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Large-eddy simulations (LES) of a Mach 1.5, nominally ideally-expanded, twin-rectangular
jet are performed, with and without forcing. The numerical implementation of the periodic
forcing is based on companion experiments at Ohio State University that utilize localized arc
filament plasma actuators (LAFPA) to control twin-jet coupling and influence jet screech. In the
forced jet LES, twelve independently-controlled energy sources, which model LAFPAs, generate
bursts of thermal and pressure perturbations in a pattern that is symmetric about the major
and minor axes of the jet, or symmetric-symmetric for short. For rigorous statistical analysis,
the natural and forced jet data are decomposed into their 𝐷2-symmetry components, which are
either symmetric or antisymmetric about the major and/or minor axes. To identify large-scale
structures involved in triadic interactions, bispectral mode decomposition (BMD) is applied
to the forced case, leading to a complex mode bispectrum and three-dimensional BMD modes
for each 𝐷2 symmetry component (auto-BMD) or set of components (cross-BMD). The BMD
analyses reveal dominant triadic interactions between symmetric-symmetric modes, associated
with the forcing, and between antisymmetric-symmetric modes, associated with the natural
screech tone. Both classes of symmetry-self interactions generate superharmonics and mean flow
distortions that are symmetric-symmetric. In contrast, symmetry-cross interactions between the
symmetric-symmetric forcing and antisymmetric-symmetric screech form superharmonics and
mean flow deformations that are antisymmetric-symmetric. Summed mode spectra, obtained
from the average along each diagonal of the BMD bispectra, suggest that under the present
forcing, consistent symmetry (i.e., either both symmetric, or both antisymmetric) about the
minor axis is a prerequisite for two modes to interact quadratically.

Nomenclature
𝑐 = speed of sound
𝐷𝑒 = equivalent nozzle diameter 1.6ℎ
𝐷𝑛 = dihedral group with 𝑛 mirror symmetries
𝑓 = frequency
ℎ = nozzle height
𝑘 = actuator temporal signal
𝐿 = actuator length
𝑙, 𝑚 = actuator spatial supports
𝑀 = Mach number
𝑁 ( ·) = number of (·)
𝑃 = actuator power
𝑝 = pressure
q = state vector
Re = Reynolds number
𝑟 = radial coordinate
𝑟0 = actuator radius
𝑆 = energy source
𝑆𝑡 = Strouhal number 𝑓 𝐷𝑒/𝑈 𝑗

𝑇 = temperature
𝑡 = time
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𝑡on, 𝑡off = time instants when actuator switches on or off
𝑡𝑟 = actuator rise time
𝑈 = mean streamwise velocity
𝑥, 𝑦, 𝑧 = Cartesian coordinates
𝛾 = adiabatic constant 𝑐𝑝/𝑐𝑉
Λ = BMD summed mode spectrum
𝜆 = BMD complex mode bispectrum
𝜇 = dynamic viscosity
𝝓 = BMD mode
𝜌 = density
𝜎 = actuator sharpness parameter
𝜏 = forcing period

Subscript

𝑎 = acoustic property
blk = blocks
cv = control volumes
𝑑 = design
𝑗 = fully-expanded nozzle exit property
max, min = maximum, minimum
ovlp = overlap
𝑡 = stagnation property
∞ = ambient property

Superscript
¯(·) = long-time mean
ˆ(·) = Fourier transform
(·)′ = fluctuating

I. Introduction

The control of turbulent jets with the aim of noise reduction has been investigated using a range of passive devices,
including chevrons [1–3] and steady microjet injections [4]. These studies have achieved modest noise reduction—

usually at low frequencies—but have yet to reveal a unified theory of the mechanisms that underlie the observed
reduction. The lack of such a theory is one factor that impedes the progress towards systematic strategies for robust jet
noise reduction.

In addition to passive means of flow control, active devices are also the subject of significant ongoing research [5].
While many classes of active devices, including plasma actuators, possess effective control authority in low-speed
flows, the control of high-Reynolds number jets relevant to practical engineering applications requires large-amplitude,
high-bandwidth forcing [5]. These design requirements are the basis for localized arc filament plasma actuators
(LAFPA), developed by Samimy et al. [6]. LAFPAs produce intense localized thermal perturbations and shocks through
arc discharge. First experimentally demonstrated in axisymmetric high-subsonic and supersonic jets [6], LAFPAs have
received recent attention as flow control devices in military-style nozzles [7, 8]. In a series of companion experiments,
Samimy et al. [8] at Ohio State University (OSU) explored the use of LAFPAs to influence the coupling and noise
profile of a twin-rectangular supersonic jet, under design and off-design operating conditions. Numerically investigating
LAFPA-based control of the same jet forms the subject of this paper.

Of particular interest is the control of jet screech. Powell [9] accompanied his discovery of this intense, spectrally
discrete supersonic jet noise with a proposal for its origin: resonance arising from shock-shear layer interaction.
This explanation has largely withstood the scrutiny of later research, even if details concerning the precise resonant
mechanisms have evolved. It is generally accepted that the screech feedback loop is energized by downstream-propagating
Kelvin-Helmholtz (KH) instability waves, which extract energy from the mean flow [10]. The upstream-propagating
waves that close the loop, however, are less well-understood, though a consensus is emerging that they are more likely to
be neutral acoustic modes with support inside the jet [11] than freestream acoustic modes, at least for an axisymmetric
jet. A twin-rectangular jet introduces additional complexities. First, the screech loop of one jet may be receptive to
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perturbations originating from its twin [12]. Second, due to its biconical nozzles, the jet contains shock cells and emits
screech, even in the nominally ideally-expanded condition under consideration in this paper. Modeling and mitigating
the noise emission of a twin-rectangular jet thus remain challenging tasks.

