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Space-time projection (STP) is introduced as a data-
driven forecasting approach for high-dimensional,
time-resolved data. The method computes extended
space—time proper orthogonal modes from training
data spanning a prediction horizon comprising
both hindcast and forecast intervals. Forecasts are
generated by projecting the hindcast portion of these
modes onto new data, leveraging their orthogonality
and optimal correlation with the forecast extension.
Rooted in proper orthogonal decomposition (POD)
theory, dimensionality reduction and time-delay
embedding are intrinsic to the approach. The only
tunable parameters are the truncation rank and
the hindcast length; no additional hyperparameters
are required. Hindcast accuracy serves as a reliable
indicator for short-term forecast accuracy. The
method’s efficacy is demonstrated using two datasets:
transient, highly anisotropic simulations of supernova
explosions in a turbulent interstellar medium and
experimental velocity fields of a turbulent high-
subsonic engineering flow. In a comparative study
with standard dynamic mode decomposition (DMD)
and long short-term memory (LSTM) networks
(acknowledging that alternative architectures or
training strategies may yield different outcomes) STP
achieved the lowest errors at short and long lead
times and was comparable at intermediate horizons.
Considering its simplicity and robust performance,
STP offers an interpretable and competitive baseline
for forecasting high-dimensional transient chaotic
processes, relying purely on spatio-temporal
correlation.
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1. Introduction

Forecasting the evolution of high-dimensional real-world processes is a formidable challenge in a
variety of fields ranging from atmospheric science to engineering and astrophysics. Such systems
frequently exhibit nonlinear dynamics and chaos, imposing fundamental limits on predictability.
When available and computationally tractable, physics-based numerical models, typically in the
form of discretized systems of partial differential equations representing conservation laws for
mass, momentum, and energy, offer powerful predictive capabilities. These numerical models
are especially effective when combined with data assimilation techniques [1], such as Kalman
filtering [2], 4D-Var [3] and ensemble-based methods [4], to incorporate measurement data.
Arguably the most notable example is numerical weather prediction [5].

This work addresses the complementary challenge of forecasting large spatio-temporal
datasets through purely data-driven methods, regardless of their origin or the availability
of governing physical models. This class of problems is often referred to as multivariate or
multichannel time-series forecasting [6,7]. Widely known methods for forecasting such data
include autoregressive integrated moving average, vector autoregression, Kalman filtering, state-
space models [8] and various extensions of singular spectrum analysis [9]. The choice of an
appropriate forecasting method typically depends on the statistical nature of the data; transient,
stationary and cyclo-stationary processes are ubiquitous across many fields, each requiring
different treatments or preprocessing techniques.

Many of these forecasting methods rely fundamentally on matrix decompositions, most
commonly singular value decomposition (SVD) applied directly to data, Hankel or correlation
matrices. As a result, these methods often directly make use of proper orthogonal decomposition
(POD), or indirectly leverage the same mathematical properties of optimality and orthogonality
provided by SVD. While the original formulation of POD [10,11] defines modes that are
dependent on both space and time, the most commonly used variant, referred to simply as
POD, separates the flow data into spatial modes and time-dependent expansion coefficients
[12,13]. To distinguish clearly between these different formulations, we refer to this widely used
version as space-only or method-of-snapshots POD. Although the theoretical foundations of the
most general form of space-time POD have long been established, algorithmic implementations
and practical applications remain extremely rare, with [14,15] being exceptions. Only recently,
the equivalence between space-time POD and the SVD of a Hankel matrix was explicitly
demonstrated by the authors of [16], who also showed that space-only POD and spectral POD
(SPOD; [17,18]) arise naturally as the limiting cases of space-time POD in the short- and long-time
limits, respectively.

Extended POD [19], a key enabler of this work, was initially proposed as a method to
analyse correlated events in turbulent flows. It was first applied to investigate correlations
between spatially distinct regions, and subsequently generalized and rigorously formalized by
Boree [20]. Similar to POD, dynamic mode decomposition (DMD; [21,22]) is fundamentally a
modal decomposition technique [23]. However, grounded in the Koopman theory [24], DMD
yields a discrete propagation operator for the system state along with modes characterized by
complex frequencies. This property enables direct forecasting by propagating the modes forward
in time using their intrinsic oscillation frequencies and corresponding growth or decay rates.
Similarly, SPOD yields modes associated with distinct frequencies, making them inherently
suitable for forecasting without further modelling. That said, without additional modelling or
rank truncation, SPOD forecasts reduce to repetitions of previously observed data owing to
the inherent stationarity assumption. A stochastic model combining SPOD for dimensionality
reduction and Koopman theory for forecasting was recently proposed by Chu & Schmidt [25].

Machine learning (ML) methods represent another prominent category of forecasting
techniques. Models specifically designed or readily applicable to time-series forecasting include
recurrent neural networks [26], long short-term memory networks (LSTM; [27]) and simplified
gated recurrent units [28]. Additional ML-based approaches include temporal convolutional
networks [29], transformer-based architectures [30] and reservoir computing [31,32]. Two
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contributions explicitly targeting high-dimensional physical system forecasting are [33], using
LSTM, and [34], demonstrating reservoir computing. While these studies successfully forecast
chaotic model systems such as the Lorenz system and the Kuramoto-Sivashinsky equation,
they typically cannot be applied directly to large datasets arising from high-fidelity simulations
or experimental measurements, such as particle image velocimetry (PIV; [35]). For such data,
dimensionality reduction is usually required first, making ML-approaches sequential. One
example, used later in this paper for comparison with the proposed space-time projection (STP)
method, incorporates POD for dimensionality reduction, followed by ML-based forecasting of the
resulting POD coefficients representing latent temporal dynamics. This approach was explored in
[36] for both POD and SPOD.

