominant streamwise
wavenumber as well. This follows from the linear dispersion relation of KH-type waves in
the initial shear-layer region of jets (Schmidt et al. 2018), and directly demonstrates that
symmetry and frequency triads, which are enforced by our analysis, naturally form triads
in wavenumber space. The wavepacket of the second harmonic mode is more compact,
with its spatial support confined both axially and transversely, relative to the fundamental
mode. Trapped modes are again observed. Compared with the KH-type waves, which are
confined to x � 5, the trapped waves appear to have more extended support in the axial
direction. The presence of trapped waves in the bispectral mode ( f0, f0, 2 f0)SS−SS−SS
suggests these waves are also quadratically phase-coupled with the fundamental mode.

In figures 11(b) and 12(b), the bispectral mode (2 f0, 2 f0, 4 f0)SS−SS−SS couples
the second harmonic mode at frequency 2 f0 to the fourth harmonic mode at
frequency 4 f0 through another frequency-doubling self interaction. Analogous to the
relationship between the waveforms of the second harmonic and fundamental modes,
the fourth harmonic mode also doubles the dominant streamwise wavenumber of the
second harmonic mode. At the same time, the streamwise extent of the former is
approximately halved, since only a thinner shear layer can support the higher-wavenumber
KH-type wave. Similar trends are observed for the (2 f0, f0, 3 f0)SS−SS−SS triad in
figures 11(c) and 12(c), where the second harmonic and fundamental modes undergo
sum interaction, thereby becoming coupled to the third harmonic mode at frequency 3 f0.
Together, the ( f0, 0, f0)SS−SS−SS , ( f0, f0, 2 f0)SS−SS−SS , (2 f0, f0, 3 f0)SS−SS−SS and
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Figure 13. Same as figure 11, but for the (AS,AS,SS) (red) and (SS,AS,AS) (green) symmetry triads. The
following frequency triads are highlighted by large spheres: (a) (2 f0, − f0, f0)AS−AS−SS ; (b) (3 f0, − f0,

2 f0)AS−AS−SS ; (c) (3 f0, −2 f0, f0)AS−AS−SS ; (d) (− f0, 2 f0, f0)SS−AS−AS ; (e) ( f0, f0, 2 f0)SS−AS−AS ;
( f ) (2 f0, f0, 3 f0)SS−AS−AS . Their possible precursor triads are exemplified by small red or green spheres.
As in figure 11, solid ( ) and dashed ( ) lines distinguish between fk and fl , respectively, while dotted lines
( ) connect fk to fl . Red ( ) and green ( ) spheres represent SS and AS symmetries, respectively.

(2 f0, 2 f0, 4 f0)SS−SS−SS triads form a hierarchy of coherent structures at four different
frequencies, and exemplify a cascade of successively higher frequency and wavenumber
components.

The (3 f0, − f0, 2 f0)SS−SS−SS triad in figure 11(d) indicates a difference interaction
between the third harmonic and fundamental modes. One candidate for such an interaction
is the coupling between the (2 f0, f0, 3 f0)SS−SS−SS and (0, − f0, − f0)SS−SS−SS
bispectral modes. The latter is the complex conjugate of the ( f0, 0, f0)SS−SS−SS mode
in the non-redundant region of the mode bispectrum. These three interacting modes are
reported in figure 12(d). They illustrate the triadic coupling of a primary wave with high
frequency and wavenumber, (2 f0, f0, 3 f0)SS−SS−SS , to a secondary wave with lower
frequency and wavenumber, (3 f0, − f0, 2 f0)SS−SS−SS .

5.5. Antisymmetric-symmetric mode interactions
In this section, we examine the network of spatial symmetry triads that is enabled by the
wave coupling between modal structures with SS and AS symmetries. As in § 5.4, we make
no attempt to enumerate all such couplings. Rather, we focus on a truncated triad network
made up of the most dominant triads, previously shown in figure 10(b), and reproduced
in figure 13. For each of these dominant triads, we investigate one pathway that could
contribute to the triad.

