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We present a framework for parametric proper orthogonal decomposition (POD)-Galerkin
reduced-order modelling (ROM) of fluid flows that accommodates variations in flow
parameters and control inputs. As an initial step, to explore how the locally optimal POD
modes vary with parameter changes, we demonstrate a sensitivity analysis of POD modes
and their spanned subspace, respectively rooted in Stiefel and Grassmann manifolds. The
sensitivity analysis, by defining distance between POD modes for different parameters,
is applied to the flow around a rotating cylinder with varying Reynolds numbers and
rotation rates. The sensitivity of the subspace spanned by POD modes to parameter
changes is represented by a tangent vector on the Grassmann manifold. For the cylinder
case, the inverse of the subspace sensitivity on the Grassmann manifold is proportional to
the Roshko number, highlighting the connection between geometric properties and flow
physics. Furthermore, the Reynolds number at which the subspace sensitivity approaches
infinity corresponds to the lower bound at which the characteristic frequency of the
Karman vortex street exists (Noack & Eckelmann, J. Fluid Mech., 1994, vol. 270,
pp. 297-330). From the Stiefel manifold perspective, sensitivity modes are derived to
represent the flow field sensitivity, comprising the sensitivities of the POD modes and
expansion coefficients. The temporal evolution of the flow field sensitivity is represented
by superposing the sensitivity modes. Lastly, we devise a parametric POD-Galerkin ROM
based on subspace interpolation on the Grassmann manifold. The reconstruction error of
the ROM is intimately linked to the subspace-estimation error, which is in turn closely
related to subspace sensitivity.
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1. Introduction

Gaining key insights into fluid flow behaviour enhances our understanding of fluid
dynamics and further develops fluid mechanics for the accurate prediction and active
control of fluid flows. Data-driven approaches for capturing the essential features of fluid
flows have been intensively developed owing to significant improvements in experimental
techniques and numerical simulations (Rowley & Dawson 2017; Taira et al. 2017). Proper
orthogonal decomposition (POD) is one of the most common approaches for extracting
flow structures that characterise the flow field of interest (Lumley 1970). POD analysis
seeks the basis, referred to as POD modes, which optimally represents the fluctuation
component of the time-series dataset of the flow field obtained through experiments
or numerical simulations. Dynamic mode decomposition (DMD) is a common modal-
decomposition method that estimates a linear operator approximating the dynamics of
interest from time-series snapshot data (Schmid 2010). Each DMD mode has a single
frequency in terms of time and growth rate. Both modal-analysis techniques have been
extensively employed to understand, predict and control fluid flows. The spectral modal
analysis explored in recent years, such as spectral POD (Towne, Schmidt & Colonius
2018), has successfully extracted coherent structures from turbulent flows.

Modal decomposition, particularly for POD, postulates that the time series of snapshot
fluid flow data, represented as a state vector in a high-dimensional Euclidean space, lies
in an inherently low-dimensional subspace. Hereafter, the discussion assumes the use
of the POD for modal analysis. As POD analysis identifies an optimal subspace, POD
modes are ideally suited for constructing a reduced-order model (ROM) of the fluid-flow
dynamics. The Galerkin projection-based ROM, which consists of ordinary differential
equations (ODEs) of the expansion coefficients with respect to time is a well-known
technique for constructing the ROM (Noack, Morzyfiski & Tadmor 2011). Because the
ROM approximates the dynamics of the fluid flow in a low-dimensional subspace, the
computational cost is significantly lower than that required when solving the full-order
model, which is typically the Navier—Stokes equation. Consequently, the ROM has been
employed to predict the future state of the flow field and actively control fluid flows
(Taylor & Glauser 2004).

However, a major challenge is that a typical ROM fails to provide an appropriate solution
for flow parameters (e.g. Reynolds number, Mach number and object shapes, such as
a cylinder and aerofoils) that is different from that of the parameters under which the
POD analysis is performed. This is because POD analysis obtains the optimal set of bases
to represent time-series snapshot data under the specific flow conditions analysed. The
optimal bases can vary with the flow conditions (Sato, Sakamoto & Ohnishi 2021). The
parametric ROM, whose objective is to perform multiple simulations over a wide range
of parameter settings with a low computational cost, has been examined in numerous
studies on applications such as optimal design, uncertainty quantification and active
control (Benner, Gugercin & Willcox 2015). A straightforward approach for constructing a
parametric ROM is to extract optimal modes from a mixed database that contains datasets
with different parameters (Ma & Karniadakis 2002). Galletti et al. (2004) reported that a
flow field around a square cylinder was appropriately reproduced at Reynolds numbers not
included in the dataset used for modal decomposition. Nakamura, Sato & Ohnishi (2024)
demonstrated a parametric ROM that predicts flow fields around various object geometries
by performing POD in computational space instead of physical space. Although these
global modes can be used to construct parametric ROM, the global modes are extracted for
global optimisation using datasets for all parameters, but are not locally optimal. Generally,
the dimensions of the subspace increase with the number of parameters to be included,
resulting in an increase in the computational cost of solving ODEs for the ROM.
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To construct a parametric ROM with a low computational cost, the dimensions of
the subspace should be kept low. This motivated us to investigate and model how the
locally optimal subspace, which is obtained by conventional POD analysis, varies with
the parameters because a parametric ROM can be constructed by estimating the locally
optimal low-dimensional subspace as a function of these flow parameters. This study
focuses on a geometric methodology that describes the parameter dependence of POD
modes and subspace spanned by the POD modes. We assume that the subspace exhibits
small variations for small parameter changes; thus, the subspace is a continuous function
of the parameters. To discuss this continuity, it is important to define and compute the
distance between subspaces.

To date, the subspaces extracted through the POD analysis have typically been examined
independently for each parameter. By contrast, this study aims to analyse the relationships
between subspaces corresponding to different parameters by defining the distance between
them. The set of all r-dimensional subspaces of an n-dimensional vector space admits
a manifold structure (» and n are natural numbers such that r < n), which is referred
to as the Grassmann manifold (Edelman, Arias & Smith 1998). Consequently, this is a
natural method to consider the distance, defined on the Grassmann manifold, between two
subspaces spanned by POD modes with different parameters.

The objective of this study is to develop a geometric methodology for analysing the
relationships between the local characteristic structures of fluid flows (i.e. POD modes)
and the subspaces spanned by them, which are extracted from the datasets obtained
by numerical simulations of the Navier—Stokes equations for parametric variations in
the boundary conditions. The distance between two points on the Grassmann manifold
enables a quantitative discussion of the similarity between the subspaces corresponding
to two different parameters. Moreover, the parameter dependence of the subspace can
be represented by modelling the curves or curved surfaces on the Grassmann manifold,
enabling the construction of a parametric ROM derived from this representation.

The first part of this study focuses on investigating how the POD modes and the subspace
spanned by them vary with flow parameters. We discuss the parameter dependence of the
subspace spanned by the POD modes in terms of the geometric characteristics of a curve
or curved surface on the Grassmann manifold. The sensitivity of the subspace is defined as
the ratio of the subspace displacement along the curve to the parameter change. We show
that the subspace sensitivity is closely related to the change in the behaviour of fluid flows
with respect to the variation in the parameters. In addition, a method for visualising the
distribution of subspaces over a wide range of parameters on the Grassmann manifold is
explored.

Subsequently, we discuss the parameter dependence of the POD modes rather than the
subspace. Parametric analysis of the set of POD modes for each parameter is conducted
on the Stiefel manifold, which is the set of all n-by-r orthonormal matrices (Edelman
et al. 1998); that is, the set of POD modes for each parameter is an element of the Stiefel
manifold. Manifolds that have a natural representation of elements in the form of a matrix
are referred to as matrix manifolds (Absil, Mahony & Sepulchre 2008). Matrix manifolds
provide insights into the intrinsic geometric properties of subsets of matrices defined by
specific constraints (e.g. orthogonality). We examine the sensitivity of the set of POD
modes with respect to parameter changes from the perspective of the Stiefel manifold. Hay,
Borggaard & Pelletier (2009) derived the sensitivity of the POD modes by differentiating
the POD modes using the equation used in the method of snapshots developed by Sirovich
(1987), and demonstrated that considering the subspace spanned by the POD modes and
POD-mode sensitivity improves the performance of the parametric ROM. In this study, the
sensitivity of the POD modes is defined as the tangent vector along a curve on the Stiefel

1021 A44-3


https://doi.org/10.1017/jfm.2025.10733

https://doi.org/10.1017/jfm.2025.10733 Published online by Cambridge University Press

S. Sato and O.T. Schmidt

manifold, and the variation in the POD modes with the parameter changes is investigated.
We then introduce sensitivity modes based on the analysis of the POD modes on the
Stiefel manifold to represent the sensitivity of the flow field with respect to the parameter
changes by superimposing the sensitivity modes. The analysis of flow sensitivities enables
the estimation of the flow field at nearby parameters of interest, such as the operating or
design parameters of the fluid machinery, as well as the estimation of the response of the
flow field to input-parameter uncertainty (Pelletier et al. 2008). The sensitivity modes of
the flow field can be interpreted as modes that represent the changes in the flow field in
response to small variations in the parameters. We demonstrate that the sensitivity of the
flow field can be characterised by analysing the sensitivity of the POD modes.

The last part of this study examines the parametric ROM, which employs the subspace-
interpolation technique on the Grassmann manifold. Interpolation of the subspaces
spanned by the POD modes at different parameters was employed to construct a parametric
ROM. Lieu & Farhat (2007) developed a parametric ROM framework by interpolating
two subspaces based on the principal angles between them. Amsallem & Farhat (2008)
generalised this framework as the subspace interpolation method based on the Grassmann
manifold and applied the developed framework to an aeroelastic ROM using sets of
POD modes obtained using the Euler equation for a full-order model of the fluid flow
around an aircraft. Recently, Pawar et al. (2020) developed a parametric ROM framework
combining the subspace interpolation on the Grassmann manifold and a long short-term
memory neural-network architecture to predict unknown physics that was not included
in the training dataset through demonstrations of the Burgers and vorticity-transport
equations. Hess, Quaini & Rozza (2023) employed the manifold-interpolation technique
to interpolate the linear operator estimated by the DMD analysis and demonstrated that
the Reyleigh—Bénard cavity flows over a wide range of the Grashof numbers can be
reconstructed using the developed parametric ROM framework.

This study explores the relationship between the geometric characteristics of the
distribution of subspaces on the Grassmann manifold and the reconstruction errors
obtained by the parametric ROM using subspace interpolation over a wide range of flow
parameters. We demonstrate that the reconstruction error of the flow field obtained by
the parametric ROM is closely related to the estimation error of the subspace, which is
associated with the sensitivity of the subspace to parameter variations. This finding is
critical for constructing a parametric ROM using fewer samples.

The remainder of this paper is organised as follows. Section 2 describes the
computational methods for the mode sensitivity analysis and ROM on the matrix
manifolds. In § 3, we discuss the sensitivity analysis of the subspace, POD modes and
flow field based on the geometric structure of the matrix manifolds using the flow field
data around a rotating cylinder as a demonstration. The parametric ROM is performed
to discuss the relationship between the reconstruction error and geometric characteristics
of a curve or curved surface on the Grassmann manifold in § 4. Finally, § 5 presents the
conclusions of this study.

2. Methodology
2.1. Overview of mode sensitivity analysis on matrix manifolds

Matrix manifolds play an important role in various applications, including parametric-
model reduction for nonlinear dynamics, which is not limited to fluid dynamics (Son 2013;
Liu & Liu 2022), matrix-completion problems (Boumal & Absil 2015) and computer
vision (Lui 2012). Here, we discuss the basic idea of the parametric modal analysis for
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v Flow field data

Figure 1. Schematic of the representation of sets of POD modes extracted from the flow field dataset in a wide
range of flow parameters in terms of a matrix manifold M. The variation of the characteristic structures of
the fluid flow around a rotating cylinder with the Reynolds number Re and rotation rate « are described as
curves on M. The relationship between the matrix manifold M and a tangent vector space at p, represented as
T, M, is also described. Tangent vectors in the tangent-vector space in the Reynolds-number and rotation-rate
directions are represented as Ag, and A, respectively.

investigating mode sensitivity and constructing parametric ROM on matrix manifolds
before discussing specific manifolds. Figure 1 shows a schematic representation of the sets
of POD modes extracted from the flow field dataset over a wide range of flow parameters
in terms of a matrix manifold. We consider the flow field around a rotating cylinder,
where the flow parameters are the Reynolds number and rotation rate of the cylinder.
The POD modes are extracted from the time series of the flow field data obtained from an
experiment or numerical simulation for each flow parameter. A single matrix represents a
set of POD modes for each flow parameter. The set of these matrices forms a subset of a
matrix manifold and is the subject of the analysis in this study. The relationship between
the two matrices can be defined by considering a matrix manifold and introducing an
appropriate Riemannian metric. This enables the discussion of the relationship between
the flow fields at different parameters through the POD modes or the subspace spanned by
them. We then consider that the set of POD modes at a specific parameter (or the subspace
spanned by them) varies with the Reynolds number or rotation rate. The variation of the
POD modes (or subspace) as a function of Reynolds number or rotation rate corresponds
to tracing a curve on the matrix manifold. The main objective of this study is to investigate
the parameter dependence of fluid flows by analysing and modelling the curve represented
by a subset of sampled sets of POD modes or subspaces.

