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A framework for fusing numerical and experimental databases using heterogeneous forms
of the gappy-POD is presented in order to reconstruct real observations from reduced sen-
sor sets. The problem is demonstrated in the context of the jet noise problem where the
observation space comprises wavefronts corresponding to the unsteady pressure field within
the hydrodynamic periphery of a Mach 3 jet flow. The data fusion approach leverages a
numerical model of the unsteady density field (generated by way of large eddy simulation)
for training, followed by entries from experiments (high speed schlieren) for real-time re-
construction. The compatibility of these databases is evaluated to ensure that observations
are generated using the smallest number of synthesized basis functions. The input to the
reconstruction is a sensor set from experimentally captured schlieren images of the same jet
flow. A further simplification utilizes heterogeneous forms of the gappy-POD so that only
a reduced sensor set is required for the reconstruction. This comprises the XX-topos and
YX forms where the linear algebraic system of equations are formed using the eigenvectors
and expansion coefficients, respectively while the gappy sensor set is determined using a
random number generator. An error analysis reinforces the general requirement that 2n+1
sensors are needed to properly resolve the nth POD mode. Sample reconstructions of the
density field are performed in real time using only 10% of available POD modes and 20%
of the sensors and are shown to generate qualitatively satisfactory images of wavefronts
evolving across space and time.

I. Nomenclature

a,b,c,d,e = POD expansion coefficients
oo = sound speed of ambient gas
aj; = sound speed of jet gas

Oy, 0t = space and time increments

D = jet diameter

E = sum of eigenvalues

€ = mean square error

1 = identity matrix

Aw = eigenvalues

A = normalized eigenvalue
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Mach number

acoustic Mach number
convective Mach number

POD mode numbers

numerical database

reference pressure

experimental database
low-order reconstruction of p

= gappy-POD reconstruction of p
gappy-POD output matrix
Eigenvalue cumulative sum
gappy-POD input matrix
normalized cumulative sum of eigenvalues
eigenvectors

POD covariance matrix

gas constant

data split ratio

= reference density

= jet exit velocity

independent variables, often space and time
separation in x and y

gappy sensor sets

cardinality of a vector
FEuclidean space vectors
arbitrary constant
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II. Introduction

Solutions to real world problems in engineering and physics are now generating overwhelming amounts
of information that are often too large and cumbersome to sift through. As such, there continues to be a
growing demand for data reduction methods capable of reducing the scale and complexity of these databases
all the while retaining the essential physics needed to solve problems of practical importance. Robust and
reliable computer models are also now being developed with the kind of sophistication that no longer re-
quires rigorous experimental validation. Depending on the complexity of the problem, the overhead needed
to generate these numerical solutions can be overwhelming. One such way of reducing this expense is by way
of data fusion whereby multiple sources of data are leveraged to generate an outcome that is more superior
than its individual parts. A growing number of demonstrations of data fusion applied to problems in fluid
mechanics can be found throughout the literature and involve well known techniques such as proper orthog-
onal decomposition (POD) and stochastic estimation,'? dynamic mode decomposition (DMD),? artificial
and deep neural networks,*® Bayesian statistics,® gappy-POD,”® as well as an assortment of other methods
and combinations thereof.? 1!

The motivation of this study is to provide a mathematical framework for fusing numerically generated
data with sparse sensor sets from field measurements for real time reconstruction of spatially and temporally
resolved field data. The approach is not limited to problems in fluid mechanics and could easily be extended to
other disciplines such as structural health monitoring. The approach builds upon the gappy-POD formulation
of Everson and Sirovich!? which has seen widespread use in repairing missing or damaged data!3 16 or for
optimizing the location of reduced sensors sets.!” 2% Our eventual goal is to guide the refinement of less
sophisticated numerical models that still encompass sufficient fidelity for distilling the essential physics.
These numerical models can be used for offline training and then combined with in situ measurements from
strategically placed sensors for real time reconstructions; information that was truncated from the model
is returned by way of the sparse sensor sets. For now, we will focus on the process of fusing numerical
and experimental databases using heterogeneous forms of the gappy-POD. An outline of this paper is as
follows. The conventional POD is first described followed by an outline of the mathematical framework for
the XX-topos and YX forms of the gappy-POD for data fusion using the naming convention of Zhao and
Tinney.?! These are the only known heterogeneous forms of the gappy-POD that support data fusion where
the input to the reconstructed database comprises a reduced sensor set, relative to the training data. The
technique is then demonstrated using signatures corresponding to propagating wavefronts in the near-field
of a high Mach number supersonic jet.
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III. Data fusion using gappy-POD with conventional kernels