As we observed in § 5.3, the (AS,AS,SS) symmetry triad mainly undergoes difference
interactions. Figure 13(a) considers the coupling between an AS second harmonic mode,
at frequency 2 f0, an AS fundamental mode, at frequency − f0, and an SS first harmonic
mode, at frequency f0. This coupling is detected in the AS–AS mode bispectrum as the
(2 f0, − f0, f0)AS−AS−SS frequency triad. One of its possible precursors is the SS–AS
bispectral mode of the (0, − f0, − f0)SS−AS−AS triad, shown in figure 14(a) on the bottom
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Figure 14. Same as figure 12 but for AS–AS (left column) and SS–AS (right column) interactions. The panel
indices, (a–f ), correspond to the interactions in figure 13. See supplementary movie 2 for an animation.

left, which is the complex conjugate of the (0, f0, f0)SS−AS−AS triad, i.e. the leading AS
SPOD mode at f0. The (0, − f0, − f0)SS−AS−AS triad has a secondary wave frequency of
fk+l = − f0, matching the primary wave frequency of the (2 f0, − f0, f0)AS−AS−SS triad,
fl = − f0. The (0, − f0, − f0)SS−AS−AS bispectral mode is dominated by a wavepacket
structure located in the shear layer. The wavepacket flaps antisymmetrically about the
major axis plane, y = 0. The envelope of the packet forms a standing wave in the near-jet
(see supplementary movie 2 for an animation), and is produced by the interference between
downstream-propagating KH-type waves and upstream-propagating guided-jet modes (G-
JM) or free stream acoustic waves (Edgington-Mitchell et al. 2022). This behaviour is well
known in screeching jets. It was first noted in the experiments by Davies & Oldfield (1962),
Westley & Woolley (1968) and others, and investigated in depth by Panda (1999); see also
Edgington-Mitchell (2019) for a recent review. No standing waves are visible in SS or SA
bispectral modes, which are symmetric about the major axis. Examples include the SS
first and second harmonic modes on the right of figures 14(a) and 14(b), respectively. The
absence of symmetric standing waves in twin-rectangular jets is consistent with previous
observations (Jeun et al. 2022; Samimy et al. 2023).

The role of the complex conjugate in facilitating AS–AS difference interactions
is also demonstrated by the (3 f0, − f0, 2 f0)AS−AS−SS triad in figure 13(b), with its
corresponding modes in figure 14(b). It couples a pair of AS modes at the third and first
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harmonics, with frequencies 3 f0 and − f0, respectively, to an SS mode at the second har-
monic. One such example of a pair of AS primary modes consists of the SS–AS bispectral
modes of the (2 f0, f0, 3 f0)SS−AS−AS and (0, − f0, − f0)SS−AS−AS triads. The latter is
the conjugate of the (0, f0, f0)SS−AS−AS triad. Similarly, the (3 f0, −2 f0, f0)AS−AS−SS
triad in figure 13(c) couples third and second harmonic AS modes, with frequencies 3 f0
and −2 f0, respectively, to an SS mode at the first harmonic. An example pair of primary
waves contributing to the (3 f0, −2 f0, f0)AS−AS−SS triad are the SS–AS bispectral modes
resulting from the (2 f0, f0, 3 f0)SS−AS−AS and (− f0, − f0, −2 f0)SS−AS−AS triads. The
latter is the conjugate of the ( f0, f0, 2 f0)SS−AS−AS triad. The corresponding modes are
shown in figure 14(c).

Whereas the triads reported in figure 13(a–c) involve symmetry-self interactions
between AS mode pairs, the triads in figure 13(d–f ) entail symmetry-cross interactions
between SS and AS modes. Unlike AS–AS interactions, the most dominant SS–AS
interactions include both sum and difference interactions. The (− f0, 2 f0, f0)SS−AS−AS
triad in figure 13(d) indicates a difference interaction between an SS first harmonic mode at
frequency − f0 and an AS second harmonic mode at frequency 2 f0. These primary waves
couple to an AS secondary wave at the first harmonic, f0. The AS bispectral mode of this
triad is displayed on the right of figure 14(d), and shows the KH and G-JM interference
pattern discussed previously. The ( f0, f0, 2 f0)SS−AS−AS triad in figure 13(e) indicates
the sum interaction between two first harmonic modes with SS and AS symmetries and an
AS secondary mode at the second harmonic. The bispectral mode at the second harmonic
is shown on the right of figure 14(e). It reveals both KH-type instability waves as well as
core modes, but not clear signatures of G-JM. The AS core modes at the second harmonic
share similar streamwise distribution as the SS core modes at the same frequency on the
right of figure 14(b), but differ in their distribution in y. Specifically, the AS core modes
straddle the centreline and have double the number of anti-nodes in y, as required by
antisymmetry, compared with the SS core modes. In short, AS bispectral modes support
both types of subsonic instability waves: those trapped in the core, and the G-JM that
propagates in the shear layer and the ambient flow, with the preponderance of each type
varying according to frequency. By contrast, SS bispectral modes appear to support only
core modes. Sensitivity of the G-JM to D2 symmetry has also been predicted using
linear stability models for twin-round jets (Stavropoulos et al. 2023), and generalises
from circular symmetry for single-round jets (Tam & Hu 1989). A subsonic jet mode can
propagate upstream against the supersonic jet flow only if it has partial support outside the
jet, in the slow ambient flow (Tam & Hu 1989). Because of this, the difference in transverse
spatial decay between subsonic modes with AS and SS symmetries, and between such
modes at disparate frequencies, impacts the possibility and strength of feedback. This
suggests an intimate link between the D2 symmetry of the subsonic mode and its permitted
direction of propagation. It forms part of the explanation for the symmetry-dependence of
tones in the natural and forced twin-rectangular jets.

