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Abstract
Flow fields obtained by time-resolved particle image velocimetry (PIV) and other experimental methods can
contain gaps or undesired artifacts. We extend and simplify the data completion method based on spectral
proper orthogonal decomposition (SPOD) first proposed by Nekkanti and Schmidt (2023) to reconstruct flow
data in the compromised or missing regions. The proposed approach leverages the temporal correlation of
the SPOD modes with preceding and succeeding snapshots and their spatial correlation with the surrounding
data in the field of view. The algorithm relies on the same data segmentation strategy used to compute the
SPOD. For each block of the segmented data that contains gaps, it computes an SPOD basis from the subset
of the data least affected by the same gaps. The compromised block is then projected onto the basis of
SPOD modes. This corresponds to a local inversion of the SPOD problem and yields expansion coefficients
that permit the reconstruction of the missing data. This local reconstruction is successively applied to each
block. Successive sweeps over all blocks iteratively converge the reconstruction. In the final step, missing
black zones are reconstructed from interpolated or extrapolated SPOD modes. The method is demonstrated
on two time-resolved PIV datasets: turbulent open cavity flow Zhang et al. (2019) and flow between the slat
and main airfoil of a deployed high-lift system (Zhang et al., 2020).

1 Introduction
Gappy data reconstruction techniques are widely used to complete partially missing or otherwise compro-
mised experimental data. Data from particle image velocimetry (PIV), the focus of this work, for example,
can exhibit artifacts or gaps due to the obstruction of the light path by objects, reflections of light from
the surface of objects, the inaccessibility of regions for the imaging system, irregular seeding, and other
sources. Standard mathematical tools for gappy data reconstruction include basic interpolation (Yates, 1933)
and least-square estimation. Techniques devised specifically for gappy data reconstruction include optimal
interpolation (Reynolds and Smith, 1994) and Kriging (Oliver and Webster, 1990).

The use of proper orthogonal decomposition (POD) in conjunction with least-squares estimation for data
reconstruction was proposed by Everson and Sirovich (1995). This original gappy POD (GPOD) algorithm
was later extended by Venturi and Karniadakis (2004) and shown to outperform Kriging for the reconstruc-
tion of cylinder flow with up to 50% of missing data. GPOD has since become an essential component of a
number of model reduction methods that use POD modes as their basis (Chaturantabut and Sorensen, 2010;
Benner et al., 2015). In ocean sciences, a similar method was independently developed by Beckers and
Rixen (2003). The current state-of-the-art in GSPOD is reflected in the median-filter GPOD (MF GPOD)
algorithm by Saini et al. (2016), which determines whether to update a local missing data point after each
iteration in an adaptive manner.

Spectral proper orthogonal decomposition (SPOD) leverages the temporal homogeneity of statistically
stationary processes to compute modes that are perfectly correlated in both space and time. This frequency-
domain version of POD has recently been popularized by Towne et al. (2018) and Schmidt et al. (2018), for
gappy data reconstruction is at the center of this study. The proposed algorithm is fundamentally different
from those of Everson and Sirovich (1995) and Venturi and Karniadakis (2004), and found capable of
recovering large sections of missing data in a long time series of the turbulent flow over an open cavity.



Time-resolved particle image velocimetry (TR-PIV) was performed to obtain the streamwise velocity
field in the center plane of the Mach 0.6, turbulent flow over an open cavity with a length-to-depth ratio
of L/D = 6 and a width-to-depth ratio of W/D = 3.85. The sampling rate was 16 kHz, and 16,000 image
pairs were acquired to compute the velocity vector field. We refer to Zhang et al. (2019) and Zhang et al.
(2017) for more details on this specific measurement campaign and the experimental setup, respectively.
The second PIV dataset is the flow between the deployed slat and the main airfoil of a high-lift system.
Details for this case are reported in (Zhang et al., 2020).

This work extends and significantly simplifies the gappy SPOD algorithm developed by Nekkanti and
Schmidt (2023). In particular, we propose a block-wise reconstruction strategy that largely renders the
compute time independent of the number of gaps. This significantly speeds up the data reconstruction for
realistic PIV data like the two datasets considered here.