Our goal is therefore twofold: to demonstrate the control authority of LAFPAs in the OSU jet using high-fidelity
large-eddy simulations (LES), and to contribute fundamental insights into twin-rectangular jet physics that will support
future noise reduction strategies in military-style jets. Building on recent simulations by Brès et al. [13, 14] and Yeung
et al. [15] of the natural jet, we numerically model the rapid heating induced by LAFPAs as observed in the laboratory.
LAFPA modeling began with Utkin et al. [16], who incorporated a one-dimensional plasma model into the axisymmetric
Navier-Stokes equations. This one-dimensional model was extended to two dimensions by Kleinman et al. [17] for a
direct numerical simulation of the near-nozzle lip region of a forced axisymmetric jet. The model of Utkin et al. was
subsequently generalized to three dimensions by Kim et al. [18] in an LES, again for an axisymmetric jet. We adapt the
model of Kim et al., and implement actuation in our twin-rectangular jet LES. From the LES, we collect a database
on which to perform statistical analysis. For an axisymmetric jet, such analysis universally begins with an azimuthal
Fourier transform, taking advantage of the spatial homogeneity of the turbulent statistics to vastly simplify the problem.
Jets in the dihedral group 𝐷2, including rectangular, elliptic, and twin jets, are inhomogeneous. In order to interpret the
flow instabilities at play in the twin-rectangular jet rigorously, we apply 𝐷2-symmetry decomposition—a technique
we recently demonstrated on the unforced case [15]. Once 𝐷2 symmetry has been enforced, we perform bispectral
mode decomposition (BMD) [19] on the symmetry components. BMD extends SPOD to third-order statistics. A triad
consists of frequencies

{
𝑓 𝑗 , 𝑓𝑘 , 𝑓𝑙

}
that satisfy the zero-sum condition,

𝑓 𝑗 ± 𝑓𝑘 ± 𝑓𝑙 = 0. (1)

BMD extracts structures involved in triadic interactions by detecting quadratic phase-coupling among modes oscillating
at frequencies that satisfy this condition. Successfully used to study the generation of harmonics and resonances in
flows including round jets [20] and two-phase swirling flows [21], BMD is also the ideal tool with which to study the
nonlinear dynamics of the forced twin-rectangular jet flow.

This paper is organized as follows. In Section II.A, we recapitulate the LES setup of the natural jet, in continuation
from Brès et al. [13, 14] and Yeung et al. [15]. Section II.B describes the numerical modeling of LAFPAs in the forced
jet. In Section III.A, we introduce the 𝐷2-symmetry decomposition that will be applied to both the natural and forced
jet data. We briefly review BMD in Section III.B. Analysis of the forced jet is presented in Section IV, followed by a
summary of the conclusions in Section V.

II. Numerical setup

A. Large-eddy simulation
The twin-rectangular jet, with a design Mach number of 𝑀𝑑 = 1.5, was set up by Esfahani et al. [22] at OSU’s

experimental facility. Using the unstructured, compressible LES solver ‘Charles’ developed by Cascade Technologies
[23], we recently simulated this jet in its baseline configuration, i.e., without plasma actuation [13, 15]. The simulation
is normalized by the ambient conditions, 𝜌∞, 𝑇∞, and 𝑐∞ =

√︁
𝛾𝑝∞/𝜌∞. Lengths are normalized by the nozzle height,

ℎ. The jet is nominally ideally-expanded and cold, with nozzle exit conditions 𝑀 𝑗 = 𝑈 𝑗/𝑐 𝑗 = 1.5, 𝑝 𝑗/𝑝∞ = 1,
𝑇𝑗/𝑇∞ = 0.69, and 𝑅𝑒 𝑗 = 𝜌 𝑗𝑈 𝑗𝐷𝑒/𝜇 𝑗 = 1.07 × 106, where 𝐷𝑒 = 1.6ℎ. The nozzle pressure and temperature ratios are
𝑝𝑡/𝑝∞ = 3.671 and 𝑇𝑡/𝑇∞ = 1, respectively. The nozzle geometry, which is explicitly included in the computational
domain, closely matches OSU’s experimental setup. As shown in Fig. 1, each of the twin nozzles has a groove cut into
the internal wall just upstream of the nozzle exit. Housed within the groove are eight pairs of electrodes per nozzle,
allowing for a maximum of eight plasma actuators per nozzle. The computational grid, shown in Fig. 2, contains
approximately 77 million cells. The parameters of the baseline simulation are summarized in Table 1; for full details,
including the validation of the simulation against companion experiments at OSU, we refer the reader to Brès et al. [13].
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(a) (b)

Fig. 1 Nozzle geometry [13]: (a) exterior view of the twin nozzles; (b) interior view of one nozzle, showing the
electrodes recessed into a groove near the exit. The major (𝑦 = 0) and minor (𝑧 = 0) axes are also displayed.
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Fig. 2 Computational grid of the baseline LES: (a) horizontal cut through the center lines of both nozzles, i.e.,
the major-axis plane; (b) vertical cut through the center line of a single nozzle, parallel to the minor-axis plane.

B. Modeling of plasma actuation
To implement plasma actuators in the twin-rectangular jet, we adapt the model proposed by Kim et al. [18].