Analogous to the cascade of triads exemplified by the SS–SS interactions in figures 11
and 12, SS–AS interactions also facilitate the coupling between harmonic frequencies. In
figure 13(e), the SS–AS mode bispectrum detects the phase coupling between SS and AS
modes at the first harmonic, and an AS mode at the second harmonic, enabled by the
( f0, f0, 2 f0)SS−AS−AS triad. Similarly, figure 13( f ) shows the (2 f0, f0, 3 f0)SS−AS−AS
triad, which couples SS and AS modes at the second and first harmonics, respectively, to
an AS mode at the third harmonic. The corresponding bispectral modes are reported in
figures 14(e) and 14( f ), respectively. They show the familiar doubling and tripling of axial
wavenumbers expected from modes that span three successive frequency harmonics.
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The AS–AS bispectral mode of the (3 f0, − f0, 2 f0)AS−AS−SS triad, shown on the
right of figure 14(b), is indistinguishable from the SS–SS mode belonging to the same
frequency triad on the right of figure 12(d). The equivalence between the SS–SS and
AS–AS bispectral modes indicates that the symmetric and antisymmetric structures at
frequencies 3 f0 and − f0 are phase-locked to the same symmetric structure at 2 f0.
Although we have investigated the SS–SS bispectrum independently of the AS–AS and
SS–AS bispectra, the close agreement between the SS–SS and AS–AS bispectral modes
at the same fk+l confirms the notion that all three symmetry triads are in fact part of the
same interconnected network of triad interactions.

6. Discussion
In this paper, we have extended BMD to the D2 symmetry of the twin jet and confirmed
the presence of triads associated with the triple correlation between D2 symmetry
components. The detection of frequency and symmetry triads rests upon the three-wave
resonance condition that must be fulfilled by both. Compatibility between frequency and
symmetry components is duly enforced in BMD. It is perhaps less obvious that the same
wave components also form triads in wavenumber space – an empirical finding not explic-
itly guaranteed by the algorithm, yet clearly borne out by the modes in figures 12 and 14.

Recovering the leading SPOD eigenvalues and modes from BMD numerical radii and
modes requires a sufficiently uniform mean flow. In Appendix B, figure 16, we have
confirmed that for the pressure 2-norm used throughout this study, the BMD bispectrum
for SS–SS interactions along fl = 0 is identical to the leading SPOD spectrum for SS.
We have also confirmed that this holds true for other observables, including density and
temperature, whose mean is approximately uniform. If this condition is not satisfied,
the direct equivalence between BMD and SPOD breaks down. In the latter case, it may
nevertheless be desirable to recover the SPOD from the BMD. We achieve this by explicitly
setting the zero-frequency component of the Fourier transform to unity, guaranteeing
perfect recovery of the SPOD (see figure 17).

BMD is not without shortcomings. It enables us to systematically catalogue quadratic
phase coupling, which is a known mechanism for scale-to-scale energy transfer, and
reveals the corresponding flow structures, but does not quantify the amount of energy
transferred – a concern also voiced by Freeman et al. (2024). However, the analysis
of energy transfer requires taking the exact form of the nonlinearity in the governing
equations into account, and is often not possible when the full flow state is inaccessible,
e.g. from schlieren measurements. In addition, BMD cannot quantify the relative
contributions of linear and nonlinear mechanisms to the overall dynamics. Distinguishing
linear from nonlinear mechanisms in a nonlinear system is an active area of research
and a challenging task, for which a method like the linear and nonlinear disambiguation
optimisation algorithm (Baddoo et al. 2022) may be suitable.