When analysing or modelling a subset of elements in a matrix manifold (e.g. the
Grassmann manifold or Stiefel manifold), considering the tangent vector space at an
element on the manifold and performing the analysis in the tangent vector space is more
practical in terms of the numerical computations. The Grassmann manifold is not a vector
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space because it does not admit vector addition and scalar multiplication in a natural way.
However, the tangent vector space at each point of the Grassmann manifold has a vector-
space structure. This structure allows vector addition and scalar multiplication in the
tangent vector space, enabling the consideration of the linear interpolation of the tangent
vectors. By considering a mapping, referred to as an exponential map, each tangent vector
in the tangent-vector space can be associated with an element on the matrix manifold.
Conversely, a mapping that maps an element on the matrix manifold to a vector in the
tangent-vector space is referred to as a logarithmic map. A logarithmic map is the inverse
of an exponential map.

2.2. Mode sensitivity analysis on Grassmann manifold

First, a brief overview of the POD methods is provided with the purpose of defining
some variables. Let ¢, =q(t;) € RN (i=1,2,...,N;) be snapshot data indicating an
instantaneous fluctuating flow field at a given time #;, where N is the dimension of each
snapshot data (the number of grid points multiplied by the number of variables) and N; is
the number of snapshots. A snapshot matrix Q is defined by arranging the snapshot data
as column vectors as follows:

O:=[q; g2 ... qu]eRVM, 2.1)

In this study, the following inner product is introduced for two vectors a, b € R to
perform POD analysis:

(a, b) :==b" Wa, (2.2)

where W is a diagonal matrix to account for the spatial grid size since this study uses
a non-uniform grid for numerical simulation, corresponding to the consideration of the
weighted 2-norm induced by the above-mentioned inner product (Schmidt & Colonius
2020).

The POD modes ¢; € RV are obtained by solving the following eigenvalue problem:

00TWe¢, =1, (i=1,2,....r), (2.3)

where the superscript 7' denotes the transpose and r is the number of POD modes to be
employed. In practice, the method of snapshots (Sirovich 1987) is typically employed when
the size of N is large. The POD-mode matrix @ is defined by arranging the POD modes
as follows:

D:=[¢; ¢, ... ¢ ]eRV. (2.4)

To account for the inner product introduced in (2.2) within matrix operations, the matrix
U is defined as

U:=w'"o, 2.5)
where W1/2 denotes the diagonal matrix whose diagonal entries are the square roots of
the diagonal entries wy, ..., wy of W (i.e. wl/z :=diag(w]1/2, e, w]lv/z)). Hence, the
orthonormality of the POD modes are expressed as follows:

vlv=0"wo =1, (2.6)

where I, € R"*" is the identity matrix.

We then consider a subspace S spanned by the POD modes ¢, ¢, ..., ¢, and
represent it as S = span(U). As discussed in previous studies (Hay et al. 2009; Sato et al.
2021), the extracted POD modes depend on the flow parameters of the dataset; therefore,
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the subspace spanned by the POD modes also depends on the flow parameters. To discuss
the dependence of the subspace on the flow parameter from the perspective of geometry,
this study considers a set whose elements are subspaces, i.e. the Grassmann manifold. The
Grassmann manifold Gr(N, r) is defined as the set of all r-dimensional subspaces of RN
(see, e.g. Absil ef al. 2008):

Gr(N, r):={S c RY | Sisasubspace, dim(S) =r}. (2.7)

A subspace spanned by a set of POD modes for a given parameter is represented
as a point on the Grassmann manifold. Therefore, a point on the Grassmann manifold
represents a linear subspace that can be specified using an orthogonal projector P € RV*N
onto S. The orthogonal projector onto S is represented as

P=UU". (2.8)

By using a specific orthogonal projector P, a point on the Grassmann manifold is
uniquely specified; however, the matrix size of the orthogonal projector is N-by-N.
Computations using these orthogonal projectors require a large memory size when the
flow field data are used as snapshot data. Therefore, an alternative approach, referred to
as the orthonormal-basis perspective (Edelman et al. 1998), is considered in this study.
A subspace S is specified by the matrix U, whose columns form an orthonormal basis
of S. This perspective requires an N-by-r matrix for computations on the Grassmann
manifold, whereas the choice of the matrix is non-unique for determining points on the
Grassmann manifold. Two different matrices, U; and U,, which consist of orthonormal
bases as column vectors, span the same subspace when there exists a matrix R € O(r),
where O(r) is the orthogonal group in dimension r, such that R satisfies U, = U1 R. We
consider the following equivalence class:

[UI={UR|R e O(r)}. (2.9)

Consequently, an alternative representation of the Grassmann manifold is obtained as
follows:

Gr(N,r)={[U]1|UTU =1,)}. (2.10)

A point on the Grassmann manifold can be identified by specifying [U] instead of the
corresponding orthogonal projector.

The tangent vector space of the Grassmann manifold at point [U] € Gr(N,r) is
represented as

Ti)Gr(N, r) ={A e RV 1UT A =0}, (2.11)

where A denotes a tangent vector. This study considers the following Riemannian metric:

(A1, M)y, =trace(A] Ay), (2.12)

where Ay, Ay € TyiGr(N, r) (i.e. UTA; =0, (i =1, 2)).

The subspaces spanned by sets of the POD modes at two different parameters are
represented by two different points on the Grassmann manifold. Let us consider the
shortest path between two points on the Grassmann manifold, which is referred to as a
geodesic. Let y(§) be the geodesic in the Grassmann manifold, parametrised by & € R.
There exists an open interval containing 0 and a unique geodesic that satisfies ¥ (0) =
[Upl€ Gr(N,r)andd/d§y(0)=A € Tv,1Gr(N, r) (see, e.g. Lee 2018). The exponential

map on the Grassmann manifold Expf;U’p] (A) maps a tangent vector A € Ty ,1Gr(N, r) to
1021 A44-7
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a point on the Grassmann manifold y (1) € Gr(N, r). Hence,
Expf;Urp] : T[Up]Gr(N, ry— Gr(N,r), A y(l). (2.13)

The exponential map on the Grassmann manifold can be written explicitly as follows
(Edelman et al. 1998):

Expy; 1(A) =[U,Veos(2)VT + Xsin()V'], (2.14)

where

AL xzyT (2.15)
where * indicates performing a singular value decomposition on the matrix on the left-
hand side. The tangent vector is represented by an N-by-r matrix. The tangent vector
indicates that it is an element of the tangent vector space Tjy1Gr(N, r), which is a vector
space.

Let [Up], [Uy] € Gr(N, r). We consider a neighbourhood of [U,] where there is a
unique tangent vector A’ € Ty, € Gr(N, r) such that Exp[GJp](A’ ) =[Uy]. The mapping
that determines this tangent vector A’ is defined in the neighbourhood and is referred to as
a logarithmic map:

LOg[GJ,,] :Gr(N,r) = T, 1Gr(N,r), [Uyl— A, (2.16)

(see Bendokat, Zimmermann & Absil (2024) for details regarding the neighbourhood
where the logarithmic map is defined). The logarithmic map on the Grassmann manifold
is computed as follows (Amsallem & Farhat 2008):

A =X tan ' (Z)HV], (2.17)
where
(I -U,uDHU, vy =v,wl vy - U, " x, 5, v] (2.18)
The exponential and logarithmic maps are inverses of each other. Therefore,
Exp{7; 1 o Log(; (1U]) = [Ug]. (2.19)

Equation (2.19) indicates that the output matrix spans the same subspace as the input
matrix. However, this does not indicate that the output matrix is identical to the input
matrix (Bendokat et al. 2024).

The distance between two points on the Grassmann manifold [U,], [U;] € Gr(N, r) is
calculated as follows (Edelman et al. 1998):

r

dist((U,]. [UgD = | (cos~1(01))?, (2.20)

i=1

where o; denotes the ith singular value of U ; U, . Note that cos~!(oy) is the principal (or
canonical) angle between the two subspaces [U] and [U,]. For any two points on the
Grassmann manifold Gr(N, r), the distance is bounded as (Wong 1967)

7 JF

dist([U], [Ug]) < ——. (2.21)

In addition to (2.20), several definitions of the distance between subspaces exist
(Edelman et al. 1998).
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One of the objectives of this study is to investigate the parameter dependence of
subspaces spanned by the POD modes of the flow field on the Grassmann manifold by
using the above-mentioned definitions. Let £ be the flow parameter. The variation in the
subspace with respect to & can be described as the motion of a point along the curve ¢ on
the Grassmann manifold,

c:RDIs — Gr(N,r), (2.22)

where I: denotes the interval in which & is defined. In this study, we denote the
displacement along the curve ¢ due to a small change in parameter £ by ds/d&, and define
it as the sensitivity of the subspace with respect to £. In practice, the sensitivity of the
subspace is computed using two points: [U(§)] and [U (§ + A&)]:

s dist (U ®)]. [U ¢ + A8)])
dé At '

(2.23)

2.3. Mode sensitivity analysis on Stiefel manifold

An r-dimensional linear subspace of an N-dimensional Euclidean space is considered
as a point on the Grassmann manifold Gr(N, r). The parameter dependence of the
subspace spanned by the POD modes is discussed based on the geometric properties
of the Grassmann manifold. On the Grassmann manifold, the focus is solely on the
subspace without considering the POD modes themselves. However, from the perspective
that the contribution of each POD mode to the flow field can be quantified based on
the corresponding eigenvalues, the ordering of the modes can be considered meaningful.
However, when considering a matrix U = [(I)r, by, ..., ¢1], which is obtained by
interchanging the first POD mode with the th POD mode of matrix U defined in
(2.4), matrices U and U are regarded as the same point on the Grassmann manifold.
This means that, when the analysis is based on the Grassmann manifold, it becomes
difficult to determine whether the observed subspace variations are induced by changes
in physically important modes or by less important ones. To complement the analysis on
the Grassmann manifold, this study also conducts analysis on the Stiefel manifold, which
enables evaluation of the sensitivity of the POD modes themselves. The Stiefel manifold
St(N, r) is a set of rectangular, column-orthonormal N-by-r matrices (Edelman et al.
1998):

St(N,r):={U e RN |UTU =1,}. (2.24)

The Grassmann manifold is regarded as a quotient manifold of the Stiefel manifold: two
column-orthonormal matrices are equivalent if they are related by the multiplication of an
orthogonal matrix R € O(r), as indicated in (2.9). Therefore,

Gr(N,r)=St(N,r)/O(r). (2.25)
The tangent vector space of St(N, r) at U is represented by
TySt(N,r)={AeRV*" |uTA=-ATU). (2.26)

That is, UT A is a skew-symmetric matrix. This study considers the following canonical
metric (Zimmermann 2017):

1
(A1, Ap)7! = trace <A1T (IN — EUUT) A2> , (2.27)

where A, Ay € Ty St(N, r) (e. UT A; = —AiTU, (i =1, 2)). Note that other choices for
the Riemannian metrics on the Stiefel manifold exist (Hiiper et al. 2021).
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As in the case of the Grassmann manifold, a geodesic defines an exponential map on the
Stiefel manifold Exp '(A) that maps a tangent vector A eTySt(N,r) to a point on the
Stiefel manifold y(l) € St(N, r), where y is a geodesic:

Expsl 1 Ty St(N,r) — St(N,r), A y(l). (2.28)

The exponential map on the Stiefel manifold can be computed using the following
matrix operations (readers may refer to Zimmermann (2017) for a more detailed discussion
of exponential and logarithmic maps). Let U, and A be the base point on the Stiefel
manifold and tangent vector, respectively. First, we perform QR decomposition of the
following matrix:

<1N — U,,U;) A=YZ, (2.29)

where Y and Z are the orthogonal and upper triangular matrices, respectively. We then
compute the following matrix exponential:

[Azﬂ = P ([UéA _g TD [{)} ’ (2.30)

where exp,,(A) 1= Zl 1AJ/(]') Finally, by defining U, _Exp (A) e St(N, r), we
obtain

Uy=U,M+YN. (2.31)

Let Up, Uy, € St(N,r). There is a neighbourhood of U, where there is a unique

vector A’ € Ty,St(N, r) such that Exp (A ) = Uy. Consequently, the logarithmic map

on the Stiefel manifold is defined in the nelghbourhood of U as the inverse map of the
exponential map:

Logy/, : St(N, r) = Ty, St(N, r), Uy A'. (2.32)

Computation of the logarithmic map on the Stiefel manifold equipped with a canonical
metric requires iterative methods. In this study, we adopt the algorithm proposed by
Zimmermann (2017).