Extending our previous work in actuator modeling [13], we insert a volumetric energy source term,

𝑆(𝑥, 𝑦, 𝑧, 𝑡) = 𝑘 (𝑡)𝑙 (𝑟)𝑚(𝑧) 𝑃

𝜋𝑟2
0𝐿

, (2)

where 𝑃 is an amplitude with dimensions of power, into the right-hand side of the energy equation. Note that for
notational simplicity, the axis of the plasma arc is aligned with the 𝑧-axis; in actual implementation, the orientation of
the arc—and therefore of the energy source—is aligned with the groove around the nozzle lip. The spatial support is in
the form of a cylinder of radius 𝑟0 and length 𝐿, and is expressed as the product of

𝑙 (𝑟) = 1
2

[
tanh

(
−𝜎

(
𝑟

𝑟0
− 1

2

))
+ 1

]
(3)

and
𝑚(𝑧) = −1

2

[
tanh

(
−𝜎 𝑧 + 𝐿/2

𝑟0

)
+ 1

]
+ 1

2

[
tanh

(
−𝜎 𝑧 − 𝐿/2

𝑟0

)
+ 1

]
, (4)

where 𝑟 =
√︁
𝑥2 + 𝑦2, and 𝜎 controls the sharpness of the cylindrical boundary. The energy source is modulated in time

by the signal

𝑘 (𝑡) = 1
2

[
tanh

(
(𝑡 − 𝑛𝜏) − 𝑡on

𝑡𝑟

)
− tanh

(
(𝑡 − 𝑛𝜏) − 𝑡off

𝑡𝑟

)]
, (5)

where 𝑡on and 𝑡off are the time instants within each forcing period at which the signal is switched on and off, respectively,
𝑡𝑟 is the rise time, 𝜏 is the forcing period, and 𝑛 = ⌊𝑡/𝜏⌋. Thus 𝑘 (𝑡) is a smoothed square wave.

We assume 𝑟0 to be half the height of the groove, and 𝐿 to be the centroid-to-centroid distance between a pair of
electrodes. 𝜎 is taken from Kim et al. [18]. The choice of forcing amplitude 𝑃, and temporal parameters 𝑡on, 𝑡off , and 𝑡𝑟 ,
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Table 1 LES parameters.

Case 𝑀 𝑗 𝑀𝑎 𝑅𝑒 𝑗 𝑝𝑡/𝑝∞ 𝑝 𝑗/𝑝∞ 𝑇𝑡/𝑇∞ 𝑇𝑗/𝑇∞ 𝑁cv d𝑡𝑐∞/ℎ

Baseline 1.5 1.25 1.07 × 106 3.671 1 1 0.69 76.6 × 106 0.002
Forced 1.5 1.25 1.07 × 106 3.671 1 1 0.69 77.0 × 106 0.001

Table 2 Nondimensionalized plasma actuation parameters. Ambient temperature and pressure are assumed to
be 293 K and 1 atm, respectively. The spatial support of the volumetric energy source that models a plasma arc is
a cylinder of length 𝐿 and radius 𝑟0. For notational simplicity, the origin is taken to be the centroid of the plasma
arc, and the 𝑧-axis refers to the direction aligned with the groove around the nozzle lip.

Case 𝑃/𝜌∞𝑐3
∞ℎ

2 𝑟0/ℎ 𝐿/ℎ 𝜎 𝑡on𝑐∞/ℎ 𝑡off𝑐∞/ℎ 𝑡𝑟𝑐∞/ℎ 𝑆𝑡0

Forced 17.44 0.02 0.29 5 0 0.0015 2 × 10−5 0.29

is based on voltage and current measurements by Samimy et al. (private communication) of a typical actuation cycle.
The actuators are assumed to be 100% power-efficient. When nondimensionalized, the duty cycle, 𝑡off − 𝑡on, is measured
to be on the order of one LES time step, though this is likely an overestimate due to finite sampling frequency. The rise
time, 𝑡𝑟 , is chosen to be much smaller than the LES time step so that the actuators respond effectively instantaneously.
In general, these modeling parameters can be set independently for each actuator; in this paper, however, all actuators
behave identically, except for potential phase differences between their actuation cycles. The modeling parameters are
summarized in Table 2. In our previous plasma modeling effort, we also observed a strong dependence of control
authority on the local grid resolution in and around the groove [13]. We therefore introduce additional grid refinement to
the vicinity of the groove, locally reducing the average cell width by a factor of two, as shown in Fig. 3. Due to explicit
time-stepping, this necessitated a smaller time step, though the overall grid size remains approximately 77 million (see
Table 1). Since it is challenging to obtain direct measurements of the local flow environment around a plasma arc, rather
than attempt to replicate a specific experiment, we seek to demonstrate the control authority of plasma actuation by
exciting specific modes of instability in the twin-rectangular jet. We will return to this point in Section III.A.

III. Statistical analysis

A. 𝐷2-symmetry decomposition
In turbulent flows that enjoy (statistical) homogeneity in one or more spatial directions, prior to the application of

modal decomposition we Fourier-transform the data along the homogeneous directions. Doing so reduces computational
effort, accelerates the convergence of the statistics, and most importantly, enhances the interpretability of the results.
For axisymmetric jets, this procedure amounts to an azimuthal Fourier transform, which enables us to analyze a set of
two-dimensional azimuthal Fourier modes. Twin jets, on the other hand, are triply inhomogeneous flows. Instead they
possess 𝐷2 symmetry, i.e., their geometries are invariant under reflection about the major and minor axes. In such flows,
𝐷2 symmetry gives rise to four symmetry components [24–26]: SS, SA, AS, and AA, where the first and second letters
denote symmetry (S) or antisymmetry (A) about the major and minor axes, respectively [27].