This paper introduces STP as a forecasting method that exclusively relies on correlation
information to make forecasts of high-dimensional fields. We begin by presenting the method
formulation in §2, accompanied by a visual summary in figure 1 and concluded with a summary
of the algorithm in §2a. In the results section, §3, we demonstrate the method’s capabilities using
two large datasets, both exhibiting highly chaotic dynamics, but one numerical and transient,
the other experimental and stationary. First, in §3a, we examine the transient, non-stationary
example: a supernova explosion evolving within a turbulent interstellar medium, simulated
by Hirashima et al. [37]. Second, in §3b, we examine a statistically stationary case using time-
resolved velocity field measurements from a Mach 0.6 turbulent cavity flow experiment by [38],
a canonical flow configuration representative of landing gear bays and cavities formed by high-
lift devices on aircraft [39]. In §3c, two important aspects of STP’s forecasting performance are
evaluated: its sensitivity of forecast accuracy to the available training data size, and its forecast
accuracy in direct comparison to LSTM regression neural networks trained on POD-reduced
coefficients and classical DMD. Finally, in §4, we summarize the proposed approach, comment
on the mathematical versus physical interpretation of the modes that form the basis, and outline
future directions and potential applications.

2. Methods

Given n snapshots, uj, uy, . . ., uy, spanning the hindcast horizon, our goal is to predict the next m
snapshots, w1, U;42,. .., Wym, over the forecast horizon. We refer to the combined hindcast and
forecast horizons as the prediction horizon. The proposed method is based on an ensemble of k
realizations of the transient stochastic process we wish to predict, with each realization sampled
over the prediction horizon. We denote the snapshot representing the system state at time f; (i =
1,2,...,n 4+ m) in the jth realization (j=1,2,...,k) as

ol = ulilx, 1), @1)

stored as a flattened vector comprising p degrees of freedom (typically, the total number of grid
points multiplied by the number of variables). The entire sequence of n + m snapshots for the
jth realization constitutes an episode, describing a single trajectory of the stochastic process.
Alternatively, we compactly write the ensemble of k episodes as {u?l}?:lm, where i indexes
snapshots within an episode, and j indexes episodes. We assume that the ensemble mean,

k o
Sl 2.2)
j=1

computed over k trajectories for each time instance 7, is already subtracted from the data. This
preprocessing step allows the eigenvalues to be interpreted as variances or, depending on the
choice of variables and weighting, as mode energies. We construct the np x 1 hindcast data
vectorq_ = [u? u} ---u} 1T by reshaping each snapshot u; into a one-dimensional vector and then
stacking them sequentially to form a single column vector. The subscript (-)— denotes vectors and
matrices spanning the hindcast horizon, ()4 the forecast horizon and (-)+ the entire prediction

horizon, encapsulating both the hindcast and forecast.

=

=
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Figure 1. Schematic of the STP algorithm. Step 1: construct the hindcast data matrix and solve the ensemble space—time POD
eigenvalue problem, equation (2.6), to obtain the hindcast expansion coefficients. Step 2: compute the STP (extended hindcast)
modes using equation (2.10). Step 3: approximate the hindcast expansion coefficients via projection, equation (2.11), and expand
the predicted trajectory using equation (2.12).

Given an ensemble of k realizations of the stochastic process, we construct the np x k hindcast
data matrix,

—u[ll] u[lz] . ugk]_
u£1] u[22] . ugk]
Q =[q"" % - =] e (2.3)
PRI
and the (n + m)p x k prediction data matrix,
i ugll u[12] ugk] ]
ugl] u[22] ugk]
[1] [2] [k]
q- 9= q-
Q.= = uLl] uLZl uLk] , (2.4)
m @
4 9+ 9+ mo [
Wi Wpg Wt
1 2 k
Lalt],, ud,,

which includes full episodes spanning both the hindcast and forecast horizons. Analogous to the

hindcast data, the forecast data are flattened into the mp x 1 vector q, = [“E +1 “3 T

‘.un+m

+2°
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At the core of the method is the ensemble space-time POD of the hindcast data matrix Q_. Like
other POD variants, the space-time POD problem can be solved using eigenvalue decomposition
of either the spatio-temporal or ensemble correlation matrix, or directly through the SVD of
the data matrix. Since the ensemble size k is typically much smaller than the total number of
spatio-temporal degrees of freedom, np, we perform the computation using the Hermitian k x k
ensemble sample correlation matrix,

1
C.= EQHWQH (2.5)
and compute its eigenvalue decomposition,
C_V_=V_A4, (2.6)

to obtain the ensemble coefficient matrix, scaled such that W2 w _ =1. For generality, the diagonal
weight matrix W > 0 is introduced in equation (2.5) to account for spatial and variable weighting.
The diagonal eigenvalue matrix A =diag(i1,A2,..., ) contains the mode energies, ranked by
their magnitude. Note that, depending on the choice of variables, these eigenvalues may not
strictly represent physical energy; rather, they quantify the captured variance of each mode. In
any case, they indicate the relative importance of individual modes and can always be interpreted
as the squared amplitudes of the modes.

If rank reduction is desired, whether to suppress noise by discarding low-energy components
or to reduce computational complexity, we can truncate the representation to retain only the
leading r <k components. Specifically, we truncate the columns of the coefficient matrix W¥_
and reduce the eigenvalue matrix to A =diag(i1,22,...,A,). With this reduced representation,
all subsequent steps (mode reconstruction, projection and forecasting) are carried out using
the truncated basis. We omit explicit notation for this rank truncation to keep the presentation
concise. First, the hindcast modes are obtained by expanding the hindcast data using the ensemble
coefficients as

1

®_ =—Q W_A""? (hindcast modes), 2.7)
Vk

where the scaling ensures that the hindcast modes are orthonormal with #7We _ =1I. Since the

modal basis @ _ spans the same subspace as the data Q_, we can express the latter as a linear

combination of the modes,

Q =d_A_. (2.8)

The matrix of expansion coefficients A_ can be related to ¥_ via A_= VEAY2WH | o,
alternatively, obtained by projecting the data directly onto the modes as

A_=o"wQ_, (2.9)

which has the orthogonality property (1/k)A_ A=A Together with the orthonormality of the
modes, this property makes clear that we can interpret the square root of the eigenvalues as mode
amplitudes.