We define the sensitivity of the POD modes with respect to & as follows:

0, 03¢, o¢, | ._ U
[¥ % ag]_ P e Ty St(N, r). (2.33)

In practice, the sensitivity of the POD modes is computed as a tangent vector on the
tangent-vector space Ty St(N, r) using two points U (§) and U (§ + A§),

v 1

0& AS
Note that the matrix of the POD modes U (§ 4+ A€) is not approximated by U (&) +

(0U/0&) A&. The matrix can be approximated using an exponential map as follows:

OgU(g) (U (§ + A%)) . (2.34)

oU

By visualising the spatial distribution of POD mode sensitivities, one can identify
the flow regions that play a significant role in response to parameter variations, thereby
establishing a connection between the subspace sensitivity on the Grassmann manifold and
the underlying physical behaviour of fluid flows. The two-step interpretation, from flow
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field variation, followed by mode sensitivity on the Stiefel manifold and finally subspace
sensitivity on the Grassmann manifold, provides insight into understand how physical
phenomena influence the (mathematical abstract) geometry on the Grassmann manifold.

Equation (2.34) represents the sensitivity of the POD modes and describes how the
POD modes vary with respect to changes in parameter £. It is important to note, however,
that the sensitivity of the flow field is not described as a superposition of these POD
mode sensitivities. To gain further insight, we consider analysing the sensitivity of the
flow field with respect to parameter variations as follows. Here, we explicitly denote
the dependence of the snapshot data on the parameter £ and represent it as Q(§) =
[ql(é) q,(&) ... qN[(é)]. Our goal is to represent dq;(§)/06 (i=1,..., N;) as a
superposition of several vectors, analogous to representing the flow field as a superposition
of POD modes. First, we perform a singular value decomposition of the matrix Q(§),

06 2 UE2EVT®). (2.36)
where U (&) € St(N, r) is the POD-mode matrix, X' (§) € R"*" is a diagonal matrix with
singular values on the diagonal, V (§) € St(V;, r) is a column-orthonormal N,-by-r matrix
of POD expansion coefficients normalised by the corresponding singular values. Note that
AE) := X(E)VT (&) is a matrix of the expansion coefficients of the POD modes. Consider
the partial derivative of (2.36) with respect to &:

oV T

92 syt oudZyr Lys (2.37)
3 35 & E
Equation (2.37) suggests that, in addition to the sensitivity of the POD modes, the
sensitivities of matrices X' and V are also considered for the sensitivity of the flow field.
We can discuss the contributions of the change in the POD modes, singular values and
expansion coefficients to the flow field sensitivity with respect to the flow parameter by
evaluating the contribution of each term on the right-hand side of (2.37). In this study, we
assume the following relationship:

V(E) ~VYRE), RE)eO), (2.38)

where V¢ is defined as the matrix V when the parameter is a specified reference
parameter £'%, i.e. V¢ := V (£7%). In other words, we assume that the subspace spanned
by matrix V is identical, regardless of the parameters. The validity of this assumption is
discussed in the Appendix A. Substituting (2.38) into (2.37) yields the following equation:

30

= a~UA™, (2.39)
3
where
AT = yref (v’€f>T , (2.40)
~ U : 32 : oRT N1
U=~ sRT (2’6/‘) vl (2’6/‘) +usi (2’6/‘) .4
& & &
where X% := ¥ (¢"¥). We finally obtain the following representation of the
sensitivity of the flow field by defining U= (b] ¢2 . ¢r] e RVN*" and A" =
@ a5y ... ay1eR N (where aif_ @) a@) ... a?aTy:
i S g (=1, N (2.42)
85 ,] 1 o e B t)- .
j=1
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Equation (2.42) shows that the sensitivity of the flow field represented by the
superposition of (ﬂj is similar to the representation of the flow field by the superposition of
the POD modes. Owing to the assumption of (2.38), the spatial structure, which includes
the contributions of the sensitivities of the POD modes, singular values and expansion
coefficients, can be represented by the time-independent vector q%. Equation (2.42)

suggests that the sensitivity of the flow field can be represented by the vectors d;j with
the same expansion coefficients used to represent the flow field by the superposition of
the POD modes. Therefore, the spatial structure of (/;j is expected to correspond to a mode
that captures important features of the sensitivity of the flow field. In this study, we refer
to qgj as a sensitivity mode. The expansion coefficients ajref are already given; therefore,
only the calculation of the sensitivity modes are required to obtain the time evolution of
the flow field sensitivity. It is important to note that establishing a relationship between the
matrices V (£) and V"¢ plays a key role. Even when (2.38) is not valid, it is expected that a
similar formulation to (2.42) can still be derived if an appropriate relationship can be given
between V(£) and V¥, for example, V(&) ~ V¥ B(£), where B(£) is not necessarily
an orthogonal matrix. To demonstrate that the parameter dependence of the normalised
expansion coefficients can be represented by phase shifts in the flow fields considered in
this study, we assume a specific relationship in which V (£) is approximated by the product
of V' and an orthogonal matrix R(§).

2.4. Framework of parametric reduced-order modelling

A ROM based on the Galerkin projection is derived by projecting the Navier—Stokes
equations onto the subspace spanned by the POD modes. The set of POD modes is
mutually orthonormal, which leads to a well-known system of ODEs for the expansion
coefficients. As the elements of the Grassmann manifold are represented as matrices
whose column vectors form an orthonormal basis (orthonormal-basis perspective) in
this study, a similar ROM based on the Galerkin projection can be derived using the
element of the Grassmann manifold. This study considers a parametric-ROM framework
by projecting the Navier—Stokes equations onto a locally optimal subspace according to
a given flow parameter. The locally optimal subspace is estimated using the subspace-
interpolation technique on the Grassmann manifold (Amsallem & Farhat 2008). The
strategy considered in this study for constructing a parametric ROM consists of two
steps: (1) finding an appropriate subspace to describe the fluid flow to be reconstructed
using subspace interpolation on the Grassmann manifold; and (2) constructing a Galerkin
projection-based ROM using the estimated subspace.

Here, we estimate the subspace [U(£)] € Gr(N, r) using interpolation with two sub-
spaces [U (§1)] and [U (§2)], where & < & < &,. Interpolation is performed on the tangent
space Ty, Gr(N, r). First, we obtain the tangent vector A(&>) € Tiy&,)Gr(N, r) by
mapping the subspace [U (§2)] € Gr(N, r) onto the tangent space using a logarithmic map
(2.16). Then, we consider the linear interpolation of the tangent vector:

"L Aque). (243)
& —§&

The tangent vector A([U(£1)]) corresponds to the origin of the tangent vector space
Tiu £,)Gr(N, r). The interpolation methods commonly employed in vector spaces can be
applied to the tangent-vector space. For example, the interpolation of tangent vectors using
the Lagrange interpolation has been reported (Pawar et al. 2020). This study considers the
linear interpolation on the tangent-vector space because we are mainly focused on gaining
insight into the relationship between the subspace distribution from the perspective of
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the geometry of the Grassmann manifold and the errors in the flow field reconstruction
using the developed parametric ROM, rather than providing a sophisticated technique for
tangent-vector interpolation.

The subspace for parameter £ is obtained using an exponential map:

[U &)1 =ExpGe,)) (A (U ©)). (2.44)

As a result, we have an N-by-r matrix U'(§)=[¢|(€) ¢5¢E) ... ¢.(5)]¢€
St(N, r), where [U'(&)] = [U (£)] is obtained.

The column vectors of U’(£), which are obtained by subspace interpolation on the
Grassmann manifold, do not necessarily coincide with the POD modes (i.e. in general,
U'(§) # U (&)). The POD modes for a given flow parameter are uniquely determined as
the eigenvectors of the covariance matrix constructed from the snapshot data (except for
the eigenvector signs). By contrast, subspace interpolation on the Grassmann manifold
estimates a matrix U’(£) such that U’ (£)U'T (&) = U(§)UT (), where U (&) denotes the
POD mode matrix corresponding to a given parameter. In this context, by considering the
product of U’(§) and the orthogonal matrix R € O(r), it holds that U’ (§)R(U'(§)R)T =
U'EU'TE)~U®E)UT (£). This means that even if U’ (£) # U (&), the matrices U’ (£)
and U(&) span the same subspace. Conversely, even when the matrix obtained via
subspace interpolation on the Grassmann manifold spans the same subspace as that of the
POD modes corresponding to a given parameter, its column vectors do not necessarily
coincide with the POD modes. Nevertheless, the column vectors of the matrix U’(§)
are mutually orthonormal and the subspace spanned by these vectors coincides with the
subspace spanned by the POD modes. Taking this into account, we refer to the column
vectors of U’(§) estimated via subspace interpolation on the Grassmann manifold as
pseudo-POD modes.

We estimate the flow fields for the parameter £ using the Galerkin projection-based
ROM with pseudo-POD modes. Because the pseudo-POD modes, analogous to the POD
modes, form orthonormal bases, the following ordinary differential equations can be
employed as the Galerkin projection-based ROM:

da; (t; 4 : .
%&): Z Fijr(§)a;(t; &)a(t; S)-i-ZGij(é)dj(t; £) (i=1,...,r), (245

J,k=0 j=0

where a; is the expansion coefficient of the ith pseudo-POD mode. It is worth noting here
that the relative importance of each ith pseudo-POD mode can be evaluated. In the (space-
only) POD analysis, the eigenvalues associated with each POD mode corresponds to the
expected value of the squared temporal expansion coefficient. Therefore, by computing
the expected value of aiz(t; &), one can obtain the relative contribution of each pseudo-
POD mode. While eigenvalue magnitudes are not directly incorporated when analysing
subspace variations of the Grassmann manifold, the physical significance of each pseudo-
POD mode can still be evaluated by applying a Galerkin projection within the estimated
subspace.
The coefficients Fjj(§) and G;;(§) can be obtained as follows:

Fi(§) = —($;(€). ($/(§) - V) (§))  (j.k=0,1,....7), (2.46)
1
Gy(§) = o (#/(&), V’$j©)  (j=0,1,....7). (2.47)

The coefficients Fx and G;; depend on the flow parameter & because these coefficients
are obtained by projecting the Navier—Stokes equations onto the subspace that depends
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on the parameter. As a result, the parametric ROM estimates appropriate coefficients
Fijx and Gj; according to the given subspace for the parameter of interest. Note that
in this study, we impose Dirichlet boundary conditions on the velocity field: the wall
boundary is given by (3.1) and the far-field boundary is set to the free stream conditions.
Also, each POD mode is divergence free. Under these conditions, the pressure term
drops out from the Galerkin projection-based ROM (Noack et al. 2011). Additionally, the
expansion coefficients depend on the selection of the basis for the subspace. Therefore, the
coefficients Fjjx and G;; also depend on basis selection. In particular, the values of Fjj; and
G j obtained using the pseudo-POD modes do not necessarily coincide with those derived
using the POD modes. This arises from the difference in representing the snapshot data
as g~y ;[ ajp; or ¢ =Y ; a.$;, which merely reflects the difference in the coordinate
system of the subspace. Readers may refer to Noack et al. (2003, 2011) for a more detailed
discussion on Galerkin projection-based ROM.

The vector ¢’ (&) indicates the mean field; hence, ag = 1. The mean field for parameter
£ is estimated by linear interpolation using ¢ (£1) and ¢ (&2):

§—&
& — &

We estimate the initial condition for (2.45) using ¢;(&1) and q(§2). The expansion
coefficients are computed using a; (0) = (g (), (/);), (j =1, 2). The obtained expansion

coefficients are used to determine the initial condition by performing a linear interpolation
with respect to the parameter £.