2 Spectral Proper Orthogonal Decomposition
A detailed theoretical discussion of SPOD theory and best practices for its applications can be found in
Towne et al. (2018) and Schmidt and Colonius (2020), respectively. We provide an outline of a specific
procedure for computing the SPOD based on Welch’s method (Welch, 1967). Unlike the original algorithm
by Nekkanti and Schmidt (2023) that reconstructs missing data one gap at a time, the new algorithm uses
the same segmentation strategy as the Welch spectral estimator. Given a flow field qi = q(ti), where i =
1,2, · · · ,nt , the first step of the standard Welch approach is to segment the data into nblk overlapping blocks,
each containing nfft snapshots. Usually, SPOD is computed from the fluctuating flow field obtained by
subtracting the temporal mean q̄ from each snapshot to center the data. This is not required for the present
application and leads to a simpler algorithm. After segmenting the data, we compute a windowed temporal
discrete Fourier transform and arrange all the Fourier realizations at the l-th frequency, q̂( j)

l , into a matrix,

Q̂l =
[
q̂(1)

l , q̂(2)
l , · · · , q̂(nblk)

l

]
. (1)

The SPOD modes, Φl , and associated energies, λl , can be computed as the eigenvectors and eigenvalues
of the CSD matrix Sl =

1
nblk

Q̂lQ̂∗l W, where W is a positive-definite Hermitian matrix that accounts for the
component-wise and numerical quadrature weights. In practice, the number of spatial degrees of freedom is
often much larger than the number of realizations. In that case, it is more economical to solve the analogous
eigenvalue problem

1
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for the coefficients ψ that expand the SPOD modes in terms of the Fourier realizations. In terms of the
column matrix Ψl = [ψ

(1)
l ,ψ
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l ], the SPOD modes at the l-th frequency are recovered as
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The matrices Λl = diag(λ(1)
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l ] contain the SPOD energies and modes, respectively. An important property of the
SPOD modes is their orthogonality in their weighted inner product,

〈
φ
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〉
= φ

(i)
l Wφ

( j)
l = δi j. The

associated norm is denoted by ∥ · ∥2.

2.1 Data reconstruction
The cornerstone of the present work is the reconstruction of the original data from its SPOD. This inversion
of the SPOD is discussed by Nekkanti and Schmidt (2021) in the context of frequency-time analysis and
different applications that involve partial reconstructions, including filtering and denoising. The Fourier



realizations at each frequency are reconstructed from the SPOD modes as Q̂l = ΦlAl . Here, Al is the matrix
of the (scaled) expansion coefficients computed as

Al =
√

nblkΛ
1/2
l Ψ

∗
l , or (4)

Al = Φ
∗
l WQ̂l. (5)

The expansion coefficients can be saved during the computation of SPOD using equation (4) or can be
recovered later by projecting the Fourier realizations onto the modes using equation (5). Using the expansion
coefficients aik contained in A at any given frequency, the k-th block can be reconstructed as

Q(k) = F −1

[(
∑

i
aikφ

(i)
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l=1

,

(
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i
aikφ

(i)
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l=2

, · · · ,

(
∑
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)
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]
, (6)

where F −1 is inverse windowed Fourier transform. Finally, the time series is reconstructed from the data
segments by computing the average of the reconstructions from overlapping blocks, weighted by the relative
value of their windowing function (Nekkanti and Schmidt, 2021).

New algorithm: Gappy SPOD (block-wise)
The new gappy SPOD algorithm differs from the original method introduced in Nekkanti and Schmidt
(2023) in that it operates block-wise instead of gap-wise. This makes the algorithm more flexible, easier
to implement and leads to a significant speed-up for data with many gaps. It also avoids the necessity to
identify individual gaps. At a high level, the algorithm consists of the following steps:

(i) Segment the time series into overlapping blocks and compute the temporal Fourier transform of each
block.

(ii) Sort FFT blocks by the percentage of gap overlap with the n-th block and keep those with fractions
below gapovlp,max. Retain at least rmin blocks.

(iii) Compute the SPOD using equation (2) from the selected FFT blocks. Restrict the SPOD basis to rmax
modes per frequency.

(iv) Compute the expansion coefficients for n-th block by projecting its FFT onto the new SPOD basis
using equation (5).

(v) Reconstruct the n-th block by inverting the SPOD using the projection-based expansion coefficients in
equation (6). Then replace the data in the missing regions with the reconstruction.

(vi) (Inner loop) Update the FFT of the n-th block and go to (iv) until the relative change between the
current and previous inner iteration, in the L2 sense, falls below the tolerance, tolinner, or until the
maximum number of allowed inner iterations, ninner,max, is reached.

(vii) Let n← n+1 and go to (ii) until all blocks are reconstructed.

(viii) (Outer loop) Let n← 1 and go to (i) for nouter times.

This new version of the algorithm optionally extrapolates to black zones. Nearest neighbor interpolation
is used to initialize the main algorithm and the optional extrapolation. If extrapolation to black zones is
selected, the weight matrix W in equation (2) is set to zero in the corresponding regions. This ensures
that only correlation information obtained from actual PIV data are used for the reconstruction. We have
reconstructed the streamwise and wall-normal velocity components for the present study separately, but note
that a synchronous reconstruction based on a compound solution vector, [u v]T , is equally possible.