Formulations for Lumley’s POD?2724 are found throughout the open literature?>2° with applications to

problems involving both numerically and experimentally generated data. We begin by providing a short
review of the conventional POD framework in order to establish a nomenclature for subsequent discussion.
The starting point is a kernel which is formed in a space with independent coordinates (x and y) where
p € C*Y. In this case, x’ denotes a separation along x while the p is confined by a Hilbert space so that,

R(x,x) = > pley)p'(x,y) (1)
y

A shorter notation that uses inner product operations () is written as Ry = (p(x,y), p(x’, y))xx and will be
used interchangeably throughout this discussion. Eq. (1) is a self-adjoint covariance matrix det([Ryy]"1) =0
that can be reconstructed from a denumerable set of solutions obtained from the following generalized
eigenvalue problem

R(x,x)$(x'sn) = A(m)p(x, n) (2)
In the context of machine learning, the formation of R(x,x’) is the process of training, and is accomplished
here using an entirely numerically generated dataset defined by p(x,y). Thus, a solution space comprised
of eigenvalues A(n) and eigenvectors ¢(x,n) are solutions based on numerically / synthesized observations.
These synthesized eigenvectors are used to expand p as follows,

a(y,n) = ) p(x,y)xn) (3)
P xy) = > aly,mg(xn) (4)

n

where the reduced-order model p is formed using any combination of solutions n € m while the number of
available solutions is confined by the rank of the kernel, m = rank(Ryy).

Alternatively, the data can be reconstructed by fusing the numerically generated POD basis set with field
measurements of the same shared observations; these field measurements are statistically independent of the
numerically generated database and are labeled P(x,y). A further simplification can be performed using a
gappy sensor set where X is a subset of sensors in x so that X € x; missing (or damaged) sensors z are unique
so that X # 7, Z C x, and thus |X|+|Z| = |x]. We use |x| to define the cardinality of x (the number of elements).
In order to boost the accuracy of the reconstructed variable on account of the gappy sensor set we will resort
to heterogeneous forms of the gappy-POD which leverage a linear algebraic system of equations to minimize
the error between the gappy sensor set p(%,y) and the reconstructed variable p™ (x,y).

Following Zhao and Tinney,?! three heterogeneous forms of the gappy-POD are available to choose from
and are referred to as XX-topos, XX-chronos and YX; formulations for these have been extended to the
spectral domain'®2° and for occasions when higher-order effects are warranted.?® For now, we will confine
our demonstration to linear terms only and for the conventional form of the POD. Where data fusion is
concerned, and for systems where the database to be constructed comprises the reduced sensor set, the only
tenable formulations are the XX-topos and YX forms and are written as follows.

1. XX-topos form for data fusion. The framework for assimilating the XX-topos form of the gappy-POD
to fuse data begins with the same linear algebraic system of equations that form the foundation for
stochastic estimation,3!

(X, n)¢(X, q))ng b(y,n) = (P(X, y)(X,1))yn (5)
where the correlating terms on both sides of Eq. (5) are the spatial (topos) eigenvectors ¢(x,n) from the
solution to Eq. (2) using the numerical database. A process diagram for data fusion using the XX-topos
form of the gappy-POD is shown in Fig. 1 (adapted from Zhao and Tinney?!) and assumes |x| = |y| for
simplicity. The caveat to fusing databases is in generating the term on the right hand side of Eq. (5)
where we have inserted P(X,y) from the experiments in place of p(X,y) from the numerical database
(as is traditionally done). In matrix form, Eq. (5) can be written as [®(n, ¢)] [b(y,n)] = [P(y,n)] and
is rearranged and solved for [b] = [®] ! [B] where [b] is the transfer function that fuses numerical

and experimental databases. For ill-conditioned matrices or badly scaled data, a suitable replacement
is offered,3?

