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 a b s t r a c t

Most model reduction methods reduce the state dimension and then temporally evolve a set of 
coefficients that encode the state in the reduced representation. In this paper, we instead employ 
an efficient representation of the entire trajectory of the state over some time interval of interest 
and then solve for the static coefficients that encode the trajectory on the interval. We use spectral 
proper orthogonal decomposition (SPOD) modes, which are provably optimal for representing 
long trajectories and substantially outperform any representation of the trajectory in a purely 
spatial basis (e.g., POD). We develop a method to solve for the SPOD coefficients that encode the 
trajectories for forced linear dynamical systems given the forcing and initial condition, thereby 
obtaining the accurate prediction of the dynamics afforded by the SPOD representation of the 
trajectory. The method, which we refer to as spectral solution operator projection (SSOP), is 
derived by projecting the general time-domain solution for a linear time-invariant system onto the 
SPOD modes. We demonstrate the new method using two examples: a linearized Ginzburg-Landau 
equation and an advection-diffusion problem. In both cases, the error of the proposed method is 
orders of magnitude lower than that of POD-Galerkin projection and balanced truncation. The 
method is also fast, with CPU time comparable to or lower than both benchmarks in our examples. 
Finally, we describe a data-free space-time method that is a derivative of the proposed method 
and show that it is also more accurate than balanced truncation in most cases.

1.  Introduction

The expense of many modern computational models can prohibit their use in applications where speed is required. In a design 
optimization problem, for example, many simulations with different boundary conditions or parameters must be performed. In control 
applications, simulations may need to be conducted in real time to inform actuation. Model reduction techniques strive to deliver the 
orders-of-magnitude speedup necessary to enable adequately fast simulation for these and other problems with only a mild sacrifice 
in accuracy.

The great majority of model reduction methods employ the following two-step strategy: (i) find an accurate compression of the 
state of the system at a particular time and (ii) find equations that evolve the coefficients that represent the state in this representation. 
The POD-Galerkin method [1–3], perhaps the most widely used starting point for model reduction, is representative of this approach. 
The proper orthogonal decomposition (POD) modes are an efficient means of representing the state in that with relatively few POD 
coefficients, the state can often be represented to high accuracy. In a POD-Galerkin reduced-order model (ROM), these coefficients 
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\begin {equation}\label {Sop:maximization} \lambda [\vc {\phi }({\bf {x}})] = \frac {\mathbb {E}\big [ |\langle \vc {q}({\vd {x}}), \vc {\phi } ({\vd {x}})\rangle _{x} |^2 \big ]}{\| \vc {\phi }({\vd {x}})\|_{x}^2 } \text {,}\end {equation}


\begin {equation}\label {Sop:maximization:with:functional} \vc {\phi }_1({\vd {x}}) = \textrm {\argmax } \lambda [\boldsymbol {\phi }({\bf {x}})] \text {.}\end {equation}


\begin {equation}\label {Sop:maximizationwithfunctional:latter} \vc {\phi }_{j}(\vd {x}) = \textrm {\argmax }_{\langle \vc {\phi }({\vd {x}}), \vc {\phi }_{k<j} ({\vd {x}})\rangle _{x} = 0} \lambda [\boldsymbol {\phi }({\bf {x}})] \text {.}\end {equation}


$\langle \cdot , \cdot \rangle _{x}$


$\Omega $


\begin {equation}\langle \vc {q}({\vd {x}}), \vc {\phi } ({\vd {x}})\rangle _{x} = \int _{\Omega } \vc {\phi }^* ({\vd {x}}) \tc {W}(\vd {x}) \vc {q}(\vd {x}) d\vd {x} \text {,} \label {Xeqn4-3}\end {equation}


$\tc {W}(\vd {x})$


$\| \cdot \|_{x}$


\begin {equation}\int _{\Omega }\tc {C}(\vd {x}_1,\vd {x}_2) \tc {W}(\vd {x}_2) \vc {\phi }_j(\vd {x}_2) d\vd {x}_2 = \lambda _{j}\vc {\phi }_j(\vd {x}_1) \text {,} \label {Xeqn5-4}\end {equation}


$\lambda _j = \lambda [\vc {\phi }_j]$


\begin {equation}\tc {C}(\vd {x}_1,\vd {x}_2) = \mathbb {E}[\vc {q}(\vd {x}_1)\vc {q}^*(\vd {x}_2)] \text {.} \label {Xeqn6-5}\end {equation}