Each of the BMD modes in figure 12 for the (SS,SS,SS) triad and figure 14 for
the (AS,AS,SS) and (SS,AS,AS) triads consists of two or more types of waves with
distinct transverse spatial support (jet core, shear layer or free stream) and directions of
propagation (upstream or downstream). While these waves may each be explainable by a
different physical interpretation (KH, core mode or G-JM) and could be separated through
additional post-processing, they are coupled within a single coherent structure and, thus,
may be best understood as inextricable components of a single modal structure, rather than
as distinct flow phenomena.

Some fundamental questions about the forced twin jet remain unanswered. The character
of the tone at f0 in the AS component (see figure 4) is ambiguous. Our analysis does
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not allow us to categorise this spectral peak unequivocally as a screech tone or simply a
response to the forcing. Since the double-flapping screech mode in the AA component
is suppressed in the forced jet, it is conceivable that the flapping screech mode in AS
is also absent. Nonetheless, the presence of higher harmonics in the AS component
lends support to the notion that the f0 tone is indeed a screech mode. Because only
the SS component is forced and SS–SS interactions only generate SS secondary waves,
the AS higher harmonics must have arisen nonlinearly. This is consistent with the SS–
AS bispectrum in figure 9(c), which confirms that (SS,AS,AS) triads are highly active
in the flow. Hypothetically, in the absence of AS screech, the strong SS forcing could
interact with the underlying turbulence in the AS component and give birth to tones in
AS. However, this fails to explain why tones with SA or AA symmetries are not present
in the forced jet. In addition, high-amplitude, axisymmetric forcing of round turbulent
jets has produced no evidence of the formation of non-axisymmetric tones (Nekkanti
et al. 2023b; Heidt & Colonius 2024). More likely, the AS screech mode remains active
in the forced jet as a linear stability mode. Its nonlinear interaction with the SS forcing
then generates AS higher harmonics. Screech-forcing interactions in twin-rectangular jet
flows were previously proposed by Samimy et al. (2023) from experimental observations.
Definitively establishing the identity of the AS tone at f0 and, by extension, the reason
for the persistence of AS screech in the forced jet would require the application of linear
stability theory, e.g. harmonic resolvent analysis (Padovan, Otto & Rowley 2020).

Future studies that force the twin-rectangular jet in the SA, AS or AA components
could provide additional clarity to these questions. Forcing the antisymmetric components
would also help establish (or refute) the generality of the phenomenon that dominant
instabilities adopt only two symmetries at a time, e.g. AS and AA in the natural jet, SS
and AS in the symmetrically forced jet. Moreover, this work investigates only a single
operating condition. As twin-rectangular jets are known to display distinct dynamics under
different nozzle pressure and temperature ratios (Viswanath et al. 2020; Karnam et al.
2020; Jeun et al. 2022; Samimy et al. 2023, 2024), future investigations should consider
the applicability of our results to a wider range of conditions. Due to computational
limitations, these are out of the scope of the present study.

To aid our investigation of the nonlinear dynamics of the forced jet, we introduce two
innovations to BMD. First, consistent with the bicoherence measure for one-dimensional
signals, we normalise BMD by the power of each frequency component such that
the magnitude of the BMD mode bispectrum is bounded by unity. This enables the
strength of nonlinear mode coupling to be interpreted directly and intuitively. Second,
we show that under certain conditions, inclusion of the mean flow permits recovery of
the leading SPOD eigenvalues and modes from BMD. Both features are added to our
Matlab implementation of BMD, available at https://www.mathworks.com/matlabcentral/
fileexchange/83408-bispectral-mode-decomposition.

7. Summary and conclusions
We investigate the dominant physical instabilities and nonlinear dynamics of a supersonic
twin-rectangular jet. LES of the jet are carried out, both in its natural state and forced
using plasma actuation. In the natural jet, SPOD reveals screech tones in the AS and
AA D2-symmetry components. The modal structures associated with the AS and AA
symmetries are antisymmetric about the major axis, i.e. they are flapping instabilities.
The AA modes are also antisymmetric about the minor axis, i.e. they are double-flapping.
The left and right jets are coupled either perfectly in phase (AS) or perfectly out of phase
(AA). Time-frequency analysis based on SPOD expansion coefficients indicates the AS
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screech mode steadily dominates over all time, while the weaker AA screech mode is
intermittent.