To make predictions over the forecast horizon, we define the STP modes as the extended
hindcast modes,

1
vk
obtained analogously to equation (2.7) by expanding the ensemble data of the full trajectories
into extended modes, @%, which span both the hindcast and forecast horizons. This is done by
replacing Q_ in equation (2.7) with Q_, while keeping the same hindcast expansion coefficients.
We use the superscript (-)* to denote prediction quantities that are analogous to but deviate
from their exact counterparts. Note that @7 are not the space-time modes @ related to Cy,
but rather extended hindcast modes. In the expansion equation (2.10), the hindcast components
remain unchanged, meaning the first np elements of each STP mode ¢% (the columns of @7%)
exactly match the corresponding hindcast mode ¢_. However, these modes are extended over

= QiIII,A*U2 (STP modes), (2.10)
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the forecast horizon by an additional mp x 1 vector, ¢ , which retains the portion, and only that,
of the forecast data that is correlated with the hindcast. This key correlation property of extended
POD was elegantly proven by Boree [20] and directly applies to the extended space-time, or
STP modes ¢} = [¢I¢er]T. We refer to proposition 1 in [20] for a formal proof. An equivalent
way to compute the extended hindcast modes is to perform the eigenvalue decomposition of C+
constructed from Q=+, using an extended block-diagonal weight matrix with zero weights on the
extension.

Given a new hindcast trajectory, q"¢", consisting of n stacked snapshots, our goal is to forecast
the next m time instances of the flow, q’. To compute the forecast using an expansion in the
STP mode basis, ¢+, we need the corresponding expansion coefficients, a¥., which are unknown.
The key idea is to approximate a} using a*, the hindcast expansion coefficients and leverage
the correlation property of extended POD to ensure an optimal forecast. The hindcast expansion
coefficients a* are obtained in accordance with equation (2.9) by projecting the new hindcast data
onto the precomputed hindcast basis,

at =oTwgrew, (2.11)

Under the approximation that a} ~a*, we can readily reconstruct the predicted full trajectory,
L~ qyas
qL=9®%ar. (2.12)

That is, by expanding the STP mode basis using the hindcast coefficients, see equation (2.8). The
prediction, q} = [q*_T qj_T]T, can then be separated into the hindcast, q*, and the forecast, q}..
Alternatively, we can separate equation (2.12) and compute the hindcast and forecast components
separately as q* = ®* a* and q’, = @’ a*, respectively. A difference between the new data, q"°",
and the hindcast, q* , is expected for real-world stochastic physical processes, where the new data
may not lie within the span of the training data used to compute the STP basis via equation (2.6).
As the examples demonstrate, this hindcast error provides valuable insight into the accuracy of
the forecast. The key steps of the algorithm are visually summarized in figure 1. For simplicity,
uniform weighting with W =1 is assumed for figure 1 and the definitions of the following error
metrics.

We use the root-mean-squared (RMS) error to quantify the difference between the true state,
u; =u(x, t;), and the predicted fields, uf = u*(x,t;), at the ith time instant. The RMS error for a
single trajectory is hence defined as

1
eRMS,i = ﬁ”ui —ulllz, (2.13)

the mean RMS error over an ensemble of k trajectories by
15 i
eRMS,; = T D CRus, (2.14)
j=1

and the corresponding standard deviation, which quantifies the spread of the error, is calculated
as

k
1 i _
Ocrms,i = —1 Z(é’%]Mg,,- — eRws,1)% (2.15)
j=1

Together, these metrics provide a comprehensive assessment of the prediction accuracy, both in
terms of average performance and variability across trajectories.

(a) STPalgorithm

Finally, we present the STP algorithm corresponding to equations (2.3)—(2.12) in a procedural
form, explicitly separating the offline (training) and online (deployment or inference) stages.

YSH0SZ0 281 Y 205§ 204g edsyjeuinol/BioBuysiigndiaaosiefos



Algorithm 1: Space-time projection.

Offline (once)

Input : mean-subtracted training episodes {uy ]}?:1"1 forj=1,...,k weight W >0
(default I); hindcast length 7, forecast length m, (optional) truncation rank r.
Output: hindcast modes @ _ € C"")*" and extended modes @7 € C((+mp)xr,

R L

Q <[q" - q" Qi <[q gl

C_ < 1QYWQ_; compute C_¥_=w_Awithw"w_=1// hindcast ST-POD
(Optional) compute economy eigendecomposition, retaining only r leading modes.

d < ﬁQ_q/_A—lﬂ /1 hindcast npdes

q[i] <~ /1 assenble data

*
*

o 4
Ao ﬁ Q¥ _A~1/2; partition % =
+

:|with¢*_=¢ /] extended nodes

Online (per query)
Input :new hindcast data {uy, ..., u,}; precomputed ®_ and &% .

Output: forecast {u:,H, R A

q- < [uf - ul]5; a* < oHwq_ /1 project hindcast

qL < ®La’; extract q) and unstackto {u} ..., uj,} /'l prediction

The offline stage constructs the space-time basis from the ensemble data, while the online stage
projects new hindcast data onto this basis to produce the forecast.

3. Results

STP is demonstrated on two large, distinct datasets, each presenting unique challenges. The
first example, discussed in §3a, involves numerical data of a supernova explosion [37] with a
highly anisotropic shell rapidly expanding into a turbulent interstellar medium, whose localized
and transient features make it particularly challenging. The second example, examined in §3b,
considers experimental velocity field measurements of the flow over and inside an open cavity
at high speeds [38], where the main difficulties arise from the broadband nature of the stationary
turbulent flow and the convective behaviour of its coherent structures. Figures 2 and 3 introduce
the two cases and highlight these challenges. Since both datasets are sampled on equidistant grids
and we are only concerned with relative comparisons, we use uniform weighting with W=1.