[®"(n,q)] = (L+&)1(n.q) = ($(2,7)$(2.q))nq (6)
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where the identity matrix I(n, q) = {(¢(x, n)$(x, q))nq is a natural artifact of the orthonormal basis while
an arbitrary constant £ is inserted to regularize the matrix. Values for ¢ are unique to the problem,
though a good starting point may be something in the range 107'° < ¢ < 107'2. The newly formed
coefficients are used to approximate the data,

2(m) U
Py (xy) = ) b(ymex,n) (7)
( N ~(m) 7
P(x.y) P(y,n) b(y,n) Py ()

@ (217 [P] @
¢(-x’n) ¢(i9n) (I)(n’Q) ¢()C,}’l)
$(q, %) @
X
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Figure 1: Process diagram for the heterogeneous XX-topos form of the gappy-POD for data
fusion.

2. YX form for data fusion. For this alternative form, we first decompose the y-direction using a kernel

constructed from the opposing coordinate R(y,y") = (p(x,y), p(x,y"))yy» where y’ denotes a separation
along y; the properties of R(y,y’) are the same as R(x,x’) and are used to generate a new set of
eigenvectors ¥ (y,n) and eigenvalues w(n) from the following eigenvalue problem solution,

R(y. Y)W (y',n) = w(p)y(y,n) (8)
Two new sets of coefficients are needed from the training database
cte,m) = D pley)y(y.n) (9)
y
dxn) = > pEyY(.n) (10)
y

where Eq. (9) employs the full sensor set while Eq. (10) is formed from a subset of sensors that
matches the gappy sensor set of the reconstructing database. The linear algebraic system of equations
now becomes

(d(X,n)d(X,q))ng b(y,n) = (P(X,y)d(X,n))yn (11)

where the gappy sensor set from the reconstructing database is inserted to form the right hand side
term. This is written in matrix form as [D(n, q)] [b(y,n)] = [P(y,n)]. An alternative expression for
the left hand side term is provided as [D’(n,q)] = (1 + §)w(n, q) — (e(Z,n)e(Z, q))ng and is substituted
for occasions when the matrix is ill-conditioned. In this case, the eigenvalue matrix is replaced by
w(n,q) = {c(x,n)c(x,q))ng while a new set of POD expansion coefficients are constructed from the
opposing gappy sensor set e(z,n) = (p(z, y)¥(y,n))m,. At last, a low-order reconstruction of the data
is accomplished using

2(m)

Py (xy) = ) b(y,me(x,n) (12)

A process diagram for the YX form is provided in Fig. 2. If |x| = |y| and R(x,x’) is constructed from
the same data as R(y,y’), then it can be shown how c(x,n) = ¢(x,n) and a(y,n) = ¥(y,n) for all n.
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Figure 2: Process diagram for the heterogeneous YX form of the gappy-POD for data fusion.

IV. Numerical database: large eddy simulation

To demonstrate the utility of fusing data using reduced sensors sets, two separate databases are required
and of the same physical system. The first of these is a numerically generated large-eddy simulation (LES)
of a Mach 3 jet flow which will be used for training purposes.