3 Results
The new version of the gappy SPOD algorithm is demonstrated on the two PIV datasets summarized in table
1. For the open cavity data, 4% of the field of view (FOV) are black zones, defined as regions in which no
data are available at all times. These black zones occur close to the FOV borders. The overall gappyness,
not including black zones, is somewhat below 2%. For the high-lift case, about 40% of the recorded FOV is
usable; the remaining 60% are black zones. Within the usable FOV, the gappyness is about 5%. The open
cavity and high-lift device results are presented in §3.1 and §3.2, respectively. Both discussions conclude
with a standard SPOD analysis of the reconstructed data, highlighting each case’s most prominent flow
features.

case nt nx ny ∆t nfft novlp nblk nouter tolinner ninner,max gapovlp,max rmin rmax

cavity 16,000 160 57 6.25 ·10−5s 128 64 249 2 10−2 10 20% 20 10
high-lift 11,000 238 145 9 ·10−5s 128 64 170 2 10−2 10 20% 20 10

Table 1: PIV and gappy SPOD parameters.

3.1 Open cavity flow

Figure 1: Streamwise velocity u at time instances with high gappyness in the shear-layer region. Most of
the FOV (left column) is usable PIV data ( , gray), but it also contains gaps ( , white) and black zones ( ,
green). The middle and right columns show the MF GPOD and gappy SPOD reconstructions, respectively.
The gaps in the original data (−−−, magenta) are outlined in both. The color map is saturated at±140 [m/s]
( u≥ 140, u≤−140).

Figure 1 shows the FOV and compares the data reconstructions obtained using MF GPOD (Saini et al.,
2016) and our new algorithm outlined above. The five snapshots with the highest gappyness in the shear-
layer region, −0.5 ≤ y ≤ 0.5, are examples. This restriction focuses the analysis on the dynamically most
interesting region (the largest gaps in the entire FOV occur outside the cavity near the upper edge of the
FOV, and both algorithms perform well in this region.) Both algorithms provide reasonable reconstructions
visually consistent with the surrounding flow in the interior region. The MF GPOD algorithm tends to
predict local maxima in the missing regions, whereas the block-wise gappy SPOD algorithm tends to fill
in gaps with values somewhat lower than those in the surrounding flow field. In the absence of the actual



flow field in those regions, it remains speculative which algorithm performs quantitatively better. In the
narrow black zones near the borders of the FOV and for gaps that intersect with black zones, the MF GPOD
algorithm, in many cases, fails to reconstruct the data, most prominently in the first time instant on the right
boundary. The current method does not suffer from this problem and provides a believable reconstruction.

Figure 2: Same as figure 1 but for the wall-normal velocity, v. The color map is saturated at ±70 [m/s] (
u≥ 70, u≤−70).

Similar observations can be made for the wall-normal velocity component shown in figure 2 at the same
time instances. Both algorithms perform well for the interior gaps, with MF GPOD possibly overpredict-
ing and gappy SPOD possibly underpredicting the flow field in the missing regions. Consistent with the
observations for figure 1, gappy SPOD performs better at the fringes where gaps overlap with permanent
black zones. For this study, the gappy SPOD reconstructions of the streamwise and wall-normal velocity
components were computed separately, i.e., the results in figures 1 and 2 come from two runs of the code.
In the context of the discovery of flow physics–arguably the method’s main application–SPOD relies on a
suitable inner product to enable the SPOD modes to be interpreted as the most energetic flow structures (see,
e.g. Schmidt and Colonius, 2020). For incompressible, two-dimensional flows, the choice of the solution
vector [u v]T yields modes that are optimal with respect to the turbulent kinetic energy. On the contrary, we
found that treating the velocity components of the raw PIV data separately was advantageous in the present
context of flow field reconstruction. This means that we are exclusively relying on the spatiotemporal auto-
correlation information of each flow variable in this study.

case nt nx ny ∆t nfft novlp nblk bwin ntapers
cavity 16,000 160 57 6.25 ·10−5s 512 256 61 2 3
high-lift 11,000 238 145 9 ·10−5s 512 256 41 2 3

Table 2: SPOD parameters for post-processing of the reconstructed data.



Figure 3: SPOD analysis of the reconstructed data. The eigenvalue spectra for the leading ten modes are
shown at the top. The u (top row) and v (bottom row) components of the leading modes at the three marked
peaks (•) are shown below. The three peaks correspond to the second, third, and fourth Rossiter modes. The
real part of the modes is shown on a color map that is saturated for best interpretability.