(a) Supernova explosion

The first example considers a supernova explosion in a turbulent interstellar medium, where
a blast wave propagates through a dense, cool gas cloud, generating complex and anisotropic
shell structures. The simulations, conducted by Hirashima et al. [37] using the smoothed particle
hydrodynamics code ASURA-FDPS [40,41], were obtained from the The Well data repository
[42]. The set-up models a supernova, the explosion of a massive star, within a compressible
monatomic ideal gas, governed by the equation of state with a specific heat ratio y =5/3. The
simulated gas represents the interstellar medium of the Milky Way galaxy with an initial gas-
particle mass of one solar mass. To initiate the explosion, a thermal energy of 101 erg is deposited
at the domain centre, rapidly heating the gas to temperatures around 107 K and generating a
blast wave. The initial conditions feature 820 randomly seeded molecular clouds with turbulent
statistics following Burgers’ turbulence model.

For this demonstration, we use the temperature field T(x,t) as the sole variable. For each
snapshot, the ensemble mean, calculated using equation (2.2), is subtracted and we define the
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Figure 2. Overview of the numerical supernova simulation. The top row shows instantaneous isocontours of temperature at 1%
of itsmaximum value, highlighting the expanding supernova shell at six representative time instances. The bottom row presents
the corresponding temperature fields in the y—z plane at x = 0. The magenta contour line indicates the isovalue used in the
three-dimensional visualization of the shell. The first realization from the training dataset is shown as an example. Coordinates
are non-dimensionalized by the domain length of 60 pc.

(a)

PSD
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; h 0 f L
0 2000 4000 6000 8000 0 1000 2000
f f

Figure 3. Overview of experimental cavity flow. (a) Instantaneous streamwise velocity u; (b) instantaneous normal velocity v;
(c) power spectrum of v at (x, y) = (5, 0) and (d) frequency—wavenumber diagram along (x, y = 0). The peaks identified in
(c) and (d) correspond to the two dominant Rossiter tones. The incoming flow travels over the cavity (y > 0) at Mach 0.6 and
recirculates within the cavity walls (y < 0) while undergoing violent oscillations. Coordinates are non-dimensionalized by the
cavity depth D, while all other quantities are reported in SI units.

state vector for the ith snapshot as

/
u;=T;,

where T; is the flattened vector of the fluctuating temperature. The repository provides
temperature data at 59 time steps on a uniform Cartesian 64 x 64 x 64 grid, spanning 60 pc
(parsecs; 1 pc ~ 3.086 x 101 m ~ 3.26 light-years) in each direction. For this single scalar variable,
temperature, each snapshot hence contains p = 643 degrees of freedom. Although the time-step
size varies between 100 and 10000 years, this variability does not affect the STP prediction as
long as time steps remain consistent across episodes. We use 400 trajectories from the training
set (with an initial gas-particle mass of one solar mass) to construct the STP mode basis, and
the 50 trajectories from the test set for error analysis. The trajectory visualized in figure 2 at five
representative time instances illustrates the evolution of the complex shell structure during the
rapid expansion.
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Figure 4. STP prediction of the supernova simulation with a hindcast horizon of n = 30 and forecast horizon of m = 29.
(a) Hindcast mode variance; (b) prediction error, where grey lines represent individual forecasts, the blue line indicates the
mean, the solid circle indicates the first time step of the forecast and the light blue band shows the standard deviation. The
leading r =100 retained modes, out of a total of 400, capture approximately 80% of the total variance. In (b), the time-step
index i is used because the time steps are non-uniform.

The supernova explosion is a transient phenomenon characterized by large-scale structural
changes and non-repeating dynamics. Each trajectory captures distinct, non-trivial, anisotropic
and evolving shell formations. Our standard forecasting task for such transient data involves
predicting the remaining m time instances of the forecast horizon, given an observed hindcast
horizon of n time instances. For the first demonstration, we set the hindcast interval to n =30
and predict the remaining m = 29 snapshots. Figure 4a shows the hindcast eigenvalue spectrum
computed according to equation (2.6). The most correlated structure captured by the leading
mode corresponds to a correction to the ensemble mean, as later discussed in the context of
figure 6. After a sharp initial drop in mode variance over the first few modes, the eigenvalues
exhibit a near-algebraic decay over a large portion of the spectrum. The first » = 100 modes capture
approximately 80% of the total variance and 344 are needed to reach 95%, as can be seen in
figure 4a.

Figure 4b shows the RMS errors for the 50 test trajectories, as well as their mean, defined by
equation (2.14), for the forecasted temperature fields. The standard deviation of the error indicates
the spread in forecast accuracy across different trajectories. The error is plotted over the time-step
index relative to the start of the forecast horizon, which the magenta vertical line separates from
the hindcast horizon. Initially, the error increases rapidly over approximately the first 10 time
instances of the hindcast, then continues to grow more slowly. Notably, there is no sudden change
at the transition from hindcast to forecast, suggesting that the hindcast error is a good indicator
of the forecast error.

For a fixed hindcast horizon, the only parameter in this method is the rank r of the STP basis,
that is, the number of retained STP modes. Figure 5a shows the mean forecast error, computed
from 50 test episodes, for varying r at a fixed n =30. In this dataset, unlike the second example,
the smallest error is achieved using the full rank of r =400. However, a substantial reduction
to 250 modes only slightly increases the error. By contrast, the rank-1 reconstruction yields the
largest error, though it does not differ substantially from higher-rank forecasts, as the ensemble
mean already represents the most energetic feature. Figure 5b shows that the forecast error for
varying hindcast lengths largely follows the expected trend: longer hindcast horizons lead to
more accurate forecasts. The only exception is when n = 3, which results in a significantly larger
forecast error.