By analogy to the azimuthal Fourier transform of axisymmetric jets, a rigorous statistical analysis of twin jets must
account for their geometrical symmetries. In our previous work, we proposed a 𝐷2-symmetry decomposition of twin jet
flows into the four symmetry components. For a detailed discussion of the 𝐷2-symmetric workflow, we refer the reader
to Yeung et al. [15]; here we briefly outline the main steps. We begin by estimating the long-time mean, q, which is
SS-symmetric. To do so, we enforce SS symmetry on the sample mean, and obtain an improved estimate, qSS. Using
qSS, we apply the Reynolds decomposition to the instantaneous data, and find the turbulent fluctuations,

q′ (𝑥, 𝑦, 𝑧, 𝑡) = q(𝑥, 𝑦, 𝑧, 𝑡) − qSS (𝑥, 𝑦, 𝑧) . (6)

Next, we enforce 𝐷2 symmetry on q′, and decompose it into four symmetry components:

q′ (𝑥, 𝑦, 𝑧, 𝑡) = q′
SS (𝑥, 𝑦, 𝑧, 𝑡) + q′

SA (𝑥, 𝑦, 𝑧, 𝑡) + q′
AS (𝑥, 𝑦, 𝑧, 𝑡) + q′

AA (𝑥, 𝑦, 𝑧, 𝑡) . (7)
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(a) (b) (c) (d)

Fig. 3 Local grid refinement around the groove: (a,b) baseline case; (c,d) forced case. (a,c) show a horizontal
cut through the center lines of both nozzles, i.e., the major-axis plane; (b,d) zoom in on a vertical cut through the
center line of a single nozzle, parallel to the minor-axis plane.
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Fig. 4 𝐷2-symmetry decomposition [15]. For each symmetry component, three of the four quadrants contain
redundant information. Without loss of generality, we perform modal decomposition only on the first quadrant.

For each component or set of multiple components, solving a modal decomposition problem leads to three-dimensional
modes, thus concluding the workflow. Note that, as implied by Eq. (7), 𝐷2 decomposition leads to no loss of generality:
q′ can be exactly reconstructed by summing the four components. Figure 4 summarizes this decomposition.

In our recent analysis of the natural twin-rectangular jet, 𝐷2-symmetric SPOD revealed that the AA and AS
components emit a fundamental screech tone at 𝑆𝑡 = 0.29, while the SS and SA components do not [15]. In this paper,
we demonstrate the excitation of SS-symmetric instabilities using plasma actuation, and explore the potential for such
excitation to disrupt the preferred symmetry components of the natural jet. The experiments of Esfahani et al. [28]
employed six actuators per nozzle—three on the top lip, three on the bottom lip—and forced the jet at its natural screech
frequency. We adopt a similar strategy; specifically, to achieve SS excitation, all 12 actuators will fire in-phase, at
frequency 𝑆𝑡 = 0.29 (see Table 2). We denote the forcing frequency by 𝑓0 or, equivalently, 𝑆𝑡0.

B. Bispectral mode decomposition
The unstructured LES snapshots are interpolated onto a Cartesian grid for postprocessing. The database and spectral

estimation parameters are provided in Table 3. To compute BMD [19] for the frequency triad ( 𝑓𝑘 , 𝑓𝑙 , 𝑓𝑘+𝑙), we assemble

Table 3 Interpolation and spectral estimation parameters.

Database Parameters

Case 𝑁𝑥 𝑁𝑦 𝑁𝑧 [𝑥min, 𝑥max] [𝑦min, 𝑦max] [𝑧min, 𝑧max] 𝑁𝑡 Δ𝑡𝑐∞/ℎ 𝑁FFT 𝑁ovlp 𝑁blk

Natural 625 270 344 [0, 85ℎ] [−16ℎ, 16ℎ] [−16ℎ, 16ℎ] 20000 0.2 1024 512 38
Forced 625 270 344 [0, 85ℎ] [−16ℎ, 16ℎ] [−16ℎ, 16ℎ] 10000 0.2 1024 512 18
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Fig. 9(a) Fig. 9(b) Fig. 9(c)

antisymmetric about minor axis

Fig. 5 Triadic interactions between modes with the same symmetry (auto-BMD) or different symmetries
(cross-BMD).

the data matrices
Q̂𝑘◦𝑙 =

[
q̂(1)
𝑘◦𝑙 q̂(2)

𝑘◦𝑙 · · · q̂(𝑁blk )
𝑘◦𝑙

]
(8)

and
Q̂𝑘+𝑙 =

[
q̂(1)
𝑘+𝑙 q̂(2)

𝑘+𝑙 · · · q̂(𝑁blk )
𝑘+𝑙

]
, (9)

where q̂𝑘◦𝑙 = q̂( 𝑓𝑘) ◦ q̂( 𝑓𝑙), q̂𝑘+𝑙 = q̂( 𝑓𝑘+𝑙), and ◦ denotes the Hadamard product. In the case of the auto-BMD,
q̂( 𝑓𝑘), q̂( 𝑓𝑙), and q̂( 𝑓𝑘+𝑙) possess the same symmetry. Conversely, in cross-BMD they come from multiple symmetry
components. Next we form the bispectral density matrix,

B =
1

𝑁blk
Q̂𝐻

𝑘◦𝑙WQ̂𝑘+𝑙 , (10)

where W is the numerical quadrature weight matrix. Solving the numerical radius problem for B results in the expansion
coefficients

a1 = arg max
a

����a𝐻Ba
a𝐻a

���� (11)

and complex mode bispectrum

𝜆1 =
a𝐻

1 Ba1

a𝐻
1 a1

. (12)

Finally, the BMD modes are recovered as 𝝓𝑘+𝑙 = Q̂𝑘+𝑙a1. Interactions between symmetry components can give rise to
new symmetries; all non-redundant combinations of symmetries in a triad are illustrated in Fig. 5.