Lastly, we use SPOD in the aforementioned context of physical discovery and briefly analyze the flow
physics of the reconstructed data. The spectral estimation parameters of the SPOD analysis are independent
of those of the gappy SPOD reconstruction. In particular, we use a larger number of 512 snapshots per block
to obtain a higher frequency resolution and use multitapering (Schmidt, 2022) to decrease the variance of
the spectral estimate. Specifically, we use a time-halfbandwidth product of bwin = 2, resulting in ntapers = 3
discrete prolate spheroidal sequence (DPSS) tapers. The SPOD parameters used for the analysis of both of
the reconstricted datasets are summarized in table 2. Figure 3 summarizes the SPOD post-processing results
for the open cavity case. The eigenvalue spectrum of the leading SPOD mode exhibits a number of distinct
peaks that are associated with the Rossiter tones. The three most prominent peaks are selected, and the
corresponding SPOD modes’ streamwise and wall-normal velocity components are visualized. The mode
structures are consistent with those obtained by Zhang et al. (2019) for the same data. The flow physics of
the Rossiter resonance mechanism are well-known and we refrain from their discussion. Instead, we note
that the absence of any artifacts stemming from the missing data underlines the quality of the gappy SPOD
data reconstruction.

3.2 High-lift device
Figure 4 shows the block-wise gappy SPOD reconstruction of the raw high-lift device PIV data. The pa-
rameters of the data and the reconstruction are summarized in table 1. The FOV with black zones and gaps
indicated in the same way as in figures 1, 2) is shown in the left column. The remaining two columns show
the streamwise and the normal velocity components, respectively. The three top rows show three consecu-
tive representative snapshots from the middle of the time series. It can be seen that gaps mainly occur within
the recirculation region on the underside of the slat and the shear layer that separates the recirculation zone
from the bypassing flow that impinges on the main airfoil. As before, the gappy SPOD reconstruction of u
and v were computed independently. The reconstructed fields of both components closely match the flow
patterns surrounding the gaps. The bottom rows depict the three time instances with the largest percentages
of missing data. In addition to smaller gaps within the recirculation and shear-layer regions similar to those
seen earlier, large regions of missing data are located in the regions farthest from the sections of the high-lift
device. In these large gaps, too, we observe that gappy SPOD produces smooth transitions between missing
and existing data and that the reconstructed data closely resembles the flow features observed in previous



Figure 4: Reconstructed velocity fields at three consecutive representative time instances (top rows) and the
three time instances with the largest overall gappyness (bottom rows). 40% of the FOV shown in the left
column is usable PIV data ( , gray) containing gaps ( , white), while the remaining 60% belong to the
black zone ( , green). The middle and right columns show u and v, respectively. The gaps in the original
data (−−−, magenta) are outlined in both. The color map is saturated at −30 and 50 [m/s] ( u,v ≥ 50,
u,v≤−30).



snapshots. As for the previous example, we proceed with an SPOD analysis of the completed database that
uses the parameters reported in table 2, which differ from those for the gappy SPOD reconstruction.

Figure 5: SPOD analysis of the reconstructed data. The eigenvalue spectra for the leading ten modes are
shown at the top. The u (top row) and v (bottom row) components of the leading modes at the three marked
peaks (•) are shown below. The real part of the modes is shown on a color map that is saturated for best
interpretability.

Figure 5 reports the SPOD spectrum and three modes associated with two prominent and one minor peak
in the leading-mode spectrum. The streamwise and normal velocity fields of the three modes reveal that the
peaks are associated with Kelvin-Helmoltz-type instability waves that form in the shear layer between the
recirculation region underneath the slat and the bypassing air stream. The shear layer reattachment location
near the slat trailing edge on the cove surface establishes a turning point that facilitates resonance similar to
the Rossiter mechanism in cavity flows. More importantly in the context of this work, the post-processing
of the completed data yields clean flow structures that show no trace of the gaps in the raw data.

4 Discussion
Future work will address two primary limitations that were beyond the scope of this study. Firstly, the
accuracy of the new algorithm’s reconstruction has to be quantified. Here, we have applied the algorithm
to raw PIV data, which precludes the computation of the actual reconstruction error since no true reference
solution exists. This problem can be mitigated, as in Nekkanti and Schmidt (2023), by utilizing test data
with artificial gaps for which the true solution is known. Second, extensive parameter studies on multiple
datasets are required to identify optimal parameter sets and best practices.

Despite these limitations, this study demonstrates that the recently developed block-wise gappy SPOD
algorithm is extremely effective at reconstructing missing data from raw PIV measurements. To compare
the accuracy of the results, the present findings were qualitatively compared to the MF GPOD algorithm for
the open cavity data. The comparison remained qualitative as the true velocity field in the missing regions



is unknown. The performance of both algorithms was satisfactory in the central region of the FOV, where
they were capable of reconstructing large data gaps. However, the gappy SPOP algorithm performed better
in the fringes and black zones by producing flow fields that are consistent with the interior domain.
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