¢y (&) = (60(&2) — o (€D) + b (D). (2.48)

3. Example of cylinder flow with varying Reynolds number and rotation rate

In this section and the subsequent one, we consider the mode sensitivity analysis and
reduced-order modelling of the flow field around a rotating cylinder to demonstrate the
utility of the proposed method. The flow parameters considered in this study are the
Reynolds number and rotation rate, which are determined as the boundary conditions
of the Navier—Stokes equations. The parameter dependencies of the subspace and POD
modes are described on the Grassmann manifold and Stiefel manifold.

3.1. Full-order modelling

Two-dimensional compressible Navier—Stokes equations are considered as the governing
equations for the full-order modelling of fluid flow past a cylinder. The governing
equations are solved numerically using the finite-difference method. The sixth-order
compact-difference scheme (Lele 1992) is used to evaluate the spatial derivatives. An
eighth-order compact filter is also used to stabilise the numerical dispersion (Visbal &
Gaitonde 2002). The lower-upper symmetric Gauss—Seidel implicit method (Yoon &
Jameson 1988) is employed for time integration.

An O-type grid is used with 331 and 301 grid points in the radial and circumferential
directions, respectively. The computational domain has a radius of 200D, where D is
the cylinder diameter. The minimum grid width in the radial direction is set to 0.01D.
The Mach number of the inflow is set to 0.2 to ignore compressibility. In this study,
the compressible Navier—Stokes equations are used as the governing equations of the
full-order model. However, we consider a free stream Mach number that is sufficiently
low for the compressibility effects to be negligible. Consequently, we employ a Galerkin
projection-based ROM based on the incompressible Navier—Stokes equations by assuming
that the obtained flow field data can be regarded as an incompressible flow field.
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Figure 2. Schematic of the flow field to be described on matrix manifolds in this study: (a) sketch of the flow
field around a rotating cylinder; (b,c) instantaneous spatial distributions of x-velocity component at Re = 100
and 160 without rotation; (d,e) with the rotation rate of « = 1.0.

The following velocity is imposed on the surface of the cylinder:
u, =9, 3.1

where u,, and £ are the velocity on the cylinder surface and angular velocity of the
rotating cylinder, respectively. The following rotation rate « is used as a parameter in
this study:

_ 2D
T 2Us]

where §2 and Uy, are the amplitudes of the angular and inflow velocity, respectively. Along
the far-field boundary, free stream conditions are imposed in this study.

A schematic of the numerical-simulation conditions is shown in figure 2(a).

Figure 2(b,c) shows the instantaneous spatial distributions of the x-velocity component
without cylinder rotation after the flow field reaches a quasi-steady state at Re = 100 and
160, respectively. In both cases, a well-known Karman vortex street can be observed.
The spacing between vortex structures in the Karman vortex street becomes shorter as
the Reynolds number increases. The instantaneous spatial distributions of the x-velocity
component with a rotation rate of @ = 1.0 for Re = 100 and 160 are shown in figure 2(d,e).
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Figure 3. Comparison of the Strouhal-Reynolds number between the results obtained by the numerical
simulation (circle symbol) and an empirical theory (solid line).

The Karman vortex street is observed as in the case without rotation and the vortex
shedding is deflected upward owing to the cylinder rotation.

Figure 3 shows the Strouhal number (St = f D/ U, where f is the shedding frequency)
obtained from the numerical simulation as a function of the Reynolds number, ranging
from 60 to 160. The curve obtained from the relationship derived from the following
empirical theory (Williamson & Brown 1998) is also shown:

1.018
~/Re .

The Strouhal-Reynolds number relationship obtained by numerical simulation is in
good agreement with the empirical theory.

St ~0.2665 — 3.3)

3.2. Sensitivity analysis on Grassmann manifold

To extract an optimal subspace to represent the dynamics of the fluid flow in a low-
dimensional space for each parameter, POD analysis was conducted. For the POD analysis,
1000 snapshots of the spatial distributions of the x- and y-velocity components obtained
after the flow field reached a quasi-steady state were used. The sampling time corresponds
to ten cycles of vortex shedding, that is, the sampling-time width is 1/(100St). The
sampling-time width is adjusted according to the Strouhal number so that the matrix V
satisfies (2.38).

Figure 4 shows the spatial distributions of the extracted first POD modes corresponding
to the streamwise (x-) velocity component in the domain of (Re, ) € [100, 160] x
[0.0, 1.6]. In the following, discussions on the spatial structure of the extracted modes
are based on the POD modes corresponding to the x-velocity component. It should be
noted, however, that the POD analysis was performed using snapshot vectors constructed
by stacking the spatial distributions of both the x- and y-velocity components into a
single column vector (Taira et al. 2017). We have confirmed that the similar findings can
be observed in the spatial structure of the POD modes associated with the y-velocity
component. For the flow field without cylinder rotation (¢ =0.0), an antisymmetric
structure with respect to the x-axis (y =0) is observed downstream of the cylinder to
reconstruct the Karman vortex street, as shown in figure 4(a—d). The structure of the first
POD mode varies smoothly with the Reynolds number. At higher Reynolds numbers, the
characteristic structure becomes finer. This corresponds to the gap between the shedding
vortices becoming shorter at higher Reynolds numbers. When the cylinder is rotated at the
rate of @ = 0.8, a similar characteristic structure to that of the non-rotating case is obtained
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Figure 4. Spatial distributions of the first POD modes corresponding to the x-velocity component for (a,b,c,d)
o =0.0, (e,f.g,h)  =0.8 and (i,j,k,l) @ = 1.6. Panels (a,e,i), (b,f)), (c,g,k) and (d,h,l) show the POD modes
for Re = 100, 120, 140 and 160, respectively.
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Figure 5. Sensitivity of the subspace with respect to the Reynolds number variation as a function of the
Reynolds number when the dimension of the subspace is 12. The rotation rate is fixed at « = 0.0.

in the first POD mode, whereas the characteristic structure is deflected upward, as shown
in figure 4(e—h). Focusing on the Reynolds number dependence of the first POD mode at a
rotation rate of 0.8, the characteristic structure becomes finer with an increasing Reynolds
number, as in the non-rotating case. Figure 4(i—/) show the first POD modes when the
rotation rate is 1.6 for different Reynolds numbers. The characteristic structure is further
deflected upward. Moreover, the variation in deflection angle is larger when the rotation
rate is increased from o = 0.8 to 1.6 compared with the variation from 0.0 to 0.8.

Figure 5 shows the subspace sensitivity with respect to the Reynolds number obtained
by (2.23) as a function of the Reynolds number when the dimensions of the subspace
are fixed at 12. The rotation rate is fixed at « = 0.0. Numerical simulations using the full-
order model and POD analysis are performed in the range of Re = 60 to 160 with ARe =5
to calculate the subspace sensitivities. The sensitivity of the subspace decreases smoothly
and monotonically as the Reynolds number increases. This suggests that at lower Reynolds
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Figure 6. Relationship between the inverse of the subspace sensitivity and Roshko number Ro(= Re - St) for
different subspace dimensions: (a) inverse of the subspace sensitivity calculated with (2.23); () inverse of
the subspace sensitivity using normalised line elements by subspace dimension AS = As/r instead of As in
(2.23). Fitting curves of the form ARe/As =a - Ro + b are also indicated.

number, the variation of the subspace becomes larger per unit Reynolds number, whereas
the subspace variation is less significant at higher Reynolds numbers.

To discuss this in more detail, the inverse of the subspace sensitivity as a function
of the Roshko number, Ro = Re - St for different subspace dimensions is shown in
figure 6(a). Fitting curves of the form ARe/As =a - Ro + b are also plotted. Curve fitting
is performed in the ranges of 60 < Re < 70 and 60 < Re < 100 for subspace dimensions
of eight and ten, respectively. For subspace dimensions of 12 and 14, curve fitting is
performed in the range of 60 < Re < 160. At a low Roshko number, the inverse of the
subspace sensitivity is approximately proportional to the Roshko number, regardless of
the subspace dimension. When the subspace dimension is equal to or greater than 12, the
linear relationship shows good agreement with the obtained results in the range of Roshko
numbers considered in this study.

Additionally, this result implies that the inverse of the subspace sensitivity becomes
zero when Ro = 2.7, which corresponds to Re ~ 31 according to (3.3), regardless of the
subspace dimensions. If we consider moving along the curve on the Grassmann manifold
in the direction of the decreasing Roshko number, figure 6(a) indicates that the point
(subspace) corresponding to Ro < 2.7 is inaccessible when moving along a curve from a
point corresponding to Ro > 2.7. In other words, the subspace that characterises the flow
field for Ro < 2.7 cannot be obtained by the continuous deformation of the subspace that
characterises the flow field considered in this study. In view of fluid dynamics, no vortex
shedding can be excited for Re < 25, which is referred to as the diffusion dominated regime
for fluid flow around a cylinder (Ahlborn, Seto & Noack 2002). Noack & Eckelmann
(1994) reported that no distinct complex conjugate eigenvalue pair defining a characteristic
frequency of the flow field is obtained for Re <30 in their stability analysis. These
results suggest that the considerable changes in the properties of the eigenvalues and
eigenvectors are closely related to the bifurcation. Our results imply that the subspace
sensitivity approaches infinity when Re ~ 31, which corresponds to a significant change
in the properties of the POD modes for the flow field around a cylinder. This suggests
the potential to detect the existence of bifurcation points by exploring the curve on the
Grassmann manifold in the direction towards which the subspace sensitivity approaches
infinity. Furthermore, the inverse of the subspace sensitivity collapses to a unified line
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Figure 7. Relationship between the inverse of subspace sensitivity and rotation rate « for different subspace
dimensions r: (a) inverse of the subspace sensitivity calculated with (2.23); (b) inverse of the subspace
sensitivity using normalised line element. The Reynolds number is fixed at 100.

when the line element is normalised by the subspace dimension (i.e. AS:= As/r), as
shown in figure 6(b). These results imply that the geometric features of the curve on the
Grassmann manifold are closely related to the features of the fluid flow or the subspace
spanned by the POD modes. This motivates the modelling of the parameter dependence of
the subspace for the dynamics of fluid flow based on the geometric features of the matrix
manifolds.

Figure 7(a) shows the inverse of the subspace sensitivity with respect to the rotation
rate as a function of the rotation rate for different subspace dimensions. The Reynolds
number is fixed at 100. The subspace sensitivity to the rotation rate is obtained using the
numerical simulation of the full-order model, ranging from o = 0.0 to 2.0 with Aa =0.2.
The subspace sensitivity is approximately constant for o < 1 regardless of the subspace
dimension. By contrast, for o > 1, the inverse of the sensitivity rapidly decreases as the
rotation rate increases (hence, the subspace sensitivity increases). This trend is consistent
with the fact that the variation in the deflection angle of the first POD mode structure is
larger when the rotation rate increases from o = 0.8 to 1.6 compared with the variation
from o = 0.0 to 0.8, as observed in figure 4.

Figure 7(b) shows the inverse of subspace sensitivity, where the line element is
normalised by the subspace dimension as a function of the rotation rate. The inverse
of the normalised subspace sensitivities for different dimensions seems to converge to
a unified curve at a higher rotation rate and reaches zero at approximately o = 2.2. The
flow past a rotating cylinder exhibits a steady state when the rotation rate increases (Hopf
bifurcation) and the critical rate is approximately o = 2.0 for Re = 100 (e.g. Sierra et al.
2020). These results indicate that the inverse of the subspace sensitivity decreases to zero
as the parameters approach the vicinity of the Hopf bifurcation point in both the Reynolds
number and rotation-rate directions. The points at which the inverse of the sensitivity
appears to approach zero are slightly away from the Hopf-bifurcation point (on the side
at which a steady solution is obtained). This is because even in a steady flow field, the
modes characterising vortex shedding can be defined; however, these modes are stable and
decay. This is also observed in the sensitivity of the subspaces with respect to variation
in the Reynolds number (figure 6). The point at which the inverse sensitivity appears to
approach zero corresponds to the critical Reynolds number for the diffusion-dominated
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Figure 8. Subspace distribution in a domain of (Re, ) € [100, 160] x [0.0, 1.6] based on the norm and angle
of the tangent vector in the tangent-vector space at (Re, o) = (100, 0.0). The curves along with the Reynolds
number at « = 0.0 (circle symbol) and rotation rate at Re = 100 (square symbol) are also shown.

regime. This is different from the bifurcation point (Re =~ 49), at which the vortex-shedding
modes become unstable (Williamson 1996).