IV. Results
Figure 6 visualizes the instantaneous temperature of the SS-symmetrically forced jet, over one representative forcing

cycle. Although the jet is nominally ideally-expanded based on the nozzle-exit pressure, the potential cores contain
shock diamonds as a result of the biconical nozzles as well as the grooves immediately upstream of the nozzle lips.
6(a,b) capture the instant at which all actuators fire simultaneously. A localized burst of high temperature (white) is
visible at each nozzle lip in 6(a); this near-nozzle effect is not readily apparent in 6(b) because the major-axis plane does
not intersect any actuators. However, both views show the roll-up of regularly-spaced vortices further from the nozzle as
the initial effects of the actuation become amplified via the KH instability [29]. The large vortices are symmetric about
both the major and minor axes, confirming the SS-symmetric forcing.

The difference between the long-time mean streamwise velocities of the forced and natural jets, 𝑈forced −𝑈natural, is
shown in Fig. 7. The 𝑧 = 1.8 and 𝑦 = 0 planes in 7(a,b) confirm the shear-layer thickening observed in the instantaneous
temperature field in Fig. 6, in the form of acceleration of the ambient flow due to increased entrainment. This thickening
is asymmetric with respect to each lip line. In 7(a), for instance, the enhanced growth of the initial shear layer is
restricted to |𝑦 | > 0.5, i.e., the regions above the upper lip line and below the lower lip line. Similarly, in 7(b) the initial
shear layers grow much more rapidly in the regions that consist of |𝑧 | < 0.8 (between the inner lip lines) and |𝑧 | > 2.8
(outside the outer lip lines). Although all the actuators are located on the nozzle lips corresponding to 𝑦 = ±0.5 (7(a)),
the shear layers emanating from the 𝑧 ∈ {±0.8,±2.8} nozzle lips (7(b)) display more pronounced forcing-induced
growth. Compared to the natural jet, faster shear-layer growth in the 𝑦 = 0 plane leads to merging of the twin jet plumes
at a more upstream location, potentially encouraging stronger inter-jet coupling.
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(a) (b)
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Fig. 6 Instantaneous temperature ( 0.65 ≤ 𝑇/𝑇∞ ≤ 0.99) over one forcing period: (a,c,e,g) 𝑧/ℎ = 1.8 plane
through the center line of a single nozzle, parallel to the minor-axis plane; (b,d,f,h) major-axis plane. Actuators
fire in (a,b). Each successive row advances by a phase of 𝜋/2.
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Fig. 7 The effect of forcing on the long-time mean streamwise velocity ( −0.25 ≤ (𝑈forced −𝑈natural)/𝑈 𝑗 ≤
0.25): (a) 𝑧 = 1.8 plane, parallel to the minor axis; (b) major-axis plane; (c–f) transverse planes at 𝑥 ∈ {5, 10, 15, 20}.
The lip lines, located at 𝑦 = ±0.5 and 𝑧 ∈ {±0.8,±2.8}, are marked by gray lines.
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Fig. 8 Frequency-wavenumber diagrams, log10 |𝑝𝜔𝑘𝑥 |2, of the forced jet computed from pressure fluctuations
along the line 5 < 𝑥 < 20, 𝑦 = 0.25, 𝑧 = 1.8: (a) SS; (b) SA; (c) AS; (d) AA symmetry components. All symmetries
share the same colorbar. Lines of constant phase speed (– – –, 𝑐ph = 0.7) and (– – –, 𝑐ph = −𝑐∞) are overlaid on
the contours. The vortex sheet model of Tam and Norum [30] is also shown (– – –): (a,b) symmetric mode; (c,d)
antisymmetric mode.

Within each potential core, the forced jet velocity experiences greater deceleration as the jet transits the series
of shock cells. This is indirect evidence for increased shock strength in the forced jet, possibly as a consequence of
constructive interactions between the stationary shocks and the moving shock fronts generated by the actuators. Beyond
the initial shear layer, the velocity difference in the 𝑧 = 1.8 plane can be divided into two distinct regions: 𝑥 ≲ 12, in
which the forced jet is accelerated, and 𝑥 ≳ 12, in which the forced jet is decelerated, relative to the natural jet. The
switch at 𝑥 ≈ 12 in the 𝑧 = 1.8 plane approximately coincides with the point at which the inner shear layers of the twin
jets become fully merged in the 𝑦 = 0 plane. The sequence of transverse views in 7(c–f), at distances 𝑥 ∈ {5, 10, 15, 20},
provides further insight into the streamwise evolution of the velocity difference. At 𝑥 ∈ {5, 10}, the center of each
nozzle lip is aligned with regions of increased velocity due to enhanced entrainment. The corners are aligned with
regions of decreased velocity due to the reinforced shocks, which form an ‘X’ pattern in front of each nozzle. At
𝑥 ∈ {15, 20}, the twin jets are merged along the minor axis, 𝑧 = 0. In the inter-nozzle space, |𝑧 | < 0.8, and in the
regions |𝑧 | > 2.8, the forced jet is primarily accelerated. In the regions 0.8 < 𝑧 < 2.8 and −2.8 < 𝑧 < −0.8, the forced
jet is primarily decelerated. This intricate (𝑦, 𝑧)-dependence of the long-time mean, which cannot be captured by an
individual azimuthal Fourier mode, underscores the necessity of performing 𝐷2-symmetry decomposition.