This jet LES was described in Pineau and Bogey.?® For the most part, the nozzle-exit parameters of
the jet were chosen to match the physical jet used to generate the experimental database (to be described
after). That is, the Mach 3 jet is perfectly expanded and exits from a straight-pipe nozzle with a diameter of
Dj =2ryp=0.7 mm at a centerline velocity of U; = 615 m/s. The LES was carried out by solving the filtered
compressible Navier—Stokes equations in cylindrical coordinates using low-dispersion and low-dissipation
finite-difference schemes.?* The computational domain extends to x; = 35D j in the axial direction and
x2 = 7.5D; in the normal direction, for a total of 325 million points.** More details on the LES methods and
the grid design can be found in previous papers.3 3536 To match the experimental database (schlieren images
of wavefronts in the hydrodynamic periphery of the jet flow), the derivatives of the numerically-generated
density field dp/dx1 and dp/dxo are computed and then integrated along lines in x3 and perpendicular to
the flow. The 3-D density field, not stored during the LES, is obtained by summing the contributions from
the first five azimuthal modes (0 to 4) obtained every 6¢* = 6r-U;/D; = 0.0974, as was done in Pineau and
Bogey®” to capture the steepened acoustic waves radiating in the near fields of temporally-developing round
jets at Mach numbers of 2 and 3. Lines of sight integrations were performed between x3 = —Ly3 and x3 = L3
with Lys = 5.5D; in increments of dxs = 0.025D;. The integrated result was checked so as not to depend
significantly on the two integration parameters Lys and dxs.

A sample snapshot of a numerical schlieren of both the flow and immediate sound field is shown in
Fig. 3a. The illustration reveals density gradients corresponding to pressure waves propagating from the jet
shear layer and at inclined angles relative to the jet axis. These wavefronts are the result of large turbulent
structures convecting along the jet axis at supersonic speeds that become acoustically matched with the
ambient gas to generate high intensity pressure waves. A line array of virtual sensors are placed parallel to
the jet axis at xo/D; = 4.0 from which the numerical schlieren field is captured and stored for subsequent
training. The space time evolution of density waves passing through this sensor array is shown in Fig. 3b and
reveals wavefronts that remain intact over distances much greater than the potential core length. Like the
overall sound pressure level, an equivalent overall sound density level (OASDL, [dB], re: 20uPa) is computed
by assuming ideal gas effects p; = p;/R,/T and a commonly adopted reference pressure p; = 20uPa. The
findings are illustrated in Fig. 3c and demonstrate how density gradients in the computational domain for
the sideline observer at xo/D; = 4.0 are most intense around x;/D; = 10. A window identifying the location
in the flow where experimental schlieren measurements are performed is also provided.

V. Experimental database: digital schlieren

The experimental database used for reconstruction is the one described by Valdez and Tinney?® and
comprises spatially and temporally resolved schlieren images of Mach waves captured in the immediate
vicinity of a laboratory scale Mach 3 jet flow. The nozzle contour is axisymmetric and produces a shock
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Figure 3: a) Numerical schlieren of the large eddy simulation of a Mach 3 jet flow with its

immediate sound field and using the first five azimuthal modes of the density field (dp/dxz).

Points in space identify where experimental schlieren is captured. b) Numerical schlieren of

Mach waves convecting through space and time at x2/D; = 4.0. ¢) Corresponding overall sound

density level [dB, re: 20uPa].

free jet of air at a nozzle pressure ratio (NPR; ratio of plenum pressure P, to ambient pressure P,) of 36.7
corresponding to a gas dynamic Mach number of 3.0 (M; = Uj/a~). The jet temperature is that of the
surrounding air (total temperature, 7, = 302 K) while the convective acoustic Mach number is estimated
to be around M, = 143 (M, = Uj/de, M. = BM, and B = 0.8) using a sound speed of a; = 208 m/s.
The analysis is confined to a total of 8,192 digital images acquired uninterrupted at a rate of f; = 300,000
frames per second (fps) using a i-SPEED 726 monochromatic camera and a field-of-view of 66 x 620 pixels;
this sample rate equates to a non-dimensional time increment of 6¢* = 0.0819. The image magnification is
Ap =5X% 10~* meters per pixel so that the resulting vertical and horizontal boundaries of the schlieren window
are [X1 sraresX1,enal/Dj = [10.0,22.0] and [X2 srars>X2,ena]l/Dj = [3.5,4.5], respectively. The location of this
window, relative to the jet flow, is shown in Fig. 3a. In this region of the sound field, imaged pressure waves
are intense and are dominated by Mach waves. Given the sampling speed of the camera and its magnification,
the dominant pressure waves traverse Ue/( fsAp) = 3.33 pixels per frame based on a convective velocity of 500
m/s. The final grid for both the numerical and experimental databases are matched to have equal increments
of 6x] = 6x1/D =0.025 and 61 = 0.0819. This equates to a total of 1400 sensors between x1/D; = 0 and 35
(480 sensors between 10 < x1/D; < 22) and was checked to ensure that spurious noise was not introduced
in the interpolation. At last, the gray scale contrast from the experimental schlieren (&) is scaled to match
the numerical schlieren (Vp,) so that Vp.(x) = &.(x)oy(x)/0e(x) where o (x) and o, (x) are the standard
deviations of the &, and Vp,,, respectively.