Given the antisymmetry of the screech modes, we test the hypothesis that screech can
be mitigated by forcing the SS component of the twin jet. Upon the application of SS
forcing at the natural screech frequency, the jet exhibits tones only in the SS and AS
components, in which the dominant instabilities are symmetric (SS) or antisymmetric (AS)
about the major axis, with the left and right jets coupled in phase. These tones are located
at the fundamental forcing frequency and its harmonics. In the AS component, the energy
at low and near-zero frequencies is significantly elevated. AA screech tones are entirely
eliminated, whereas the SA component is unmodified by the SS forcing.

Applying BMD to the forced jet, we confirm the existence of triads within one symmetry
component, as well as across different – but compatible – symmetries. Out of ten possible
symmetry triads, only three are statistically significant: (SS,SS,SS), (AS,AS,SS) and
(SS,AS,AS). Together, the SS and AS symmetries form an interconnected web of triad
cascades. In the frequency space, (SS,SS,SS) and (SS,AS,AS) triads are characterised by
both sum and difference interactions, leading to inter-frequency coupling among modes at
a hierarchy of harmonic frequencies. (AS,AS,SS) interactions, however, are dominated by
difference interactions.

The coherent structures educed using BMD highlight the primacy of two physical
mechanisms in the SS and AS components: KH-type shear-layer instabilities and the
subsonic instability waves of Tam & Hu (1989). Both mechanisms are active in both
symmetries. In the SS bispectral modes, the subsonic waves are trapped in the supersonic
core region and, thus, downstream-travelling. In the AS modes, these waves are also
found in the shear layer in addition to the potential core. The shear-layer subsonic
waves are the upstream-travelling G-JM implicated in screech resonance (Edgington-
Mitchell et al. 2022). The distinct spatial support of AS subsonic waves explains why
the twin-rectangular jet manifests screech modes with AS but not SS symmetry. The
close association between flow symmetry and the existence of the G-JM is thus a general
phenomenon that translates from the azimuthal symmetry of round jets to the dihedral
group symmetry of twin-rectangular jets, and likely generalises to other types of statistical
symmetries.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10544.
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Appendix A. Computational grids
Figure 15(a) shows a cross-section of the unstructured, Voronoi-based computational grid
along the major-axis plane, y = 0. The grid contains successive levels of refinement, from
a coarse mesh in the far field to a fine mesh near the nozzle. The grids of the natural and
forced cases are nearly identical, except near the nozzle lips. In and around the cavity that
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(a) (b) (c)Natural Forced

Figure 15. Computational grid along the major-axis plane, y = 0. Panels (b) and (c), corresponding to the
natural and forced cases, respectively, zoom in on the region in panel (a) marked by the black box.

is immediately upstream of the nozzle lip, the forced case in figure 15(c) halves the average
cell width of the natural case in figure 15(b). This additional refinement was implemented
to improve the capture of the plasma actuation (Brès et al. 2021), which is located inside
the cavity.

Appendix B. Effect of observable on recovery of SPOD from BMD
In § 5.1.2, we stated that if the mean flow is retained, the BMD performed on pressure
data can recover the leading SPOD eigenvalues and modes along the abscissa, fl = 0,
or ordinate, fk = 0. Using the SS symmetry as an example, figure 16(a) demonstrates
that the leading SPOD eigenvalue, λ1( f ), is perfectly recovered by the magnitude of the
BMD mode bispectrum along the abscissa, |β( f, 0)|. While not shown here, we have
also confirmed that the BMD of density and temperature similarly recovers the SPOD.
In contrast, if the observable includes velocity, the non-uniformity of the mean velocity
prevents the quantitative recovery of the SPOD. Figure 16(b) compares λ1( f ) and |β( f, 0)|
for the state vector q = [ρ, ux , uy, uz, T ]T and the compressible energy norm (Chu 1965,
see also Appendix D). Although the mode bispectrum deviates from the SPOD spectrum,
the two remain qualitatively matched. For the state vector q = [ux , uy, uz]T (not shown),
BMD performs similarly.