In addition to investigating the subspace sensitivity based on the variation in distance
with the variation in the parameters, it is useful to visualise the distribution of the
subspaces for different Reynolds numbers and rotation rates to understand the parameter
dependence of the subspaces. However, visualising the subspace distribution on the
Grassmann manifold is difficult when the dimension of the Grassmann manifold is high
(dim(Gr(N, r)) = (N —r)r, Absil et al. 2008). This study considers a two-dimensional
visualisation of the relative positions of subspaces on the Grassmann manifold for different
Reynolds numbers and rotation rates. This is achieved by using a two-dimensional polar-
coordinate system defined by the norm of a tangent vector in the tangent-vector space at
(Reg, ag) and by the angle, which is determined by the inner products between the two
tangent vectors. The norm of the tangent vector A € T(gey,a)Gr(N, r) is obtained from
(2.12) as follows:

Al = /trace (AT A). (3.4)
The angle between tangent vectors A1, Az € T(rey,ay) Gr(N, r) is defined as follows:

0 — cos—] (trace(AlTAz)

0<6< 7). 35
||A1||||A2||) ( ™) G2

Figure 8 shows the subspace distribution in the domain (Re, o) € [100, 160] x [0.0, 1.6]
(ARe=10, A =0.2) based on the norm and angle of the tangent-vector space at
(Reg, ag) = (100, 0.0). The norm of the tangent vector is normalised by the norm of the
tangent vector for (Re, o) = (110, 0.0). The angle used for visualisation is defined as the
angle between the tangent vector for each parameter and the tangent vector for (Re, ) =
(110, 0.0). The subspace dimension is set to 12 (hereafter, unless otherwise noted, the
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Figure 9. Spatial distributions of the sensitivity of the POD modes with respect to variation in the Reynolds
number at Re = 100, 120 and 150: (a,b,c) first POD modes; (d,e, f) third POD modes.

subspace dimension is 12). Note that the visualisation of the subspace distribution shown
in figure 8 depends on the tangent-vector space under consideration because the norm and
angles are defined in the tangent-vector space. The corresponding subspace is far from the
tangent point when the norm is large. The subspaces are aligned along the geodesic when
the angles are constant.

First, we focus on the line describing the subspace variation in the Reynolds number
direction when o = 0.0 (circle symbol). The angle determined by (3.5) increases with
the Reynolds number, suggesting that the variation in the subspace with respect to the
Reynolds number is not along a geodesic. Instead, the subspace varies along a curved path
with non-zero curvature. In contrast, the variation in the subspace with respect to the rota-
tion rate is relatively along with a geodesic when the Reynolds number is fixed at 100 with
a range of 0.0 <« < 0.8 (square symbol in figure 8). The region in which the subspaces
are distributed along a straight line corresponds to the range of the rotation rate, where
the subspace sensitivity in the a-direction is constant (figure 7). The angle increases with
increasing rotation rate for o > 1.0, corresponding to the region in which the inverse of the
subspace sensitivity starts to decrease. Moreover, the angle between the tangent vectors
corresponding to (Re, o) = (100, 0.2) and (110, 0.0) is almost orthogonal. This suggests
that the subspace variation in the a-direction is completely distinct from that observed
in the Re direction. Consequently, visualisation of the subspace distribution based on the
norm and angle of the tangent vectors provides insight into the dependency of the subspace
on the parameters. This method is particularly useful for examining whether subspaces are
distributed along a geodesic or a curve on the Grassmann manifold in a simple manner.

3.3. Sensitivity analysis on Stiefel manifold

The dependence of the subspace spanned by the POD modes on the flow parameters was
previously discussed. In this subsection, we focus on the variation in the POD modes
themselves with respect to the flow parameters based on the Stiefel manifold.

The spatial distributions of the sensitivity of the POD modes to the Reynolds number
for « =0.0 are shown in figure 9. Figure 9(a—c) show the sensitivity of the first POD
modes, which correspond to the first column of the matrix dU/d Re defined in (2.33),
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Figure 10. Spatial distributions of the sensitivity of the POD modes with respect to variation in rotation rate
at o = 0.0, 0.6 and 1.4: (a,b,c) first POD modes; (d,e, f) third POD modes.

when Re =100, 120 and 150, respectively. The sensitivities of the POD modes are
evaluated based on (2.34), with A Re = 10. The spatial distributions of the first POD-mode
sensitivity exhibit an antisymmetric structure with respect to the x-axis, as observed in
the spatial distribution of the first POD modes themselves (figure 4). These characteristic
distributions of the POD-mode sensitivity represent the variation in the Reynolds number
of the first POD mode, which appears to be dilating in the x-direction, thereby changing
its spatial wavelength while maintaining its asymmetric structure. The sensitivity of the
first mode for Re = 150 indicates that the variation in the first mode is smaller than those
for lower Reynolds numbers. This corresponds to the fact that the subspace sensitivity is
lower for higher Reynolds numbers, as observed in the mode sensitivity analysis of the
Grassmann manifold.

The spatial distributions of the sensitivity of the third POD mode to the Reynolds
number are shown in figure 9(d—f). The third-mode sensitivity shows a symmetric pattern
with respect to the x-axis, representing the dilation of the third mode, which is also
characterised by a symmetric structure, downstream as the Reynolds number increases.
Similar antisymmetric and symmetric structures of the sensitivities of the first and third
POD modes are observed in a previous study (Hay et al. 2009). As observed in the first-
mode sensitivity, the sensitivity of the third mode decreases slightly as the Reynolds
number increases.

Figure 10 presents the spatial distributions of the sensitivities of the POD modes to
the rotation rate at a fixed Reynolds number of 100. The sensitivities of the POD modes
are evaluated using Ao =0.2 in (2.34). The sensitivities of the first and third POD
modes at o« = 0.0 are shown in figure 10(a,d), indicating approximately symmetric and
antisymmetric structures with respect to the x-axis, respectively. These symmetric and
antisymmetric structures can be interpreted as representing the shifts along the y-axis of
the antisymmetric and symmetric structures with respect to the x-axis, respectively. The
spatial distributions of the first- and third-mode sensitivities at o« = 0.6 (figure 10b,e) show
amplitudes of sensitivity similar to those at @ = 0.0. In contrast, both the first and third
modes at o = 1.4 show higher sensitivities than those at « = 0.0 and 0.6. This indicates
that the structures of these POD modes vary significantly with variations in rotation rate
at o = 1.4. These results are consistent with the finding that the subspace sensitivity to the
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Figure 11. Spatial distributions of the sensitivity modes with respect to variation in the Reynolds number at
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Re =100, 120 and 150: (a,b,c) first sensitivity modes ¢1e; (d,e,f) third sensitivity modes ¢3e.
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Figure 12. Spatial distributions of the contributions of the (a) second term and (b) third term in (2.41) to the
first sensitivity mode with respect to the variation in the Reynolds number at Re = 100.

rotation rate is approximately constant for 0.0 < « < 1.0, while increasing for o > 1.0, as
shown in figure 7.

Thus far, the sensitivities of the POD modes have been analysed. We now focus
on analysing the flow field sensitivities using the POD mode sensitivities defined in
(2.42). Figure 11(a—c) show the spatial distribution of the first sensitivity mode with

respect to the Reynolds number (;Slfe at Re =100, 120 and 150 when the rotation rate
is fixed at 0.0 (where superscript indicates the direction of the parameter change). The
derivative terms with respect to the Reynolds number in (2.37) are evaluated using the
dataset at Re; = 100, 120, 150 and Rep = 110, 130, 160, respectively (i.e. ARe =10). In
this study, the reference Reynolds number is set to Rej. As observed in the first POD
mode sensitivity distributions, the spatial distributions of the first sensitivity modes
exhibit an antisymmetric structure with respect to the x-axis regardless of the Reynolds
number. However, the sensitivity modes exhibit different spatial patterns compared with
the sensitivity of the POD modes. This indicates that the contribution of the second and
third terms in (2.41) to the sensitivity modes is not negligible.

The contributions of the second and third terms in (2.41) to the first sensitivity mode
with respect to the Reynolds number at Re = 100 are shown in figure 12(a,b), respectively.
The contribution of the first term corresponds to the sensitivity of the POD mode, which
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Figure 13. Spatial distributions of the sensitivity modes with respect to the variation in the rotation rate at
a =0.0,0.6 and 1.4: (a,b,c) first sensitivity modes ¢T; (d,e,f) third sensitivity modes 4)(31.

is shown in figure 9(a). The second term in (2.41), which is associated with the sensitivity
of singular values to variations in the Reynolds number, has smaller amplitudes than the
first and third terms, resulting in a slight effect on the sensitivity mode. By contrast, the
third term, which is related to the sensitivity of the semi-orthogonal matrix V, has an
amplitude comparable to that of the first term. This suggests that the sensitivity of the
POD modes and the sensitivity of matrix V are necessary to represent the sensitivity
modes. The sensitivity of V is evaluated using the sensitivity of the matrix R(Re), as
indicated in (2.41). Matrix R(Re) represents the phase shift of the trajectory of the
expansion coefficients (normalised by the singular values) owing to the variation in the
Reynolds number (see the Appendix A for details). Therefore, the third term in (2.41) can
be interpreted as representing the sensitivity of the flow field caused by the phase shift of
the trajectory of the expansion coefficients owing to the Reynolds number variation.

The first sensitivity mode clearly shows that flow sensitivity decreases as the Reynolds
number increases. In particular, figure 11(c) indicates that at Re = 150, the variation in
the Reynolds number results in a smaller variation in the flow field compared with the
sensitivity at Re = 100. The third sensitivity mode also suggests that the magnitude of
the flow field variations owing to the variation in the Reynolds number decreases as the
Reynolds number increases, as shown in figure 11(d—f).

The spatial distributions of the sensitivity modes with respect to the rotation rate at
a =0.0, 0.6 and 1.4 when the Reynolds number is fixed at 100 are shown in figure 13.
The derivative terms are evaluated using the datasets at a; =0.0, 0.6, 1.4 and an =
0.2,0.8,1.6 (i.e. Ax =0.2). The reference rotation rate is set to «. The first and third
sensitivity modes at « = 0.0 present structures similar to the spatial distributions of the
sensitivities of the first and third POD modes (figure 13a,d). This indicates that the
effect of the sensitivity of the POD modes is predominant compared with the second and
third terms in (2.41). As the rotation rate increases, the structures of the first and third
sensitivity modes evolve into spatial structures that differ from the spatial structures of
the corresponding POD mode sensitivities. In particular, the sensitivity modes at « = 1.4
suggest that the effects of the second and third terms in (2.41) become significant, as shown
in figure 13(c, f).
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Figure 14. Spatial distributions of the contributions of (a,c) second term and (b,d) third term in (2.41) to the
first sensitivity mode with respect to variation in the rotation rate: (a,b) at = 0.0; (c,d) at o« = 1.4.

Figure 14(a,b) shows the contribution of the second and third terms to the first sensitivity
mode with respect to the rotation rate at @ = 0.0, respectively. In contrast to the symmetric
structure of the first term, an antisymmetric structure appears in both the second and third
terms. However, the amplitudes of the second and third terms are significantly smaller than
those of the first term, resulting in a slight contribution to the sensitivity mode. However,
the contribution of the second and third terms are non-negligible when the rotation rate
increases. In particular, the contribution of the third term is comparable to that of the first
term, as shown in figure 14(c,d). This indicates that the sensitivity of the matrix R(w),
which represents the phase shift of the expansion coefficient, plays an important role in
the sensitivity of the flow field, in addition to the sensitivity of the POD modes when the
rotation rate is high.

As discussed previously, parameters associated with high sensitivity in the POD modes
also exhibit high subspace sensitivity. This correspondence can be attributed to the fact
that the Grassmann and Stiefel manifolds share a closely related geometric structure.
Moreover, as shown in figure 8, regions where the subspace distribution deviates from
a geodesic path and instead follows a curved trajectory correspond to the parameters
that exhibit high POD mode sensitivity. These results suggest that visualising the spatial
distribution of the POD mode sensitivity allows us to identify which regions in the flow
field contribute to high subspace sensitivity, as well as to the curvature of the trajectory
on the Grassmann manifold. Therefore, the framework developed in this study provides
a methodology for linking the geometric characteristics of matrix manifolds with the
underlying fluid dynamics.