A sample of the experimental schlieren data is shown in Fig. 4a to provide a visual of the spatial and
temporal evolution of young Mach waves generated by this Mach 3 jet and are complementary to the
microphone measurements of Tinney and Jordan.?® The features are also strikingly similar to the numerical
schlieren snapshots in Fig. 3. Auto- and cross-correlations of these density waves are shown in Fig. 4b
and are calculated using separations in space p, and time p;, and for both numerical (black symbols) and
experimental (blue) databases. Spatial separations are made non-dimensional using jet diameter while time
separations are made dimensionless by tU./D. Additional lines represent a multitude of different starting
points in space and time, while symbols reflect their respective averages. For a given dataset, both correlation
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functions follow nearly identical shapes thereby demonstrating the invariance of these wavefronts to both
space and time.
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Figure 4: a) Experimental schlieren of Mach waves convecting through space and time at
x2/Dj = 4.0. b) Space-delay (p) and time-delay (p;) correlation coefficients at various points
between 10 < x;/D; < 22 computed using experimental (closed symbols) and numerical (open
symbols) databases.

Ensemble averaged power spectral densities (PSD) of the numerical and experimental schlieren data are
computed for observers located at x1/D; = 10 and 22 and shown in Fig. 5a. Dark and light color contrasts
correspond to experimental and numerical schlieren databases, respectively. These spectra are computed
using 29 overlapping bins with a spectral resolution of 6 f = 293 Hz which are then converted to dB using the
same reference density as before. Peak frequencies are nearly identical for the numerical and experimental
databases and are seen to shift to lower values at the lower downstream location. This reinforces the
notion that the prominent sources of noise are from large scale turbulence that loses speed by dispersing its
momentum to smaller scales after the collapse of the potential core, and that both databases are preserving
these kinds of features. The wavenumber frequency spectra (ky — f) is then computed and shown in Fig. 5b.
Spatial transforms are confined to 10 < x1/D; < 22 where the databases overlap. Two lines are drawn and
correspond to wavenumbers that match with the sound speed of the surrounding gas (f = kx - dw), as well as
wavenumbers that match with the jet convection velocity (f = kx-U,). Both the numerical and experimental
databases demonstrate stark agreement to the latter of the two thereby reinforcing the location and speed
of the acoustic source mechanisms.
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Figure 5: a) Power spectral densities [dB] of the numerical and experimental schlieren at x,/D; =

4.0 and two axial stations in the sound field. b) Wavenumber frequency spectra computed for
10 <x1/D; <22.
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VI. Results

The results of the data fusion process are now discussed and begin with solutions from the XX-topos form
followed by the YX form. We will adopt p in place of p to described the data fields being fused. The analysis
focuses on circumstances where both numerical and experimental databases are confined to the same region
in space (10 < x1/D; < 22). This simplifies programming although it is not a requirement of the technique.
Both databases are identical in size and comprise |x| = 481 sensors with |y| = 8192 continuous samples in
time. Likewise, the notation used in Section III will be adopted here where the numerical schlieren database
is identified by p(x,y) and the experimental database by P(x,y) while y is synonymous with time 7. In order
to gauge their compatibility, the kernel is constructed using data splits ranging from one that is entirely
numerical (y = 1.00), to one that is entirely experimental (y = 0.00) where rank(R,,-) = |x|. Blending data
like this is not new and has been used to generate global POD modes for flow control purposes.>’