To examine the effects of forcing on the temporal and spatial scales in each of the four symmetry components, in
Fig. 8 we plot contours of the power spectral density (PSD), |𝑝𝜔𝑘𝑥 |2, where 𝜔 is the angular frequency, and 𝑘𝑥 the
streamwise wavenumber. To compute 𝑝𝜔𝑘𝑥 , we take the double Fourier transform of pressure fluctuations in time and
space. The temporal transform employs Welch-averaging to reduce variance [31]. The spatial transform is taken along
the line (𝑦, 𝑧) = (0.25, 1.8), constrained to 5 < 𝑥 < 20, which gives the clearest spectral shapes. The spatiotemporal
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PSD can be interpreted as an empirical dispersion relation. Since only 𝑆𝑡 ≥ 0 is shown, the 𝑘𝑥 > 0 and 𝑘𝑥 < 0
half-planes represent waves with positive and negative phase velocities, 𝜔/𝑘𝑥 , respectively. Positive and negative slopes,
on the other hand, represent waves with positive and negative group velocities, 𝜕𝜔/𝜕𝑘𝑥 , respectively. Common to all
four symmetries is the band of constant phase speed, 𝑐ph = 0.7, corresponding to the typical convection velocity of
KH modes. For SS and AS symmetries (8(a,c)), along the KH band the PSD peaks at 𝑓 = 0, the forcing frequency
𝑓0, and its superharmonics. In the 𝑘𝑥 < 0 half-plane, the bands are largely restricted to the domain 𝜔/𝑘𝑥 > −𝑐∞, i.e.,
waves with negative phase velocities propagate at less than the ambient speed of sound. In the SS and SA components
(8(a,b)), for 𝑆𝑡 < 0.2 the upstream-propagating band is curved. The group velocity, which is positive, decreases with
frequency and approaches zero as 𝑆𝑡 → 0.2. In the SS component, there is also a peak at 𝑆𝑡 ≈ 0.35. The peaks at 𝑓0
and its harmonics, on the other hand, are likely the result of aliasing from the KH band. In the SA symmetry, there is a
similar peak, but at a higher frequency, 𝑆𝑡 ≈ 0.4. The band to the right of the KH modes in the 𝑘𝑥 > 0 half-plane is the
extension of the upstream-propagating band into negative frequencies; their appearance in the 𝑘𝑥 > 0 half-plane is a
consequence of the conjugate symmetry between the quadrants ( 𝑓 > 0, 𝑘𝑥 > 0) and ( 𝑓 < 0, 𝑘𝑥 < 0), and between
( 𝑓 > 0, 𝑘𝑥 < 0) and ( 𝑓 < 0, 𝑘𝑥 > 0). In the AS and AA components (8(c,d)), the upstream-propagating band possesses
no pronounced curvature, and terminates at a higher frequency than in SS and SA, approximately at 𝑓0. As with SS and
SA, in AS and AA there is also a higher-frequency peak, at 𝑆𝑡 ≈ 0.5. Unique to AS, there is a prominent peak at 𝑓0 in
the 𝑘𝑥 < 0 half-plane. Since only SS is forced, this peak in AS corresponds to the natural screech tone.

Next we compare the empirical dispersion relation of the upstream-propagating waves to the analytical predictions
of the two-dimensional vortex sheet model of Tam and Norum [30] for rectangular jets. The dispersion relations of the
model are given by [
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for symmetric modes, and[
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for antisymmetric modes. As a two-dimensional model cannot distinguish between symmetry and antisymmetry about
the minor axis, we compare symmetric modes with both SS and SA components, and antisymmetric modes with both AS
and AA components. The solutions to Eqs. (13) and (14) are plotted in Fig. 8 accordingly. In 8(a,b), the symmetric Tam
and Norum (TN) modes accurately predict the maximum frequency attained by the upstream-propagating waves, but
underpredicts their wavenumbers. For 𝑆𝑡 < 0.2, the PSD also shows significant dispersion and a group velocity that is
frequency-dependent, neither of which is captured by the model. In 8(c,d), the antisymmetric TN modes approximately
predict the wavenumbers in the PSD at each frequency, but only up to 𝑓0. Unlike the symmetric mode, for 𝑆𝑡 < 0.4 the
constant group velocity of the antisymmetric mode is consistent with the PSD. Both symmetric and antisymmetric TN
modes allow for waves with negative group velocities; however, we do not observe such waves in the PSDs. Taken
together, these discrepancies hint at the limited applicability of two-dimensional models to rectangular jets of moderate
aspect ratio.

The SS-self interactions are educed using auto-BMD and reported in Fig. 9(a). The AS-self interactions and
SS-AS interactions are educed using cross-BMD and reported in Figs. 9(b) and 9(c), respectively. The remaining
bispectra, involving the SA and AA components, have lower magnitudes and are thus less dynamically relevant. For
each bispectrum, only the non-redundant region is displayed. The bispectra in 9(a,b) are triplets in which the Fourier
realizations q̂𝑘 and q̂𝑙 possess the same symmetry. The white region, ( 𝑓1 > 0, 𝑓2 > 𝑓1), can be recovered through
reflection of the principal region, ( 𝑓1 > 0, 0 < 𝑓2 < 𝑓1), about the red line, 𝑓2 = 𝑓1. The gray region, ( 𝑓1 > 0, 𝑓2 < − 𝑓1),
can be recovered through reflection of the region ( 𝑓1 > 0,− 𝑓1 < 𝑓2 < 0) about the blue line, 𝑓2 = − 𝑓1, followed by
complex conjugation. In contrast, for the bispectrum in 9(c), the Fourier realizations q̂𝑘 and q̂𝑙 have different symmetries.
The gray region, ( 𝑓1, 𝑓2 < − 𝑓1), can be recovered from the region ( 𝑓1, 𝑓2 > − 𝑓1) via a reflection about 𝑓1 = 0, then
another reflection about 𝑓2 = 0, followed by complex conjugation.