Experimental data collected from supersonic jets are often in the form of schlieren
images. To investigate the applicability of mean-retained BMD to schlieren data, we
compute the streamwise gradient of the LES density, ∂ρ/∂x , which serves as a numerical
schlieren. The comparison between SPOD and BMD of ∂ρ/∂x is reported in figure 16(c).
In this case, due to the highly non-uniform mean, ∂ρ̄/∂x , the bispectrum fails to capture
the SPOD spectrum. Nevertheless, in all three cases – pressure 2-norm, compressible
energy norm and schlieren 2-norm – the SPOD and BMD modes appear identical, up
to an arbitrary phase difference.

For arbitrary data, SPOD can always be perfectly recovered from BMD by replacing
the zero-frequency Fourier realisations with unity. Figure 17 repeats the calculations in
figure 16, but for this replacement. The BMD bispectrum now matches its corresponding
SPOD spectrum for all three choices of norm. In the latest version of our Matlab imple-
mentation of BMD, available at https://www.mathworks.com/matlabcentral/fileexchange/
83408-bispectral-mode-decomposition, we provide Fourier-mode replacement as an
option for the user.
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Figure 16. Comparison between the leading SPOD eigenvalue spectrum for SS symmetry and BMD mode
bispectrum along the fl = 0 axis for SS–SS interactions: (a) pressure 2-norm; (b) compressible energy norm;
(c) numerical schlieren 2-norm. The data are normalised in accordance with § 5.1.1. For each norm, the leading
SPOD mode at f = f0 and bispectral mode at ( fk , fl) = ( f0, 0) are shown in the second and third rows,
respectively. In panel (e,h), the ux component of each mode is displayed.

1.0
0 0.29 0.50 1.00 0 0.29 0.50 1.00 0 0.29 0.50 1.00

f
Pressure

f
Compressible energy

f
Schlieren

0.8

0.6

0.4

4
2

−2
−4

0

4
2

−2
−4

z

z

λ
1
(
f)

 o
r 
|β(
f,

 0
)|

x
0 10 20 30

x
0 10 20 30

x
0 10 20 30

0

0.2

SPOD

BMD

SPOD BMD

SPOD

BMD

SPOD

BMD

0

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)
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Appendix C. Exploiting spatial symmetry in modal decompositions
For axisymmetric jets, it is well known that continuous rotational symmetry should be
enforced on the modal decomposition via an azimuthal Fourier decomposition of the
data (Sirovich 1987b; Berkooz, Holmes & Lumley 1993). For discrete symmetries, some
ambiguity exists in the literature. As described by Sirovich (1987b), symmetry group
operations can be used to inflate the ensemble size of the POD problem (and its variants,
e.g. SPOD). The same technique may be applied to BMD. In the context of D2 symmetry,
for a given frequency fk , we can define an inflated ensemble matrix,

˜̂Qk(x, y, z) = [
Q̂k(x, y, z), Q̂k(x, −y, z), Q̂k(x, y, −z), Q̂k(x, −y, −z)

] ∈R
ndof×4nblk,

(C1)

which is quadruple the size of Q̂k . The four submatrices in ˜̂Qk contain equivalent
realisations of the Fourier transform. For the frequency pair ( fk, fl), the inflated bispectral
density matrix is then given by

B̃k,l = 1
nblk

˜̂Q
∗
k◦lW

˜̂Qk+l . (C2)

The numerical radius problem for B̃k,l can be solved in the same manner as previously
outlined in § 2.

Our approach, the D2 decomposition, corresponds to a later insight by Sirovich &
Park (1990) that does not increase the ensemble size. Also developed originally for POD,
the approach instead decomposes each realisation into components that possess perfect
symmetry or antisymmetry. Just as the azimuthal Fourier decomposition is a weighted
sum over the azimuth, the D2 decomposition is a weighted sum over quadrants. The
Fourier decomposition of round jets is thus closely related to the D2 decomposition of
twin-rectangular jets. An additional advantage of symmetry decompositions is that they
enable symmetry-cross interactions to be examined using cross-BMD.