Starting with Fig. 6a, the convergence of eigenvalues are shown for different data splits and superposed
one another. Eigenvalues in the outer illustration are normalized by their respective cumulative sum and
expressed as a percentage, while the figure insert displays convergence relative to the first and most energetic
eigenvalue (since A7 > A2 > ...4,). A smooth cascade of energy is manifest which is nearly indistinguishable
for all values of y and for the first 5% of available POD modes. Since the relative weight of the first few POD
modes are nearly identical between databases, they are expected to contribute equally to the reconstructed
signal and absent of the data split. The slower decay with the experimental database (y = 0.00) for higher
POD mode numbers may be the consequence of a poor signal-to-noise ratio as was demonstrated by the
slower spectral decay in the higher frequencies shown in Fig. 5a and the smaller integral scales in Fig. 4b.
Alongside the eigenvalues, the first four spatial eigenvectors are compared in Fig. 6b for the same data splits
used in Fig. 6a. It is known that jet flows possess a dominant axial instability wave that undergoes growth,
saturation and decay. This envelop occurs over several nozzle diameters and extends past the collapse of the
potential core. The first two mode shapes in Fig. 6b appear to have reached their growth limit early on and
are assumed to be part of this axial instability wave. The next two POD mode shape pairs (n =3 and n = 4)
have similar wavelengths and shapes while extending further downstream. Phase portraits of the first four
eigenvector pairs are shown in Fig. 7 using solutions for y = 1.00 (Fig. 7a,b) and y = 0.00 (Fig. 7c,d). The
findings demonstrate that these eigenvector pairs are spatially compatible and that accurate reconstructions
of real observations should be possible using only a small fraction of synthesized basis functions.

¢(x.n)

1 10 100 10 12 14 16 18 20 22

n/rank(R) [%)] x1/D;

a) b) :
Figure 6: a) Eigenvalue convergence and b) first four eigenvectors. Legend identifies the training

split between one that is entirely numerical (y = 1.00) and one that is entirely experimental
(x =0.00).

An evaluation of the dominant wavenumbers that make up the POD eigenvectors provides insight con-
cerning the scales of the source field responsible for generating these wavefronts. This is accomplished using
an equivalent wavenumber and is defined in one of two ways. The first is based on a definition proposed
by Moser?? and is denoted by kegq. Alternatively, one can count the number of zero crossings (N,: the
number of instances that the waveform flips sign and intercepts the x axis at y = 0) and is a primitive
form of pitch detection. In this case, k.q = N;/2. The findings are shown in Fig. 7a using both definitions
(solid lines for N, and dashed lines for k.4) applied to both databases. Within the first 5% of the available
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POD modes, equivalent wavelengths are on the order of several nozzle diameters. Above this, wavenumbers
increase monotonically to values that are fractions of the jet diameter. The significance of this is that if one
is interested in distilling frequencies of relevance to the sound field, a good starting point would be ones that
match with the convective speed of the jet, i.e. foq = keg - U following the wavenumber frequency spectra
in Fig. 5b. Overall, both databases yield complementary results using both definitions.

n=1,qg=2 n=5¢g=6
0.1 = n=3,qg=4 + |- n=7qg=8
¢ H4 N\ ,!‘} . }/ % VAN
< 0 (‘\ : 7)\ i?“‘j \:;", ,\f}." l) fat .:\‘;"; ? :/
g NNl
-0.1 R
-01 0 0.1 010 0.1 -01 0 0.1 -01 0 0.1
¢(x,n) ¢(x,n) ¢(x,n) ¢(x,n)
a) b) c) d)

Figure 7: a-b)Phase portraits of eigenvector pairs generated from entirely numerical (y = 1.00)
or c-d) experimental (y = 0.00) databases.