Figure 6 presents the first 10 STP modes, @7, out of a total of 400, at four representative
time instances, two from the hindcast horizon and two from the forecast horizon. The ensemble
mean, which is subtracted from the data, represents the average rapid expansion of the supernova
burst and consequently accounts for the largest fraction of the variance. The first mode similarly
exhibits an expanding spherical pattern, providing a correction to the ensemble mean. The
remaining modes build a basis that captures the variability of individual trajectories about
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Figure5. Study of the prediction error in the supernova prediction. (a) Mean prediction error for different numbers r of retained
modes, with a fixed hindcast interval length of n = 30 and (b) mean prediction error as a function of hindcast interval length
n without basis truncation. In all cases, the entire trajectory is considered, such thatn + m = 59. Solid circles indicate the first
time step of the forecast.

— hindcast

forecast +

Figure 6. STP modes @, of the supernova data for a hindcast horizon of n = 30 and a forecast horizon of m = 29. A prediction
using this basis is shown in figure 7. The domain is the same as in figure 2, with (y,z) € [—1,1] x [—1,1] at x = 0. The
fluctuating temperature fields are normalized by their maximum absolute values.

the mean, forming a hierarchical structure of multipoles with increasing geometric complexity.
Higher modes also tend to be noisier, suggesting reduced convergence.

Figure 7 displays four representative supernova prediction trajectories, obtained using a
hindcast horizon of n = 30, a forecast horizon of m = 29 and a full-rank STP basis with » = k = 400.
Specifically, we selected trajectories corresponding to the lowest and highest forecast errors at the
end of the forecast horizon, as well as two representative episodes that exhibit distinct features.
A comparison between the ground truth, i.e. the test data, and the predictions reveals that
the primary topological features of the individual explosions are well captured across both the
hindcast and forecast horizons. However, certain localized features, such as the nearly perfect
circular spots observed in the test data associated with growth from localized nuclei, appear
blurred in the predictions. This is expected, given that such localized structures are challenging
to represent accurately with a modal basis derived from very limited training data exhibiting
substantially different characteristics. Considering these limitations, the overall evolution of these
diverse trajectories is, arguably, captured remarkably well.

(b) Open cavity flow

The second example is a time-resolved PIV (TR-PIV) experiment performed by Zhang et al. [38]
to obtain the two-dimensional velocity field in the centre plane of a Mach 0.6 turbulent flow
over an open cavity with length-to-depth and width-to-depth ratios of L/D =6 and W/D = 3.85,
respectively. We denote the streamwise and wall-normal velocities by u(x,y,t) and v(x,y,t),
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Figure 7. Prediction of the supernova using a hindcast horizon of n = 30 and a forecast horizon of m = 29. (a) Trajectory with
the lowest mean prediction error; (b) trajectory with the highest mean prediction error and (c,d) trajectories with intermediate
errors, selected toillustrate variability. The visualization domain is the same mid-cut plane asin figure 2, with (y, z) € [—1,1] x
[—1,Matx=0.

respectively, and define the state for the ith snapshot as

:H

where the prime indicates the mean-subtracted (fluctuating) component of each velocity
component, flattened and stacked into a single vector. Since the flow field is stationary, the
ensemble and temporal means are equivalent, and we can subtract the latter. The database
comprises 16000 flow fields acquired at 16kHz in a field of view resolved by a 160 x 57
grid. To eliminate regions with missing data, we removed three points from each lateral
boundary, resulting in snapshots with p = 18240 degrees of freedom each. Further details on the
experimental set-up and hardware are reported in [38].

This flow differs fundamentally from the first example because it is statistically stationary
rather than transient, and in that it is inherently noisy. Figure 3 illustrates these typical
characteristics of a turbulent stationary flow. The instantaneous velocity fields shown in
figure 3a,b appear chaotic, and the power spectrum in figure 3c computed at (x,y)=(5,0)
is broadband with several distinct tones emerging from the turbulent background. The two
prominent peaks labelled R2 and R3 at frequencies fro = 938 Hz and fr3z = 1531 Hz correspond to
the second and third Rossiter tones, stemming from a resonance between downstream-travelling
shear-layer instability waves and upstream-travelling acoustic waves [43]. The frequency-
wavenumber diagram in figure 3d further enables approximation of the wavenumbers,
kyro~74 m~! and kyr3 =105 m~!, and thus the phase velocities, cpyr2 =80m s~1 and Cph,R3 =
92ms™1, of these vortical structures. From these values, we determine that the waves require
approximately 32At and 28At to traverse the cavity.

When predicting a stationary flow, where statistics remain constant over time, we have
more flexibility in choosing a hindcast horizon. However, the presence of large-scale coherent
structures, such as the two dominant Rossiter modes, helps guide this choice and sets expectations
for a realistic forecast horizon, even though we later show that short horizons yield the highest
prediction accuracy.

~Te TN
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Figure 8. STP prediction of the cavity flow with a hindcast and forecast horizon of n =15 and m = 20. (a) Hindcast mode
energy and (b) prediction error, where grey lines represent the 316 individual forecasts, the blue line indicates their mean, and
the light blue band their standard deviation. The leading r = 100 retained modes, out of a total 0f 1278, capture 71% of the total
energy.

Before investigating the dependency of the forecast error on n and r in more detail, we
begin with a hindcast horizon of n =15, a forecast horizon of m =20 and retain the leading
r=100 modes as a baseline. The data are split in the standard 80:20 manner, and overlapping
segments are employed to obtain a sufficiently large number of training and testing episodes,
a common practice for stationary data borrowed from spectral estimation [44]. Specifically, each
new episode is initiated 10 time steps after the start of the previous episode, resulting in a training
ensemble of size k = 1278 and 316 testing episodes for independent forecast error quantification.
Figure 8a presents the hindcast energy spectrum. Since the state comprises the fluctuating velocity
components in the PIV plane, the eigenvalues directly capture the resolved turbulent kinetic
energy. The mean prediction error, shown in figure 8b, exhibits distinct behaviour for the hindcast
and forecast segments: the hindcast error remains nearly constant, with minor boundary effects,
while the forecast error monotonically increases for approximately 10 time steps before settling
at a constant level. At this point, the variance of individual trajectories is not accurately captured
and the predictive capacity is reached.