Following the previous discussion of the flow field sensitivity modes, we examine the
sensitivity of the flow field by superimposing the sensitivity modes. Figure 15 shows the
instantaneous spatial distributions of the x-velocity component and corresponding spatial
distributions of its sensitivity to the Reynolds number at (Re, o) = (100, 0.0). Note that,
in addition to (2.42), the sensitivity distributions (figure 15b,d, f,h) include the sensitivity
of the mean flow field. The spatial distribution of the sensitivity at each time can be
interpreted as representing how the flow field at the corresponding time varies with small
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Figure 15. Spatial distributions of the flow field sensitivity with respect to variation in the Reynolds number at
(Re, @) = (100, 0.0): (a,c,e,g) instantaneous spatial distributions of the x-velocity component at /7 = 0.00,
0.25, 0.50 and 0.75; (b.d, f,h) distributions of the x-velocity component sensitivity.

variation in the Reynolds number. The region of high sensitivity corresponds to the areas
in which the Karman vortex street forms. As the vortex structures advect downstream,
the regions of high sensitivity advect accordingly. Therefore, this sensitivity distribution
represents the modification of the Kdrmdn vortex street structure with the variation of the
Reynolds number. Note that the variation of the Reynolds number affects not only the flow
field structures immediately behind the cylinder, but also the structure of the flow field in
the downstream region.

Figure 16 shows the spatial distribution of the x-velocity component and corresponding
spatial distribution of its sensitivity to the rotation rate at (Re, o) = (100, 1.4). Unlike the
spatial distribution of the sensitivity to the Reynolds number, the sensitivity distribution
indicates that the variation in the rotation rate slightly affects the structures of the Karmén
vortex structure. In particular, varying the rotation rate has little effect on the flow field
in the downstream region (x/D > 5). Instead, it indicates that the flow field has high-
sensitivity regions around and immediately behind the cylinder.

As discussed previously, the mode sensitivity analysis on the Stiefel manifold allows
the visualisation of the variation in the flow field with the flow parameters. A distinctive
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Figure 16. Spatial distributions of the flow field sensitivity with respect to variation in the rotation rate at
(Re, @) = (100, 1.4): (a,c,e,g) instantaneous spatial distributions of the x-velocity component at /7T = 0.00,
0.25, 0.50 and 0.75; (b,d, f,h) distributions of the x-velocity component sensitivity.

feature of this method is its ability to visualise the instantaneous sensitivity of the flow
field and represent the temporal evolution of the spatial distribution of the flow field
sensitivity based on a superposition of sensitivity modes. The visualisation of the temporal
evolution of regions, indicating high sensitivity to variations in the flow parameters,
provides meaningful insights for applications in the optimal design and active flow control
of fluid machinery.

4. Parametric reduced-order modelling

This section evaluates the performance of the parametric ROM using subspace
interpolation on the Grassmann manifold. First, we compare the reconstructed flow
fields obtained by the parametric ROM, which employs POD modes estimated by direct
interpolation and the parametric ROM, which employs pseudo-POD modes obtained by
the method outlined in §2.4. We then discuss the subspace-estimation and flow-field
reconstruction errors over a wide range of flow parameters when using the parametric
ROM developed in this study.
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4.1. Comparison of parametric reduced-order models based on direct interpolation,
global POD and subspace interpolation on Grassmann manifold

We first discuss the performance comparison of the parametric ROMs for estimating the
subspace and flow field at a given target Reynolds number Re using sets of POD modes
at two different Reynolds numbers Re| and Re; (Re; < Re < Re»). In this subsection, the
target Reynolds number is fixed at 90. The values of Re; and Re; are determined such that
their average is Re =90. An intuitive direct interpolation of the POD modes to estimate
the POD modes at the target Reynolds number is examined for comparison with the results
obtained by subspace interpolation on the Grassmann manifold. The direct interpolation of
the POD modes is defined as the linear interpolation of the POD matrix U (Re1), U (Re2) €
St(N, r):
Re — Re;
U(Re)=——— (U(Rez) — U(Re1)) + U(Req). 4.1)
Rey — Reg
In general, the POD modes estimated by (4.1) do not satisfy orthonormality. We can
easily confirm that the directly interpolated POD set lacks orthonormality as follows:

UT(Re)U(Re) ={(1 —c)U(Rey) + cU(Rez)}T {(1 —c)U(Rey) + cU(Rer)}
— (2 =2+ DI —clc—1) (UT (Rey) U (Rey) +UT (Rex) U (Rel))
£1,, (4.2)

where ¢ = (Re — Re1)/(Rey — Rep). This indicates that the set of POD matrices is not
closed under the operation of addition, i.e. the summation of the column-orthonormal
matrices does not necessarily become a column-orthonormal matrix. Another clear
example is the interpolation of POD matrices U and —U. Because [U] =[—U], the
result obtained by an appropriate subspace interpolation should be [U]. However, direct
interpolation yields a matrix in which all the POD modes are zero vectors. In this
study, a ROM was constructed using POD modes obtained by interpolating via (4.1),
followed by orthonormalisation through QR decomposition (hereafter referred to as ‘direct
interpolation’). In contrast to the direct interpolation method, the orthonormality condition
with respect to the estimated pseudo-POD modes is rigorously satisfied. The matrix
obtained by subspace interpolation on the Grassmann manifold is also an element of
the Stiefel manifold, whose elements U € St(N, r) are defined as UT U = I,; that is, the
column vectors are mutually orthonormal. This property is preferable for constructing a
Galerkin projection-based ROM, where the orthonormality of the (pseudo-) POD modes
plays an important role.

Furthermore, in addition to the direct interpolation method, a performance comparison
is conducted between a parametric ROM based on global POD modes and that based
on manifold interpolation. The global POD approach is a widely used technique for
estimating POD modes in the construction of parametric ROMs (Benner et al. 2015). Let
ORe;ORe, € RNXN: be the snapshot matrices corresponding to Reynolds numbers Re;
and Re;, respectively. The global snapshot matrix Qgjopar is defined as follows:

Qglobal := [QR€1 QRez] e RVx2Nr, (4.3)

The global POD modes ¢; € RN are obtained by solving the following eigenvalue
problem:

Oglobal leobazW% =A;¢;. (4.4)
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A subspace spanned by the leading r global POD modes is then considered. A Galerkin
projection-based ROM is constructed on this subspace using (2.45).

Note that for statistically weakly stationary flow, if the two Reynolds numbers Re; and
Re; are identical, the global POD modes are expected to coincide with the POD modes
obtained using only Qg,,. This holds even if the snapshot matrices Qge, and Qg,, are not
exactly the same; for example, they may differ by a phase shift in time. To demonstrate
this, we first observe that when Re; = Re;, each column of the snapshot matrices Qg
and Qg., can be represented as a linear combination of the same leading r POD modes
(i.e. the leading r POD modes associated with Rej). The phase difference between the
two snapshot matrices is reflected in the phase shift of the corresponding expansion
coefficients. Therefore, the following approximation holds when Re; = Res:

Orey Oke,  Prey Are, Phro, X Orer Ok, (4.5)

where ®g, € RV*" and Ag,, are the POD-mode matrix and the diagonal matrix of
eigenvalues corresponding to Rep, respectively. Thus, we obtain the following:

QT

leobal Qz;lgba[ = [QRe1 QRez] |: I;eli| = QRel QI€(3| + QRez Q£e2 ~ ¢Rel (2AR81) CDIQI .
Re

’ (4.6)

Therefore, when both Qg,, and Qg,, yield the same POD modes, the global POD modes
are expected to coincide with them as well.

The subspace estimated by each method is first examined. When the subspace
corresponding to the target Reynolds number is accurately estimated, the POD modes
at the target Reynolds number (hereafter, these will be referred to as the reference POD
modes) can be represented as a linear combination of the estimated (pseudo-) POD
modes (i.e. ¢; = Z;:l ajj$;, where a;j is a coefficient). Since the POD modes form an
orthonormal basis, considering the squared norm of the ith reference POD mode yields

r

;1> = (@ b)) =D _az=1. 4.7)
j=1

That is, the squared inner product between ¢, and (/)J/- can be interpreted as quantifying
the contribution of the jth estimated (pseudo-) POD mode to the representation of the
ith reference POD mode. Figure 17(a) shows the squared inner product between ¢; and
¢]’., which is estimated using the direct interpolation method for the case of ARe = 10.
There exist reference POD modes ¢, for which the inner products with all estimated POD
modes ¢j’- are close to zero (e.g. i =2 or 4). This suggests the presence of reference POD
modes that are inadequately approximated by linear combinations of the modes estimated
via direct interpolation, as they are nearly orthogonal to the estimated subspace. As shown
in figure 17(b), when the global POD method is used, the lower-order reference POD
modes can be represented by the linear combination of the estimated global POD modes. In
contrast, the inner products between the global POD modes and the higher-order reference
POD modes are close to zero, suggesting that the estimated subspace fails to capture these
higher-order POD modes. However, as shown in figure 17(c), the pseudo-POD modes
estimated via manifold interpolation successfully capture the reference PDO modes across
all orders. Moreover, the reference POD mode pairs {¢,;_;, ¢} lie in the span of the
corresponding pseudo-POD mode pairs {¢5, |, ¢5,} for k=1,2, ..., 6, demonstrating
that while the modes estimated via manifold interpolation do not directly approximate the
reference POD modes themselves, they do span the same subspace. Figure 18(a) shows the
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Figure 17. Comparison of the squared inner product between the reference POD mode ¢; and the estimated
mode ¢j/~: (a) direct interpolation; (b) global POD; (¢) manifold interpolation.

sum of aé over j (i.e. Zj aé) for the case of ARe = 10. If the sum of aé over j for a given
i equals unity, the ith reference POD mode lies entirely within the estimated subspace,
whereas a value of zero indicates that the ith reference POD mode lies entirely in the
orthogonal complement of the estimated subspace. In the case of the direct interpolation
method, the presence of modes with sums close to zero suggests that there exist reference
POD modes that are not adequately captured by the span of the estimated modes. In the
case of the global POD method, the sums remain close to unity up to the sixth mode,
suggesting that these reference modes are effectively captured by the subspace spanned
by the global POD modes. In contrast, higher-order modes are not adequately represented
within this subspace. The manifold interpolation method, however, yields summations that
remain close to unity across all orders, indicating that the estimated subspace agrees well
with the subspace spanned by the reference POD modes. Figure 18(b) shows the subspace-
estimation error as a function of A Re for each method. We define the subspace-estimation
error as the distance between the true subspace [U;.], which is obtained by the reference
POD modes, and estimated subspace [U,]. Regardless of the value of ARe, the manifold
interpolation method yields the smallest estimation error. Moreover, as A Re decreases,
the estimation error associated with the manifold interpolation method is significantly
reduced, implying convergence of the estimated subspace towards [Uyye].

The errors in the flow field reconstruction obtained using the Galerkin projection-based
ROM with estimated POD modes with each method as a function of ARe are shown in
figure 19(a). The error in the flow field reconstruction ¢ is defined as follows:

c _/ e srue (X, 1) — test(x, 1)]2
D et srue (X, 1)]I2

where u;y, and u.g are the fluctuating component of the true and estimated velocity
vectors, respectively, and D denotes the simulation domain. The bar indicates time
averaging. In this study, the ODE:s for the Galerkin-projection ROM (2.45) are solved until
the non-dimensional time is 30. While the reconstruction error of the direct interpolation
method remains large regardless of A Re, both the global POD and manifold interpolation
methods show a clear reduction in error as A Re decreases, indicating convergence of the
estimated subspace to the reference subspace.

Although the global POD method and the manifold interpolation method exhibit
different trends in subspace estimation error (figure 18b), the trends in reconstruction
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entirely within the estimated subspace. (b) Subspace estimation error as a function of ARe.
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Figure 19. Comparison of reconstruction errors of the flow field estimation at the target Reynolds number
(Re =90): (a) reconstruction errors as a function of ARe for three methods: manifold interpolation, direct
interpolation and global POD (with subspace dimension r = 12); (b) reconstruction errors as a function of
A Re for different subspace dimensions using the manifold interpolation method; (¢) reconstruction errors as a
function of A Re for different subspace dimensions using the global POD method.

error by ROM are similar. Figure 19(b) shows the reconstruction error of the flow field
as a function of ARe for ROMs based on the manifold interpolation method, constructed
using different numbers of POD modes. When A Re is greater than 30, the reconstruction
error shows little sensitivity to the number of modes; however, for ARe less than 30, the
error associated with r =4 becomes larger than those observed for r = 6 and r = 12. This
result indicates the following: when A Re is large, the subspace estimation error becomes
large, which limits the effectiveness of increasing the number of modes in reducing the
reconstruction error. In contrast, when A Re becomes small, the estimated subspace better
approximates the one spanned by the reference POD modes. As a result, increasing the
number of modes used in the ROM leads to a more accurate reconstruction. The similarity
in reconstruction errors between the cases of » = 6 and r = 12 can be attributed to the fact
that the cumulative contribution ratio at the target Reynolds number exceeds 99.9 % when
r = 6, indicating the contribution of POD modes higher than the sixth is negligible in this
case.
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It should be noted that, in subspace interpolation on the Grassmann manifold, higher-
order modes may sometimes be difficult to converge and can contain numerical noise,
which may affect the results to a similar extent as noise contaminating lower-order modes,
despite their relatively small eigenvalues. While all POD modes are treated equally on
the Grassmann manifold, figure 19(b) demonstrates that the reconstruction error tends
to decrease with increasing subspace dimension, particularly for small values of ARe,
supporting the validity of the framework employed in this study.