A. Data fusion using the XX-topos form

Findings from the data fusion process are now discussed and begin with results from the XX-topos form of
the technique. While there are numerous approaches for optimizing the location of the gappy sensor set,
they often encompass a trade-off between speed, accuracy and sensor characteristics. In previous work of
Zhao and Tinney?! it was demonstrated how the optimal sensor set is one that provides broad coverage of
the data field when the data is stochastic. As such, the gappy sensor set is determined here using a random
sequence of integers and is shown in Fig. 8b. Relative to standard greedy methods, the use of a random
number generator is much less costly, and for nearly the same accuracy. Thus, there is a diminishing return
in accuracy when running a traditional greedy algorithm.

0 I BT
r 20 Jn::lllll |
il
—_ 181 ....." |
- ~ ee88888
2 _Q sescess |
S =167 sapsniiy
B lsemre = 4L il ,
———T ' cetnangy
M ' experimental 12 ,:g!!““" 1
— numerical nnunlllllll"
0.1 w \ 1o Eecsadibaageeead ‘
1 10 100 0 0.2 04 0.6 0.8 1
n/rank(R) [%)] x[/x|
a) b)

Figure 8: a) Equivalent wavenumbers of the POD modes and number of zero crossings per jet
diameter. b) Location of the gappy sensor set using a random number generator.

Mean square errors between the unfiltered database and its low-order counterpart are plotted in Fig. 9
for a range of sensor sets and POD mode numbers. Since the total resolved signal is computed as

E=) > p(xy>=> An (13)
x Yy n
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and its cumulative sum by
mnm = Z An)/E (14)

then the mean square error in the reconstructed signal, for a given combination of POD modes, is simply
e =1 -1 As such, errors are computed using,

2(m)
Xy P (x,y)?

2n A(n)

and then presented as 1/é(m) so that values range between 0 (for 100% error) and 1 (for 0% reconstructed
error). Fig. 9a shows the mean square errors using the numerical database as the reconstructed signal.
The findings are plotted as a ratio of the cardinality of the gappy sensor set relative to the number of
POD modes used in the reconstruction. This is the benchmark to compare to since the same databases are
used for training and reconstruction. Overall, for a given POD mode number, errors are shown to vanish
quite rapidly when |X| > 2n and with increasing mode number. Replacing the reconstructed database with
the experimental schlieren measurements (p(x,t) — P(x,1)) generates nearly identical mean square errors,
as shown in Fig. 9b. Once again, the findings reinforce the compatibility of these two databases and the
robustness of the gappy-POD.

é(m) =

(15)
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Figure 9: a) Mean square errors in the X X-topos form of the gappy POD using the a) numerical
p(x,t) and b) experimental P(x,t) databases for reconstruction.

Sample reconstructions of the experimental waveforms are shown in Fig. 10 to demonstrate qualitatively
how compatible the numerical and experimental databases are. The training process is confined to the
numerical database only (y = 1.00). A sample signal from the raw experimental database is shown in
Fig. 10a alongside a gappy-POD reconstruction using the first m = 24 POD modes in Fig. 10b. This equates
to 5% of the available spatial modes and accounts for approximately 30% of the resolved signal. These
snapshots correspond to the same points in time. A third low-order reconstruction is shown in Fig. 10c using
the XX-topos form of the gappy-POD with the first m = 24 numerical POD modes and a gappy sensor set
comprised of X = 48 sensors. This equates to a 90% reduction in the number of available sensors. Closer
inspection of the axial waveforms at arbitrary instants in space p(f) and time p(x) is provided in Fig. 10d
and reveals the differences between the original input waveforms and the gappy-POD reconstructions. Both
low-order reconstructions, one using experimental POD modes and the other using numerically generated
POD modes with a gappy sensor set, are shown to capture the large-scale features of the raw signal. The
resemblance between reconstructions that employ experimental eigenvectors versus ones that are generated
using the numerically generated observations and the gappy sensor set is remarkable.