Figure 9 examines how the hindcast window length affects forecast accuracy. Figure 9a,b plot
the mean RMS error for eight hindcast lengths (1 = 1-200) as functions of the hindcast window
length and the forecast lead time, respectively. Two trends emerge. First, for short lead times,
the error increases as n grows: with a fixed number of retained modes, lengthening the hindcast
window forces the basis to represent a broader segment of dynamics, which decreases its ability
to fit near-term phase and amplitude. Second, the optimal 1 depends on the desired lead time:
n =1 minimizes error for m <6, n=>5 for 7<m <11, n=10 for 12 <m <15, and n =25 over
most of the remaining horizon. We interpret this dependence in terms of a finite spatio-temporal
correlation time: accurate forecasts require a window long enough to capture the correlated
wavepackets that drive the evolution, but not so long that largely decorrelated content dominates
the reconstruction. An upper bound for the useful window is set by the convective traverse time of
the dominant Rossiter modes, approximately 28-32At¢ (cf. figure 3). Consistent with this picture,
the forecast-error curves in figure 9b plateau once the lead time approaches this scale; for lead
times well beyond it, errors grow as spatio-temporal correlations decay. In the limit n =1, where
space—time POD reduces to space-only POD, the basis is tuned to the instantaneous field and
excels at very short lead times.

We next examine how basis truncation affects forecast accuracy by varying the number of
retained modes, r <k. For fixed hindcast horizons n =15 and 1, and a fixed forecast horizon
m =20, the hindcast errors, shown in figure 10a for n =15 and figure 10c for n =1, decrease
monotonically with 7, with the best reconstruction at full rank. This monotonic improvement
follows from the least-squares optimality of the hindcast POD reconstructions. As for variations
of the hindcast interval discussed in figure 9, the effect of basis truncation on the forecast error is
more nuanced. For forecasting with n =15 in figure 10b, high-rank reconstructions with r > 500
perform best at very short lead times, whereas intermediate values 25 <r <100 perform better
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Figure 9. Mean prediction error of the cavity flow as a function of hindcast interval length n. (a) Hindcast error and (b) forecast
error. The forecast horizon is fixed at m = 20 and the leading r = 100 modes are retained.
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Figure 10. Influence of basis truncation on prediction error for the cavity flow, shown as functions of the number of retained
modes r. (a) Hindcast error with n = 15; (b) forecast error with n = 15; (c) hindcast error with n = 1and (d) forecast error with
n = 1. The forecast horizon is fixed at m = 20.

for lead times > 5At. For the n =1 case shown in figure 10d, the same intermediate numbers of
retained modes 25 < r < 100 perform best for all forecast lead times, with » =100 performing best
when less than or equal to 2At, albeit by a small margin. In both cases (1 =15 and 1), the extremes
of rank-1 and full rank are generally suboptimal for forecasting: too few modes underfit and miss
essential coupled structures, while very many modes introduce low-energy, poorly conditioned
components that inject variance into the learned forecast mapping and overfit transient or noise-
dominated content, which degrades medium- and long-lead predictions. At n=15, the brief
near-term advantage of very high r arises from reconstruction optimality on the hindcast window,
which yields very small errors that carry into the first few forecast steps; beyond that, the many
low-energy modes included at high r inflate variance and overfit transient or noise-dominated
content, so errors accumulate and intermediate r performs best.

Figure 11 shows the time evolution of the v’-velocity component of four representative STP
modes at several time instances spanning both the hindcast and forecast horizons. The first mode
represents a slow modulation of the mean field, with its strongest contributions near the back
wall and the bottom of the cavity. Its spatial structure suggests a link to centrifugal modes, a
well-known low-frequency recirculation phenomenon in open cavity flows [45]. Modes 2 and
5 capture the dominant spatio-temporal structures in the cavity, corresponding to the Rossiter
modes highlighted in figure 3c,d. As hydrodynamic instability waves, these structures are highly
coherent, energetic and oscillatory, which explains their prominence in the STP modes and their
contribution to forecasting. In contrast, mode 50, representative of low-energy, higher-order
modes, still displays a discernible structure but appears much noisier. As shown in figure 10,
including even higher modes, which tend to be increasingly less converged and noisy, can
be detrimental to forecast quality; conversely, truncating these modes can help facilitate noise
rejection.
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this basis is shown in figure 12. The domain is the same as in figure 3.
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Figure 12. Prediction of the cavity flow using a hindcast horizon of n = 15, a forecast horizon of m = 20 and r = 100 modes
retained. The first episode of the test dataset is shown. The domain is the same as in figure 3.

20At

Figure 12 presents the forecast for a single episode, the first one in the test dataset, using
the baseline parameters, n =15, m =20 and r =100. The ground truth (i.e. the testing data) is
compared to the forecast at the same time instances as in figure 11. To facilitate interpretation,
the temporal mean fields have been added back to the velocity fields. At the two representative
time steps within the hindcast horizon, the forecast closely resembles the data, at least up to
the level of detail the truncated modal basis computed from the training data is able to capture.
Over the forecast horizon, the correspondence is less precise; however, particularly for the v-
component, which accentuates large-scale coherent patterns, the spatio-temporal evolution of
the instability waves convecting along the cavity can still be tracked. Even at the final forecast
time step, 20At, the dominant flow structure visible in the data, a wave spanning approximately
three wavelengths across the field of view, is discernible in the forecast with the correct phase
and approximate amplitude. While the turbulent and chaotic nature of the flow inherently limits
predictability, the forecast’s ability to capture the evolution of these large-scale structures is
noteworthy.