Appendix D. Choice of norm
The SPOD and BMD problems in §§ 4–5 are based on the pressure 2-norm. In this
appendix, we justify this choice by comparing the SPOD eigenvalue spectra and modes
of the twin jet based on the pressure 2-norm and compressible energy norm (Chu 1965).
For the compressible energy norm, we define the state vector q = [ρ, ux , uy, uz, T ]T.
The variables ρ, ux and T are subjected to the same D2 decomposition as p in § 3. The
symmetry components of uy and uz are obtained as

uy,SS = (1/4)
[
uy(x, y, z, t) − uy(x, −y, z, t) + uy(x, y, −z, t) − uy(x, −y, −z, t)

]
,

(D1a)

uy,S A = (1/4)
[
uy(x, y, z, t) − uy(x, −y, z, t) − uy(x, y, −z, t) + uy(x, −y, −z, t)

]
,

(D1b)

uy,AS = (1/4)
[
uy(x, y, z, t) + uy(x, −y, z, t) + uy(x, y, −z, t) + uy(x, −y, −z, t)

]
,

(D1c)

uy,AA = (1/4)
[
uy(x, y, z, t) + uy(x, −y, z, t) − uy(x, y, −z, t) − uy(x, −y, −z, t)

]
(D1d)
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Figure 18. (a,b) Leading SPOD eigenvalues and modes at f = 0.29 for the (c,d) SS and (e,f ) AS symmetries,
computed using the pressure 2-norm (left column) and compressible energy norm (right column). For the
modes, the y = 0.25 plane is shown.

and

uz,SS = (1/4)
[
uz(x, y, z, t) + uz(x, −y, z, t) − uz(x, y, −z, t) − uz(x, −y, −z, t)

]
,

(D2a)

uz,S A = (1/4)
[
uz(x, y, z, t) + uz(x, −y, z, t) + uz(x, y, −z, t) + uz(x, −y, −z, t)

]
,

(D2b)

uz,AS = (1/4)
[
uz(x, y, z, t) − uz(x, −y, z, t) − uz(x, y, −z, t) + uz(x, −y, −z, t)

]
,

(D2c)

uz,AA = (1/4)
[
uz(x, y, z, t) − uz(x, −y, z, t) + uz(x, y, −z, t) − uz(x, −y, −z, t)

]
,

(D2d)

respectively. We seek modes that are optimal under the inner product

〈q1, q2〉x =
∫

Ω

q∗
2 diag

([
T̄ /(γ ρ̄), ρ̄, ρ̄, ρ̄, ρ̄/(γ (γ − 1)T̄ )

])
q1 dx. (D3)

Note that unlike in Schmidt et al. (2018), e.g., the Mach number does not appear in
the weight tensor here. This is because the primitive variables are non-dimensionalised
by the ambient conditions. Figure 18 reports the leading SPOD eigenvalues and modes
based on each norm. The spectra in figure 18(a) based on the pressure 2-norm display
tones at the fundamental forcing frequency, f0 = 0.29, and its harmonics in the SS and
AS symmetry components. In figure 18(b), the spectra based on the compressible energy
norm present weaker tones in the same symmetry components. For these symmetries, the
leading modes at f0 for the pressure 2-norm, in figure 18(c,e), and the compressible energy
norm, in figure 18(d, f ), appear visually indistinguishable. Since no tones are observed
in the SA and AA symmetries, their corresponding modes are omitted. In a systematic
comparison of norms based on pressure or turbulent kinetic energy, for the space-only
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Figure 19. BMD mode bispectra of the symmetry triads not shown in figure 9. All panels use the same
contour levels as figure 9.

POD of a compressible turbulent jet, Freund & Colonius (2009) found that the pressure
norm reconstructs pressure fluctuations more efficiently, and velocity fluctuations nearly
as efficiently, as the latter. For the twin jet, it thus stands to reason that the pressure
norm, while more restrictive than the compressible energy norm, nevertheless captures
qualitatively the same dynamics. The nonlinear dynamics, in particular, is more active
under the pressure norm, as figure 18(a,b) reveals. In our BMD analysis, we therefore
follow the methodology of Schmidt (2020), and focus solely on pressure.

Appendix E. Inactive symmetry triads
The seven symmetry triads not shown in figure 9 are reported in figure 19. These mode
bispectra lack the telltale grid pattern of local maxima that would have otherwise been
indicative of triadic interactions. With the exception of the fk = 0 lines in figures 19(d)
and 19( f ), which recover the leading SPOD spectra of SA and AA, respectively, the
magnitudes of all seven bispectra are very small. All of these triads include either SA
or AA symmetry (or both) as one or more components. We conclude from this that the
SA and AA symmetries do not take part in nonlinear interactions involving the forcing
frequency.
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