The most dominant triads in Fig. 9 form the usual grid pattern. When sign 𝑓1 = sign 𝑓2, sum interactions generate
superharmonics of the forcing or screech frequency, 𝑓0. Conversely, when sign 𝑓1 = − sign 𝑓2, difference interactions
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Fig. 9 Modulus of the BMD complex mode bispectra of the forced jet, computed using the pressure 2-norm: (a)
auto-BMD of the SS component; (b,c) cross-BMD involving the SS and AS components. All bispectra share the
same colorbar. Only the non-redundant region of each bispectrum is shown. Solid arrows (—▶) denote reflection
of the non-redundant region; dotted arrows (· · ·▶) denote reflection followed by conjugation.

generate modes at lower frequencies. Triads that lie on the line 𝑓3 = 𝑓1 + 𝑓2 = 0 represent mean-flow deformation. In
Figs. 10–13, we study these quadratic interactions in greater detail.

Figure 10 shows a representative selection of dominant triadic interactions of the [[SS, SS, SS]] symmetry triplet.
Starting with sum interactions, in 10(a) the linear mode at the fundamental forcing frequency, 𝑓0, self-interacts to
form the first superharmonic at frequency 2 𝑓0. In 10(b), the first superharmonic further self-interacts to form the third
superharmonic at 4 𝑓0. In 10(c), the forcing interacts with the first superharmonic to generate the second superharmonic
at 3 𝑓0. In 10(d), the forcing undergoes difference-self-interaction with its complex conjugate to generate a mean flow
distortion. The corresponding bispectral modes are reported in Fig. 11.

The linearly forced mode, ( 𝑓0, 0), in Fig. 11(a,c,d) reveal the KH instability waves created by the actuators, which
couple the twin jets symmetrically about the minor axis. From this fundamental mode, the forward cascade leads to the
formation of higher-frequency and higher-wavenumber structures (11(a,b,c)). The superharmonic modes contain KH
wavepackets in the initial shear layers. The spatial support of these wavepackets is restricted further upstream with
increasing frequency. The mean flow distortion in 11(d) appears to be active primarily in the shear layers, outside the
potential cores.

Next we illustrate the dominant triadic interactions that involve both SS- and AS-symmetric modes in Fig. 12.
The AS-symmetric linear mode, ( 𝑓0, 0), contribute to the triads in 12(a,b,c,e,f). Unlike the SS symmetry component,
the AS symmetry is unforced. We therefore identify the AS ( 𝑓0, 0) mode with the naturally-occurring, fundamental
screech tone at frequency 𝑓0. In 12(a), the AS fundamental screech self-interacts to form the first SS superharmonic.
The formation of the first AS superharmonic, on the other hand, relies on the cross-symmetry interaction between the
SS forcing and AS screech modes, as shown in 12(b). In 12(c) the fundamental screech interacts with the AS first
superharmonic, generating the SS second superharmonic. Conversely, in 12(d) the fundamental forcing interacts with
the AS first superharmonic to generate the AS second superharmonic. 12(e) shows the difference-self-interaction of
the fundamental screech, resulting in mean flow distortion of the SS symmetry. 12(f) shows the difference interaction
between the screech and the conjugate of the forcing, causing deformation of the AS mean flow.

Figure 13 shows the corresponding mode shapes. Analogous to the auto-BMD of the SS component, the forward
cascade of cross-bispectral triads forms higher-frequency modes that contain higher-wavenumber structures. A
noteworthy difference is that the AS (− 𝑓0, 𝑓0, 0) mean flow distortion has its maximum amplitude not in the shear layer,
but within the potential core, where the mode recovers the shape of the shock cells.

To understand why the [[SS, SS, SS]], [[AS,AS, SS]], and [[SS,AS,AS]] symmetry triplets bear the clearest
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Fig. 10 Five representative triads from the [[SS, SS, SS]] BMD auto-bispectrum in Fig. 9(a), reproduced on the
left. To the right, red spheres highlight the generation of the following triads: (a) ( 𝑓0, 𝑓0, 2 𝑓0); (b) (2 𝑓0, 2 𝑓0, 4 𝑓0);
(c) (2 𝑓0, 𝑓0, 3 𝑓0); (d) ( 𝑓0,− 𝑓0, 0). In each subplot, the large sphere indicates the mode corresponding to 𝑓𝑘+𝑙 . Solid
(——) and dashed (– – –) lines distinguish between 𝑓𝑘 and 𝑓𝑙 , respectively. Dotted lines (· · · · · · ) connect 𝑓𝑘 to 𝑓𝑙 .
Arrows point towards or away from 𝑓𝑘+𝑙 in sum or difference interactions, respectively. The translucent sphere
denotes the complex conjugate of the mode in the non-redundant region.

signatures of triadic interactions, we consider the summed mode spectra of the remaining triplets. A summed mode
spectrum provides an overview of which frequencies 𝑓𝑘+𝑙 are involved in quadratic phase coupling, without distinguishing
between the contributing frequencies, 𝑓𝑘 and 𝑓𝑙 . It is the average of the mode bispectrum along each constant- 𝑓3
diagonal [19], i.e.,

Λ1 ( 𝑓3) =
1

𝑁 ( 𝑓3)
∑︁

𝑓3= 𝑓1+ 𝑓2

|𝜆1 ( 𝑓1, 𝑓2) | , (15)

where 𝑁 ( 𝑓3) is the number of triads along the diagonal. The results are shown in Fig. 14. Consistent with the bispectra
in Fig. 9, the aforementioned triplets involving SS and/or AS symmetries show peaks at 𝑓3 = 𝑛 𝑓0, where 𝑛 = 0, 1, 2, . . .
The same peaks, albeit less dominant, also appear in the summed mode spectra of the [[SA, SA, SS]], [[AA,AA, SS]],
and [[SA,AA,AS]] triplets. The absence of dominant triads in their respective bispectra (not shown) suggests the SA
and/or AA symmetries are merely phase-coupled rather than interacting. The remaining four triplets do not show
peaks in their summed mode spectra: [[SS, SA, SA]], [[AS,AA, SA]], [[SS,AA,AA]], and [[SA,AS,AA]]. In each of
these triplets, modes 𝑓𝑘 and 𝑓𝑙 have opposing symmetries about the minor axis. Specifically, whereas SS and AS are
symmetric about the minor axis, SA and AA are antisymmetric about the minor axis. Under SS-symmetric forcing, only
when two modes have the same symmetry about the minor axis are they capable of phase-coupling and, potentially,
nonlinearly interacting.