Figure 19(c) shows the reconstruction error obtained by ROM using the global POD
modes with different numbers of modes. A similar trend to that observed with manifold
interpolation can be seen overall. However, in contrast to the manifold interpolation, the
reconstruction errors exhibit similar trends for r =4 and r =6, whereas for r =12, a
smaller error is achieved when A Re < 30. These results highlight a key difference between
the manifold interpolation and global POD methods. In the case of manifold interpolation,
figure 19(b) implies that six POD modes are sufficient to accurately reconstruct the fluid
flow. However, for the global POD method, figure 19(c) suggests that six modes are not
sufficient and higher-order global POD modes are required to achieve accurate flow field
reconstruction. Indeed, figure 17(b) shows that the fifth and sixth reference POD modes
are represented by linear combinations of global POD modes of order higher than six,
specifically the seventh and eighth modes.

Consequently, both the global POD and manifold interpolation methods can accurately
predict flow fields at unseen parameter values when a sufficient number of POD modes
is used. However, to achieve low reconstruction errors, the global POD approach requires
more modes than manifold interpolation. This contrast reflects the difference between the
two methods: the global POD method represents the flow field at a target parameter within
a single linear subspace that is optimal for capturing the flow field across all parameters
in the training dataset, whereas the manifold interpolation estimates parameter-dependent,
locally optimal subspace to achieve more efficient reconstruction of the flow field at the
target parameter. This difference becomes significant in the construction of parametric
ROM to predict flow fields over a wide range of parameters as will be discussed in the
following subsection.

Exploration of the spatial distribution of the flow field reconstructed by the ROM
provides insights to characterising the property of the parametric ROM developed in this
study. Figure 20(a) shows the time-averaged spatial distribution of the square of the ve-
locity fluctuation of the x-component obtained using the full-order model. Figure 20(b—d)
present the spatial distributions estimated by ROMs based on the direct interpolation
method, the global POD method and the manifold interpolation method, respectively,
under the condition of ARe =30 and » = 6. While the spatial distribution estimated by
the direct interpolation method deviates significantly from that of the full-order model,
both the global POD and manifold interpolation methods capture spatial structures that
are in good qualitative agreement with the result of the full-order model. Figure 20(e—g)
show the spatial distributions predicted by each method when ARe = 10 and r = 6. Even
with a small ARe, the direct interpolation method still fails to reproduce the spatial
structure observed in the full-order model. In contrast, as A Re decreases, both global
POD and manifold interpolation methods obtain more accurate reconstructions of the
time-averaged spatial distribution of the squared x-velocity fluctuation.

To enable a more detailed comparison, figure 21(a—c) respectively present the profiles of
the variance of the x-velocity fluctuation, the variance of the y-velocity fluctuation, and the
covariance between the x- and y-velocity fluctuations at x /D = 2.4, obtained from each
method (ARe = 10 and r = 6). For all the profiles, the results obtained using the direct
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Figure 20. Comparison of the time-averaged spatial distribution of the variance of the x-velocity fluctuation:
(a) full-order model; (b,e) direct interpolation; (c,f) global POD; (d,g) manifold interpolation. Panels (b,c,d)
and (e, f,g) show the results for ARe =30 and A Re = 10, respectively.
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Figure 21. Comparison of the profiles of (a) variance of the x-velocity fluctuation, (b) variance of the y-
velocity fluctuation and (c¢) covariance between the x- and y-velocity fluctuations at x /D = 2.4 obtained from
manifold interpolation, direct interpolation, global POD and full-order model for ARe =10 and r = 6.

interpolation method lack symmetry and deviate significantly from the full-order model.
In contrast, both the global POD and manifold interpolation methods yield profiles that
are in good agreement with those obtained by the full-order model, with the manifold
interpolation method tending to yield slightly improved results. The above-mentioned
results are based on a case where the flow field at an unseen parameter is estimated using
only two different training parameters, under which both the global POD and manifold
interpolation methods yield similar performance; specifically, reducing ARe leads to a
decrease in reconstruction errors.
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ARe Re for training dataset Re for test dataset

10 60, 70, 80, 90, 100, 110, 120, 130, 140 65,75, 85, 95,105, 115, 125, 135
20 60, 80, 100, 120, 140 70, 90, 110, 130

30 60, 90, 120, 150 75, 105, 135

40 60, 100, 140 80, 120

Table 1. Sampling points Re used as the training dataset for POD modes and Reynolds numbers for evaluation
(denoted as the test dataset) for each ARe.
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Figure 22. Error evaluation of the parametric ROM across a wide range of Reynolds numbers using different
ARe; (a) subspace error; (b) flow field reconstruction error. The subspace dimension is fixed to 12.

4.2. Error evaluations of subspace estimation and flow field reconstruction:
one-parameter variation case

Here, we evaluate the errors of the subspace estimation and flow field reconstruction over a
wide range of Reynolds numbers using a parametric ROM based on subspace interpolation
on the Grassmann manifold. Parametric ROMs constructed using subspaces sampled at
different A Re values are examined to discuss convergence of the estimation error with
respect to the subspace-sampling interval ARe. Table 1 summarises the conditions for
ARe considered in this study, the Reynolds numbers used to interpolate the subspaces
(denoted as the training dataset), and the Reynolds numbers used to estimate the subspaces
and reconstruct the flow field (denoted as the test dataset). The Reynolds numbers for
subspace and flow field estimation are determined so that their average coincides with the
Reynolds number of the training dataset, i.e. the Reynolds number for the estimation is
Re = (Re| + Re)/2 when using the subspaces at Re; and Rex(= Rey + ARe).

Figure 22(a) shows the subspace-estimation errors as functions of the Reynolds number
for different A Re values. The subspace-estimation error decreases with decreasing ARe
for all Reynolds numbers considered in this study. In addition, the error decreases with
increasing the Reynolds number, regardless of ARe, because the subspace sensitivity
decreases with increasing the Reynolds number (see figure 5). The error in the flow
field reconstructed using the parametric ROM as a function of the Reynolds number for
different A Re values is shown in figure 22(b). The reconstruction error decreases with
decreasing A Re and increasing Reynolds number for a fixed A Re. This highlights that
the reconstruction error is closely related to the subspace-estimation error.
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Figure 23. Comparison of reconstruction errors of the parametric ROM across a wide range of Reynolds
numbers: (a) reconstruction errors as a function of Reynolds number using the manifold interpolation, global
POD and local POD methods, with a fixed subspace dimension of 12; (b) reconstruction errors obtained using
the manifold interpolation method as a function of Reynolds number for different subspace dimensions.

We also compare the reconstruction errors of the flow field estimated using the
global POD modes and the manifold interpolation method. Figure 23(a) shows the
reconstruction errors of the flow field obtained by each method as a function of
Reynolds number for the case of ARe =10. The global POD modes were computed
from the covariance matrix constructed from the combined snapshot matrices at Re =
60, 70, . . ., 140. For comparison, we also present the reconstruction error obtained using a
ROM constructed with POD modes computed from the snapshot data at Re = 95 (referred
to as local POD). While the reconstruction error for the local POD remains sufficiently
small at the Reynolds number used for the POD analysis (i.e. Re =95), it increases
significantly as the Reynolds number deviates from this value. In contrast, the global
POD method demonstrates lower reconstruction errors compared with those of the
local POD method over a broad range of Reynolds numbers. Moreover, the manifold
interpolation method yields lower reconstruction errors compared with the global POD
method, suggesting that manifold interpolation provides a more robust framework for
problems involving flow field prediction in a wide parameter range. Figure 23(b) presents
the reconstruction errors of the flow field estimated using the subspace interpolation on
the Grassmann manifold as a function of the Reynolds number for different subspace
dimensions. For all Reynolds numbers considered, the reconstruction error decreases
as the subspace dimension increases. This indicates that, within the range of Reynolds
numbers and subspace dimensions addressed in this study, incorporating higher-order
modes leads to reduced reconstruction errors, resulting in more reliable parametric ROMs.

4.3. Parametric reduced-order modelling of flow field around a rotating cylinder, and
error evaluations of subspace estimation and flow field reconstruction

We then evaluate the performance of the parametric ROM, which estimates the locally
optimal subspace and reconstructs the flow field at a given Reynolds number and cylinder-
rotation rate. Figure 24 shows the flow parameters (a combination of the Reynolds number
Re and rotation rate «) employed to interpolate the subspaces (training dataset) and
parameters used to estimate the subspaces and reconstruct the flow field (test dataset).
Two types of training datasets, coarse- and fine-sampling data sets, are used in this study.
The subspace estimation and flow field reconstruction errors are compared between the

1021 A44-35


https://doi.org/10.1017/jfm.2025.10733

https://doi.org/10.1017/jfm.2025.10733 Published online by Cambridge University Press

S. Sato and O.T. Schmidt

Training dataset Training dataset
(coarse) (fine) Test dataset

\ i
wld A 6 A &6 A o ﬁz@-
L 2 L 2 ® o L 2 L 2 L 2
A A A A A A A A A
L 2 L 2 ® ¢ L 2 * ¢ o
W0 A O A O A O A O
* o 6 0 0 0 ¢ o
Re |A A A A A A A A A
* 4 6 6 06 0 o+ o
200 A © A O A O A O
¢ 4 ¢ 6 4 0 o o
A A A A A A A A A
L 2 L 2 ® o L 2 L 2 L 2 L 4
06 A O A O A O A O
0 04 0.8 1.2 1.6
o

Figure 24. Sampling points (Re, «) used as the coarse (circle symbol) and fine (triangle symbol) training
datasets, and test-data set (diamond symbol) for evaluation of the errors of parametric ROM in two-dimensional
parameter space.

two datasets. For the coarse dataset, the subspaces are sampled at intervals of ARe =20
and Aa = 0.4. For the fine dataset, the subspaces are sampled at intervals of ARe =10
and Aa =0.2.

The parametric ROM for two-dimensional parameter space is performed in two steps,
as in the one-dimensional case: the subspace-estimation step and Galerkin projection-
based ROM step. First, four subspaces corresponding to the conditions closest to the
target parameters are selected from the training dataset. These subspaces are mapped
onto the tangent-vector space using a logarithmic map (2.16). The subspace for the target-
flow condition is estimated using bilinear interpolation in the tangent vector space. The
initial conditions and mean field required for the Galerkin projection-based ROM are also
estimated using bilinear interpolation. In the second step, using the estimated subspace,
initial condition and mean field, the ODEs (2.45) for the Galerkin projection-based ROM
are used to reconstruct the flow field. The second step follows the same procedure as that
in the case of a one-dimensional parameter space.

Figure 25(a,b) shows the error distributions of the subspace estimation in o-Re space
for the coarse and fine datasets, respectively. The subspace-estimation error decreases as
the Reynolds number increases for both the coarse and fine datasets. This is related to the
dependence of the subspace sensitivity on the Reynolds number, as discussed in § 3.2. As
shown in figure 5, the subspaces are not uniformly distributed on the Grassmann manifold
when sampled at a constant interval of A Re. The interval between two different subspaces
on the Grassmann manifold As increases at lower Reynolds numbers. Therefore, the
subspace-estimation error increases as the Reynolds number decreases when the subspaces
are sampled at a constant ARe. In addition, the error increases as the rotation rate
increases, particularly in the region where o > 1.1, which corresponds to the subspace
sensitivity increasing with respect to the rotation rate for « > 1.1 (figure 7). Furthermore,
the estimation error decreases when the subspace is estimated using the fine dataset
compared with the coarse dataset. This indicates that reducing the sampling interval of
the subspaces used for interpolation also leads to a decrease in the estimation error.