B. Data fusion using the XY form

The last of these results focuses on data fusion using the YX form of the gappy POD. Similar to before,
solutions to Eq. (8) are obtained for data splits over the range 0.00 < y < 1.00 and for a kernel where
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Figure 10: Comparison of experimental database at xo/D; = 4. a) Unfiltered waveforms P(x,1),
b) low-order reconstruction with m = 24 POD modes, c¢) gappy-POD reconstruction using the
XX-topos form with m =24 POD modes and x = 48 sensors. d) Same reconstructed waveforms
at arbitrary slices in space and time.

rank(Ry,/) = |x|. To eliminate the formation of neglected modes, the training database is truncated so that
|yl = |x|. As such, fewer samples are included in the inner product operation when forming Ry, relative to
R, . Therefore, solutions to Eq. (8) are not expected to match those from Eq. (1) (i.e. 2(n) # w(n)), even
though rank(Ry,/) = rank(R.x). Eigenvalue convergences are shown in Fig. 11a and are complementary to
the findings in Fig. 6 where data splits are concerned. In this case, the percent contribution of subsequent
POD modes relative to the first is unaffected by the data split over the first 15% of available modes. The
smooth decay is emblematic of homogeneous turbulence in the source field and is complementary to the
eigenvalues in Fig. 6.

Mean square errors for the YX form of the gappy POD using different combinations of POD modes and
gappy sensors sets are shown in Fig. 11b. Reconstructions are performed using the experimental database
only and are shown to generate similar errors as the ones using the XX-topos form and illustrated in Fig. 9b.
Once again, these errors reduce when |x| > 2n. When m/rank(R) = 0.5, the number of sensors in the gappy
sensor set required to generate the same relative error reduces to |X| ~ n. It is postulated that this is related
to either a nyquist effect with the POD modes, or the lack of physical relevance in the higher POD mode
numbers.

Low-dimensional reconstructions of the experimental waveforms using the YX form of the gappy-POD are
shown in Fig. 12 to complement the findings in Fig. 10c,d using the XX-topos form and the same POD mode
and gappy sensor set combinations. The original input waveforms are shown in Fig. 10a as a comparison.
Slices of the original and reconstructed waveforms across space and time are shown independently in Fig. 12b.
Qualitatively, the spatial waveform reconstruction (p(x) in Fig. 12b) is not as crisp with the YX form as it is
when reconstructed using the XX-topos form in Fig. 10b. Albeit, differences between the YX and XX-topos
forms are nearly indistinguishable for the reconstructions across time p(t). The discrepancies between spatial
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Figure 11: a) Eigenvalue convergence for R(y,y’) for training splits between y = 1.00 and 0.00.
b) Convergence error for YX form of the gappy POD using the experimental database for
reconstruction.
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Figure 12: a) Gappy-POD reconstruction using the YX form with m = 24 POD modes and x = 48
sensors. b) Comparison of experimental database at x2/D; = 4 to the YX form of the same
reconstructed waveforms at arbitrary slices in space and time.

and temporal accuracies may have more to do with differences in the sample set sizes used to construct Ry
and Ry, and less to do with differences between the YX and XX-topos forms of the gappy-POD where data
fusion is concerned.

There are different approaches to training which do not necessarily require compatible databases. Since
the POD basis is orthonormal, (¢(x,n)¢(x,q) = 6,4 where 6,4 is the kronecker delta; 6,4 = 1 for n = g and
0 for n # q) then the reconstructed signal will always be fully recovered, absent of the training data used
to generate the POD basis. Albeit, the more compatible the database, the fewer the number of modes are
required for reconstruction. For example, Willis et al.> adopted a transfer learning approach built off of the
pre-trained SqueezeNet convolution neural network and with 3.2 million images from the ImageNet database.
While effective, the training process was slow, (taking several minutes, if not hours, to complete), unlike the
fractions of seconds that it takes to compile the numerical database used here. Thus, the more compatible
the database, the less costly the training, and the more accurate the reconstruction using a gappy sensor set.
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