V. Summary and conclusions
Motivated by the desire to achieve noise reduction in military-style supersonic jet flows, we carried out LES of a

plasma-actuated supersonic twin-rectangular jet. 12 actuators, modeled as energy source terms, around the exits of both
nozzles pulsed in-phase with each other, imparting thermal and pressure perturbations to the jet shear layer. Due to

12



(f0; 0)

(a)

(f0; f0) (f0; f0)

(b)

(2f0; 2f0)

(f0; f0)

(f0; 0)

(c)

(2f0; f0)

(f0; 0)

(0;!f0)

(d)

(f0;!f0)

Fig. 11 Auto-bispectral modes of the [[SS, SS, SS]] triplet, corresponding to the triads in Fig. 10. The 𝑦 = 0.25
plane is displayed. Only the real part of each mode is shown; consequently, in (d) the ( 𝑓0, 0)-mode appears
identical to its complex conjugate, (0,− 𝑓0).

the in-phase forcing, these excitations were symmetric about the major and minor axes (i.e., SS-symmetric forcing) of
the twin jet. A comparison between the long-time mean of the forced and natural jets confirm significant azimuthal
inhomogeneity in the turbulent statistics, lending support to our use of 𝐷2-symmetry decomposition. Frequency-
wavenumber decomposition of the forced jet reveals the presence of downstream-propagating waves associated with the
KH instability, as well as upstream-propagating waves. These waves, which have negative phase and positive group
velocities, correspond only weakly to the two-dimensional vortex sheet model of Tam and Norum [30]. Discrepancies
between the empirical and analytical dispersion relations call for the use of analytical frameworks that respect the 𝐷2
symmetry of the twin jet in future modeling efforts. We further examined the impact of the SS-symmetric forcing
on the dynamics of the twin jet with BMD. The BMD mode bispectra of the [[SS, SS, SS]], [[AS,AS, SS]], and
[[SS,AS,AS]] symmetry triplets display dominant triadic interactions. The self-interactions of the SS forcing and of
the AS natural screech tone generate superharmonics and mean flow distortion that are SS-symmetric. In contrast,
cross-symmetry interactions between the SS forcing and AS screech form superharmonics and mean flow distortion
that are AS-symmetric. The lack of SS-AS interactions could explain the absence of clear superharmonics in the AS
component of the natural jet. The summed mode spectra of all non-redundant symmetry triplets indicate that when the
jet is subjected to SS-symmetric forcing, quadratic phase-coupling between two modes is prevented from occurring if
the modes possess inconsistent symmetries about the minor axis, i.e., one is symmetric about the minor axis while the
other is antisymmetric. In other words, having the same minor-axis symmetry appears to be a necessary condition for
two modes to undergo triadic interactions. We plan to investigate the generality of this observation by forcing the SA,
AS, and AA components, as well as combinations thereof. In their experiments Samimy et al. [8] demonstrated the
control authority of plasma actuators on twin-rectangular jet coupling (i.e., the recovery of symmetry or antisymmetry
between the twin jets) and, in turn, the ability to manipulate near- and far-field noise. Understanding the extent to which
symmetry incompatibility may forestall nonlinear interactions thus has practical implications for the design of effective
control strategies for twin-jet noise reduction.
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Fig. 12 Eight representative triads from the [[AS,AS, SS]] and [[SS,AS,AS]] cross-bispectra in Fig. 9(b,c),
reproduced at the top. Below, red (SS symmetry) and green (AS symmetry) spheres highlight the generation
of the triads (a,b) ( 𝑓0, 𝑓0, 2 𝑓0); (c,d) (2 𝑓0, 𝑓0, 3 𝑓0); (e,f) (− 𝑓0, 𝑓0, 0), belonging to the [[AS,AS, SS]] (a,c,e) and
[[SS,AS,AS]] (b,d,f) symmetry triplets. The same notation is used as in Fig. 10.

16



(f0; 0)
(a)

(f0; f0)

(f0; 0)

(f0; 0)
(b)

(f0; f0)

(f0; f0)

(f0; 0)
(c)

(2f0; f0)

(f0; f0)

(f0; 0)
(d)

(2f0; f0)

(0;!f0)

(f0; 0)
(e)

(!f0; f0)

(0;!f0)

(f0; 0)
(f)

(!f0; f0)

Fig. 13 Cross-bispectral modes of the [[AS,AS, SS]] and [[SS,AS,AS]] triplets, corresponding to the triads in
Fig. 12. The 𝑧 = 1.8 plane is displayed. Only the real part of each mode is shown.
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Fig. 14 BMD summed mode spectra of the forced jet. In each triplet, the mode at frequency 𝑓𝑘+𝑙 possesses: (a)
SS; (b) SA; (c) AS; (d) AA symmetry. q̂𝑘+𝑙 is symmetric (left column) or antisymmetric (right column) about the
minor axis.
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