The error distributions of the flow field reconstruction by the parametric ROM using
the coarse and fine datasets are shown in figure 25(c,d), respectively. The flow field
reconstruction error follows a trend similar to that of the subspace-estimation error: the
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Figure 25. Error distributions of the parametric ROM in two-dimensional parameter space: (a,b) subspace-
estimation errors when using coarse and fine training datasets, respectively; (c,d) flow field reconstruction
errors.

reconstruction error decreases as the Reynolds number increases and the rotation rate
decreases. In addition, the use of a finer dataset reduces the reconstruction error because
the use of a finer dataset reduces the subspace-estimation error. This result suggests that,
when constructing a parametric ROM, the subspace-estimation error plays a dominant
role in determining the flow field reconstruction error. This highlights that minimising the
subspace-estimation error is important for reducing the error in the flow field estimated
by the parametric ROM. A parametric ROM that reproduces flow fields with a small error
over a wide range of parameters can be efficiently constructed by sampling the subspaces
finely in regions with high subspace sensitivity and coarsely in regions with low sensitivity,
because the subspace-estimation error is related to the subspace sensitivity.

5. Conclusions

In this study, the sensitivity analysis of POD modes and the subspace spanned by them
with respect to changes in flow parameters were analysed from the perspective of matrix
manifolds. This approach provides insight into how the locally optimal structures and fluid
flow evolve with parameter variations, leading to the construction of a reliable parametric
ROM. The sets of POD modes and subspaces spanned by them over a wide range of
flow parameters were represented as subsets on the Stiefel manifold and Grassmann
manifold, respectively. The relationship between the POD modes or subspaces at different
parameters were analysed using the geometric features of the curves or curved surfaces on
the matrix manifolds. The set of POD modes and subspaces were characterised by defining
the Riemannian metric, and distance on the Stiefel manifold and Grassmann manifold,
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respectively. The results obtained from the geometric analysis on the matrix manifolds in
this study provided the following insights.

First, the tangent vector along the curve on the Grassmann manifold can be interpreted
as the sensitivity of the subspace. This is closely related to the variation in the dynamics
of the fluid flow due to changes in the flow parameters. The sensitivity of the subspace,
which is spanned by the POD modes for the flow field around a cylinder, increased
with decreasing Reynolds number. Our results indicate that the inverse of the subspace
sensitivity increased linearly with the Roshko number, especially for higher subspace
dimensions. This relationship collapsed into a unified line when the line element of the
curve on the Grassmann manifold was normalised by the subspace dimension. In addition,
the results obtained in this study indicate that the Reynolds number, at which the inverse
of the subspace sensitivity becomes zero, was in good agreement with the lower bound of
Reynolds number, where the characteristic frequency of the Kdrman vortex street exists
(see figure 6). The inverse of the subspace sensitivity with respect to the rotation rate
of the cylinder decreases as the rotation rate increases and is approaching zero as the
rotation rate approaches the vicinity of the Hopf bifurcation point (see figure 7). These
results imply that the flow parameter at which the subspace sensitivity approached infinity
corresponded to the parameter at which the properties of the POD modes and fluid flow
change significantly. Consequently, the geometric features of the curve on the Grassmann
manifold provided insights into the parameter dependence of the fluid-flow dynamics.
Additionally, the distribution of the subspaces as a function of the Reynolds number
and rotation rate was visualised using the norm of the tangent vector and angle between
tangent vectors for two different parameters. The distribution obtained in the tangent vector
space whose base point corresponded to (Re, o) = (100, 0.0) indicated that the variation
in the subspace to the Reynolds number is not along a geodesic. Instead, the subspace
varies along a curved path with non-zero curvature. In contrast, the subspaces were almost
aligned with a geodesic with a rotation rate in the range of 0.0 < o <0.8.

Second, the sensitivity of the POD modes was represented as a tangent vector on the
Stiefel manifold. This enabled the analysis of the flow field sensitivity by superposing
the sensitivity modes, which were defined using the tangent vector and sensitivity of the
matrices associated with the expansion coefficients. The sensitivity of the POD modes
with respect to the Reynolds number showed the displacement of the POD modes in
the x-direction (main streamwise direction). The sensitivity with respect to the rotation
rate represented a distribution indicating the displacement of the POD modes in the
y-direction. The sensitivity mode of the flow field with respect to the Reynolds number
exhibited a distribution similar to that of the POD mode sensitivity. We found that not
only the POD mode sensitivity, but also the expansion coefficient sensitivity played an
important role in representing the flow field sensitivity. In particular, the phase shift
in the expansion coefficients due to the change in the Reynolds number had a crucial
contribution to the flow field sensitivity. Regarding the sensitivity modes with respect to
the rotation rate, the sensitivity of the POD modes was predominant when the rotation rate
was low, indicating that the influence of sensitivity related to the expansion coefficient
was negligible. In contrast, when the rotation rate was high, the phase shift of the
expansion coefficients affected the sensitivity of the flow field. We also visualised the
spatial distribution of the flow field sensitivity by superposing the obtained sensitivity
modes. The spatial distribution of the flow field sensitivity with respect to the Reynolds
number showed how the structure of the Karman vortex street evolved as the Reynolds
number varied, that is, the high-sensitivity region appeared along with the structure of
the Karmdn vortex street. In contrast, the spatial distribution of the flow field sensitivity
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with the rotation rate indicates that the downstream region exhibited low sensitivity. The
flow field around and immediately behind the cylinder showed high sensitivity to changes
in the rotation rate. The spatial distribution of the flow field sensitivity with respect to
the parameter changes enabled the investigations of the variation in the flow field when
deviating slightly from the design point of fluid machinery and the effect of parameter
uncertainties on the uncertainties in the flow field at a low computational cost.

Third, the subspace estimation error, which was closely related to subspace sensitivity,
influences dominantly the reconstruction error of the parametric ROM based on the
subspace interpolation on the Grassmann manifold. This suggested that clarification of
the parameter dependence of subspace sensitivity leads to the realisation of a parametric
ROM with a small reconstruction error using a limited number of subspace samples. In
this study, we compared the performance of parametric ROMs constructed using the direct
interpolation method, the global POD method and the manifold interpolation method.
Our results demonstrated that, for estimating the subspace at an unseen parameter, the
direct interpolation and global POD methods failed to accurately capture the subspace
spanned by the reference POD modes, whereas the manifold interpolation method
successfully identified the locally optimal subspace corresponding to the target parameter.
For the flow field reconstruction, the direct interpolation method failed to reproduce
the physically consistent flow field, even when ARe was small. In contrast, both the
global POD and manifold interpolation methods accurately reproduced the flow field
at the target parameter, with smaller A Re resulting in lower reconstruction errors. The
difference between the global POD and manifold interpolation methods lies in the
number of POD modes required to achieve sufficiently small reconstruction errors. The
manifold interpolation method resulted in smaller reconstruction errors with fewer modes,
reflecting its ability to capture parameter-dependent, locally optimal subspaces, whereas
the global POD method does not necessarily provide the locally optimal subspace for
each parameter. We also confirmed that the effectiveness of the manifold interpolation
method becomes more pronounced when the parametric ROM is constructed using
training data that span a wider parameter range. Furthermore, the reconstruction error of
the flow field estimated using the parametric ROM with pseudo-POD modes decreased
by decreasing the interval for subspace sampling in both the Reynolds-number and
rotation-rate directions. The distribution of the reconstruction error in the parameter space
exhibited a trend similar to that of the subspace-estimation error, which was affected by
the subspace sensitivity. This result indicates that obtaining an appropriate subspace for
the target parameter was essential to improve the performance of the parametric ROM.
Specifically, our results implied that finely sampling subspaces in regions with high
subspace sensitivity and coarsely sampling in regions with low sensitivity was preferable
for efficiently minimising the reconstruction error with a limited number of subspace
samples. Also, when interpolating subspaces on the Grassmann manifold, the magnitude
of the eigenvalues of each POD mode is disregarded. As a result, in the case where higher-
order modes exhibit poor convergence or contain noise, often due to limiting sampling or
more complex unsteady dynamics, the subspace interpolation may introduce inaccuracies.
Within the range of flow fields and subspace dimensions considered in this study, the
developed framework yielded physically consistent results. However, in situations where
higher-order modes are not sufficiently converged, exploring extensions such as the order-
preserving interpolation method recently proposed by Goutaudier, Nobile & Schiffmann
(2023) could provide a promising direction for future research.

These findings were obtained from a geometric analysis of the POD modes on the
matrix manifolds with the distance that relates the subspaces for different flow parameters.
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When discussing the features of fluid-flow dynamics over a wide range of flow parameters
(e.g. the initial and boundary conditions of the Navier—Stokes equations), instead of
attempting to extract a linear subspace in which the flow fields for the entire parameter
space are described, we showed that the subspaces indicating the local features of the
fluid flow evolved continuously with changes in the parameters, thereby providing another
intuition for understanding fluid dynamics from a global perspective. This perspective
provided a framework for analysing experimental and numerical simulation data using
the geometric properties of the Grassmann manifold and Stiefel manifold, which were
interpreted abstractly. Mode sensitivity analysis and parametric ROM will contribute to
the extraction of comprehensive insights into fluid dynamics over a wide range of flow
parameters from data. It will also lead to the development of novel techniques for the
optimal design of fluid machinery, sensitivity analysis of fluid flows with respect to
changes in parameters and active flow control, in which the evaluation of the flow field
in a wide range of parameter spaces with significantly low computational costs is crucial.

Funding. This work was supported by JST PRESTO (Grant Number JPMJPR2104) and JSPS KAKENHI
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Appendix A. Validity of rotation approximation of semi-orthogonal matrices

Here, we discuss the validity of the approximation in (2.38), which is used to define
the sensitivity modes. To evaluate this validity, we demonstrate that the semi-orthogonal
matrix consisting of right singular vectors at a specified reference parameter V'¢ can be
represented as the product of the semi-orthogonal matrix V (£) and R” (&). The orthogonal
matrix R(§) is obtained by solving the orthogonal Procrustes problem (Gulub & Loan
2013) as follows:

minimise |V (&) — V'YR&)||F, subjectto R() € O(r), (A1)

where | - || indicates the Frobenius norm. The SVD of (VT V (§) is performed to
minimise R(§) (Al):

(v ' vEe) L upspvE. (A2)

The product of Up and V; is the R(&) that minimises (A1).

Figure 26(a—e) show the phase portraits of the trajectories of v(¢; &) € R” for different
Reynolds numbers ranging from 100 to 160 when the rotation rate was fixed at 0.0,
where VT(é) =: [vl(é) Y (éf)] e R"™*Nt The product of v(¢; &) and the singular
values correspond to the expansion coefficients a(t; £) € R”. The reference parameter is
set to (Re, o) = (100, 0.0). The trajectory varies with the Reynolds number, whereas all
trajectories exhibit periodic behaviour (i.e. limit cycle). This indicates that the difference
in these periodic trajectories is owing to differences in their phases. The phase portraits
of the trajectories determined by the matrix V (Re)R” (Re) instead of V (Re) are shown
in figure 26(f—j). These trajectories coincide with that determined by V’¢ regardless
of the Reynolds number, which suggests that the trajectories of v can be represented as
V(Re) ~ V'YR(Re).

Figure 27(a—e) show phase portraits of the trajectory for rotation rates ranging from 0.0
to 1.6 when the Reynolds number is fixed at 100. The trajectory, which shows a limited
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Figure 26. Phase portraits of the trajectories of expansion coefficients normalised by corresponding singular
values for different Reynolds numbers at « = 0.0: (a,b,c,d,e) trajectories determined by V (Re) (the parameter
corresponds to the Reynolds number); (f,g,h,i,j) trajectories determined by V (Re)R T(Re). Panels (a,f), (b,g),
(c,h), (d,i) and (e.j) show the phase portraits of the normalised expansion coefficients of the 1st-3rd, 1st-5th,
1st=7th, 1st-9th and 1st—11th modes, respectively.
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Figure 27. Phase portraits of the trajectories of the normalised expansion coefficients for different rotation rates
at Re =100: (a,b,c,d,e) trajectories determined by V(«); (f,g,h,ij) trajectories determined by V(@)RT ().
Panels (a,f), (b,g), (c,h), (d,i) and (e,j) show the phase portraits of the normalised expansion coefficients of the
1st-3rd, 1st=5th, 1st-7th, 1st-9th and 1st—11th modes, respectively.

cycle, varies with the rotation rate, as in the case of the Reynolds number variation.
The trajectories determined by the matrix V(@)RT (a) show good agreement with the
trajectory of V'€, where the reference parameter is (Re, «) = (100, 0.0), as shown in
figure 27(f—j). Thus, we can conclude that matrix R(§) can be interpreted as representing
the phase differences between the trajectories determined by V (£) and V'¢/, and the matrix
V (£) can be approximated as the product of V'¢ and R(&). This approximation is valid
for the flow parameters considered in this study because the difference in trajectories is
caused by the phase difference in these trajectories.
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