YSH0SZ07 281 ¥ 205§ 204g edsyjeuinol/BioBuysiigndiaaposiefos H



(a) , x10° _ | (b)

—k=1278,r = 100 '
-l / | —k=638r=100
' LB —k=318,r = 100
g —k=400,7=100| 2 | _} _ 158 r = 100
‘5 -—kZQODT::lOO I 7}6:78,7":78
osl —k=100,r=100] 20" ~
: —k =50,r =50 ~
—k =95 = N
n k=257r=35 pl—————— ‘ ,
0 20 40 60 0 10 20 30
At i

Figure 13. Sensitivity to training ensemble size. (a) Supernova explosion and (b) cavity flow. The hindcast and forecast horizons
are fixed, while the training ensemble size is systematically reduced by halving the available training data. The truncation rank
is set tor = 100; when k < 100, full-rank prediction with r = k is employed.

(c) Performance

We study two aspects of the method’s performance. First, we examine how forecast accuracy
depends on the amount of available training data, evaluating this sensitivity for both datasets.
Second, we compare the STP forecast error with that of LSTM regression neural networks. This
comparison is performed only for the stationary cavity data, where the same set of spatial-only
POD modes can be used for both hindcasting and forecasting. In contrast, the transient nature
of the supernova data would require a different dimensionality-reduction strategy for a simple
LSTM model to be applicable, which is beyond the scope of this work.

In the training ensemble size sensitivity study in figure 13, we use the same baseline
hindcast/forecast horizons as in §3a,b (supernova and cavity, respectively). Specifically, for the
supernova case, we set n =30 and m = 29, whereas for the cavity case, we use n =15 and m = 20.
The truncation rank is fixed at =100, except when the ensemble size k is smaller than 100,
in which case the prediction is performed at full rank, r =k. Similar trends are observed in
both datasets: as expected, the reconstruction accuracy decreases with fewer training episodes,
yet the relative hindcast accuracy remains a reliable qualitative indicator of forecast accuracy.
Notably, important trends, such as the practical forecasting horizon for the cavity flow being
limited to approximately 10-15At, are consistently observed even with the smallest amount of
training data used, that is, 78 episodes for the cavity flow and 25 episodes for the supernova
case. For both datasets, each halving of the training ensemble size results in a roughly equal
incremental increase in prediction error. The relatively larger errors observed for the smallest
ensemble size, particularly pronounced for the supernova data in figure 13a, can be attributed to
simultaneous rank reduction necessitated by fewer available training episodes. The consistent
increase in prediction error with reduced training data strongly suggests that the ability of
the STP basis to represent the data is directly linked to the statistical convergence of the
sample covariance matrix. Since the eigenvalues measure the variance (or energy) captured by
each mode, constructing a robust and converged basis requires a sufficiently large ensemble
to accurately estimate these eigenvalues and their corresponding modes. With fewer training
samples, the basis estimation becomes less reliable, systematically degrading forecast accuracy.
In summary, this study underscores the importance of using sufficiently large training ensembles
for accurate forecasting, but also highlights the robustness of the STP method even when data
availability is limited. Next, we compare the STP forecast error to that obtained from DMD and
standard LSTM regression neural networks.

DMD, first introduced by Schmid [21], starts from two time-shifted snapshot matrices,

Uil = [ullj]ug] e ugll] and U= [ug]ug] —l (3.1)

from which we compute the DMD mode matrix @pyp and the discrete-time eigenvalues A =
diag(A1, ..., Ar) (e.g. [46]). Note that the DMD is independently computed for each episode j using
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the pairs {U;‘_l,Ug}. DMD forecasts are obtained by advancing the DMD expansion from the
initial state at the end of the hindcast window as

Ui~ ®pvpA’b, i=1,...,m. (3.2)
The vector of complex initial amplitudes is obtained by least-squares projection,

b=l ul, (3.3)
with uE{] being the last time step of the hindcast horizon (the initial condition of the forecast) and
()t the pseudoinverse. Note that the DMD mode basis is computed directly from the hindcast
data. In its standard form, DMD requires no separate training. In fact, classical DMD modes and
their spectrum do not converge as the sample size increases for stationary data [17]. Although not
required for DMD, we retain the same partition in samples indexed by the same superscript [j]
for consistency with STP. We found that for DMD, a hindcast horizon of n =15 is near-optimal:
smaller values increase forecast error, while larger values offer no further improvement.

For LSTM, we use MATLAB'’s standard implementation [47], as it is widely accessible,
well-documented and reproducible. As direct prediction in physical space is computationally
prohibitive, we instead perform predictions on POD coefficients, that is, we use space-only
POD for dimensionality reduction. For the stationary cavity flow dataset, the space-only POD
modes are computed using the full training dataset, represented by the p x K snapshot matrix
Uf =[u; up --- ug] where K=12800 is the total number of training snapshots, differing from
the number of training episodes, k = 1278, owing to the overlapping segmentation described in
§3b. As before, the state vector includes both velocity components. The LSTM network is trained
on the corresponding temporal POD coefficients as latent variables, with rank truncation levels
set to r=25,100 and 500. These levels capture approximately 68%, 83% and 93% of the total
variance, respectively, compared to 71% for r =100 hindcast modes. This should, in principle,
guarantee that the LSTM network is not disadvantaged by the choice of rank truncation. The
LSTM configuration includes a sequence input layer, one LSTM layer with 128 hidden units as
default, also varied to 64 and 256 units, and a fully connected output layer. Training targets are
generated by shifting the POD coefficients by one time step to forecast future values, and data
are normalized to zero mean and unit variance, following standard practices [47]. The network is
trained using the Adam optimizer with a constant learning rate of 0.001 for 200 epochs, with data
shuffled at each epoch. With the default mini-batch size of 128, the training data are divided into
nine mini-batches per epoch, resulting in a total of 1800 iterations.

Figure 14a compares STP with DMD and LSTM in terms of mean prediction error; the
corresponding LSTM training losses are shown in figure 14b. Errors are evaluated on full
reconstructions of the flow field built from the predicted POD expansion coefficients. We
also tested n=>5 and 30 and deeper networks with three LSTM layers, with no qualitative
change in outcomes. Two trends are evident in the LSTM training loss: (i) the best convergence
occurs for the smallest number of modes, ¥ =25, and (ii) for a fixed number of coefficients,
increasing the hidden units / generally improves convergence. In figure 14a, the configuration
r=100, =128 yields the smallest short-time error among the LSTM models, while r =25,
[ =128 performs best for horizons greater or equal to 3At. At very short times, performance
differences are minimal. Models that perform well at short horizons tend to degrade more at
longer horizons, and vice versa. For comparison, we include the STP prediction with n=1
(the configuration giving the smallest short-time error), which achieves lower errors than all
tested LSTM architectures for both short and long horizons; only over the intermediate window
3At <t <9At does the LSTM with r =25, [ =128 slightly outperform STP, and only by a small
margin. We emphasize that our LSTM baseline uses a standard architecture with method-of-
snapshots POD for dimensionality reduction to ensure comparable computational cost and
reproducibility. While alternative architectures or dimensionality-reduction strategies (beyond
the scope here) could yield stronger LSTM results, we similarly did not tune STP beyond selecting
the configuration with the smallest short-term error. Classical DMD underperforms STP across
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Figure 14. Comparison of STP, DMD and LSTM across varying hidden units, /, and learned POD time coefficients, r. (a) Mean
prediction error and (b) LSTM training loss. LSTM and DMD use a hindcast horizon of n = 15. For reference, the STP prediction
with r =100 and n = 1 (the best short-time performance from figure 9) is reproduced. STP and LSTM are trained on the same
k = 1278 episodes; DMD requires no training.

the entire prediction horizon, surpassing only a few less-well-converged LSTM configurations at
longer lead times (> 7At). More advanced variants of DMD, in particular ensemble formulations
or approaches incorporating time-delayed snapshots (e.g. [48]), may yield better performance.

The primary computational burden of our approach lies in constructing the hindcast
correlation matrix and performing its eigenvalue decomposition, or alternatively, the SVD of the
hindcast data matrix. Although this can be challenging, particularly in terms of memory usage.
For very large datasets, streaming algorithms that are well-established [49,50] can mitigate this
burden. To put this into perspective, however, all computations reported in this article were
performed using full matrix decompositions of the complete databases (1.1 GB for the cavity flow
and 24.9 GB for the supernova), and were completed within minutes for individual computations
(excluding parameter sweeps) on a laptop with 64 GB of memory and an Apple M1 Max chip.
The compute times of the STP predictions and the LSTM neural networks were comparable.

4. Discussion

We present a method for data-driven forecasting of both transient and stationary phenomena
based on an ensemble of realizations of the transient process. Originating from the theory of
POD, our method leverages correlation along with the inherent properties of POD, namely,
orthogonality and optimality, to generate predictions. For a given ensemble of realizations and
a fixed prediction horizon, the only tunable parameters are the rank truncation and the length of
the hindcast horizon; no additional hyperparameters are required. The inherent rank reduction
and latent space compression are key features of the method, and we contend that the conceptual
and algorithmic simplicity of the approach is a major strength.

For both datasets used to test the method, forecasts are produced that appear as continuous
extensions of the hindcast horizon into the future. Evaluation on the test data via the conventional
80:20 split revealed that the forecasts effectively capture the evolution of the dominant spatio-
temporal patterns in each dataset. The modes, which form a hierarchical basis capturing the
variability of the trajectories, exhibit increasing geometric complexity. In the cavity flow case,
these modes are clearly linked to physical phenomena that account for their persistence in
the data. Furthermore, the hindcast serves as a reliable indicator of forecast accuracy at short
prediction times and acts as a lower bound for the forecast error. Notably, only the cavity flow
case benefited from rank truncation. This is probably due to the overlapping segmentation used
to construct the training episodes and the resulting incorporation of redundant information,
which aids the convergence of the leading modes but also inflates the basis with additional,
unconverged modes that capture little variance. In contrast, for the supernova data, the full-rank
prediction was most accurate. The probable reason is the immense complexity of the expanding
shell structures in the individual trajectories and the limited availability of training data to
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capture the highly anisotropic dynamics characterized by localized structural changes. In this
case, the initial expansion stages, emerging from randomly seeded multiple nuclei, determine
the subsequent dynamics, and our method successfully predicts the expansion shell pattern over
extended forecast horizons.

For a quantitative comparison with state-of-the-art forecasting methods, we evaluated a
standard LSTM regression network (predicting POD coefficients) and classical DMD against
STP on the cavity-flow case. To ensure fairness, the space-time STP basis and the method-
of-snapshots POD basis were chosen to capture comparable energy, and the same training
episodes were used. STP achieved the lowest errors at both short and long lead times, while at
intermediate horizons (approx. 3-9At) the best LSTM configuration was only marginally better.
Classical DMD underperformed STP across the entire prediction horizon, surpassing only a few
less-well-converged LSTM configurations at longer lead times (>7At). These results highlight
the robustness and effectiveness of STP despite minimal tuning; although alternative neural
architectures or dimensionality-reduction strategies could narrow the gap, the present evidence
supports STP as a strong baseline for future forecasting studies.

While in our examples we predict future states at the same spatial locations and for the same
state variables, the approach is not inherently limited to this configuration. The spatial domains
of the hindcast and forecast modes can differ, and the variables used for hindcasting need not
be identical to those being forecasted. This flexibility opens up applications such as forecasting
from sensor data, where the hindcast may differ from the forecast both in terms of the variables
of interest and locations. Other promising directions include parametric extensions of the method
to account for system variations across different physical or geometric parameters [51], as well as
conditional sampling strategies aimed at predicting imminent extreme events based on flow state
precursors [15].
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