$[0,T]$


\begin {equation}\label {eq:ip:apod} \langle \vc {q}({\vd {x}},t), \vc {\phi } ({\vd {x}},t)\rangle _{x,t} = \int _{0}^{T} \int _{\Omega } \vc {\phi }^* ({\vd {x}},t) \tc {W}(\vd {x}) \vc {q}(\vd {x},t) d\vd {x} \ dt \text {.}\end {equation}


$\tc {C}(\vd {x}_1,t_1,\vd {x}_2,t_2) = \mathbb {E}[\vc {q}(\vd {x}_1,t_1)\vc {q}^*(\vd {x}_2,t_2)]$


$r$


\begin {equation}\tilde {\vc {q}}(\vd {x},t) = \sum _{j = 1}^{r} \vc {\phi }_j ({\vd {x}},t) \langle \vc {q}(\vd {x},t) , \vc {\phi }_j ({\vd {x}},t) \rangle _{x,t} \text {,} \label {Xeqn8-7}\end {equation}


\begin {equation}\label {eq:exerr:pod} \mathbb {E} [\|\tilde {\vc {q}}(\vd {x},t) - \vc {q}(\vd {x},t)\|_{x,t}^2 ]\end {equation}


$\| \cdot \|_{x,t}$


$k$


\begin {equation}\label {eq:POD:spectral_op} \lambda _k[\vc {\psi }({\bf {x}})] = \frac {\mathbb {E}\big [ |\langle \hat {\vc {q}}_k({\vd {x}}), \vc {\psi } ({\vd {x}})\rangle _{x} |^2 \big ]}{\| \vc {\psi }({\vd {x}})\|_{x}^2 } \text {,}\end {equation}
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$\vc {\psi }_{k,i<j}(\vd {x})$


$\hat {\vc q}_k: \Omega \to \mathbb {C}^{N_v}$


\begin {equation}\hat {\vc q}_k(\vd {x}) = \int _{-\infty }^{\infty } e^{-i\omega _k t}\vc {q}(\vd {x},t) dt \text {.} \label {Xeqn11-10}\end {equation}


$\tc {S}_{k}(\vd {x}_1,\vd {x}_2) = \mathbb {E}[\hat {\vc q}_k(\vd {x}_1) \hat {\vc q}_k^*(\vd {x}_2)]$


\begin {equation}\int \limits _{\Omega }\tc {S}_{k}({\vd {x}}_1,{\vc {x}}_2)\tc {W}({\vd {x}}_2)\vc {\psi }_{k,j}({\vd {x}}_2)d{\vd {x}}_2 = \lambda _{k,j}\vc {\psi }_{k,j}({\vd {x}}_1) \text {.} \label {Xeqn12-11}\end {equation}


$\lambda _{k,j} = \lambda _{k}[\vc {\psi }_{k,j}]$
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$T = 2\pi /\omega _1$


$[0,T]$


$T$


$\Delta t$


$\ket {q}(t)$


$\omega _k = 2\pi k /T$


\begin {equation}\label {eq:DFT} \hat {\ket {q}}_k = \sum _{j = 0}^{N_\omega - 1} \ket {q}(j \Delta t) e^{-i\omega _k j \Delta t} \text {,}\end {equation}


$\hat {\ket {q}}_k$


$\ket {q}(j \Delta t)$


$\mathbb {C}^{N_x}$


$\omega _k$


\begin {equation}\td {S}_k \td {W} \td {\Psi }_{k,\text {full}} = \td {\Psi }_{k,\text {full}}\td {\Lambda }_{k,\text {full}} \text {.} \label {Xeqn14-13}\end {equation}


$\td {S}_k \in \mathbb {C}^{N_x \times N_x}$


$\td {W} \in \mathbb {C}^{N_x \times N_x}$


$\td {\Psi }_{k,\text {full}} \in \mathbb {C}^{N_x \times N_x}$


$\td {\Lambda }_{k,\text {full}}$


$\td {S}_k$


$r_d$


$N_{\omega }$


$r_d$


$k$


$k$


\begin {equation}\td {Q}_k = \left [\hat {\ket {q}}_k^1, \hat {\ket {q}}_k^2, \dots , \hat {\ket {q}}_k^{r_d}\right ] \text {,} \label {Xeqn15-14}\end {equation}


$\hat {\ket {q}}_k^i \in \mathbb {C}^{N_x}$


$k$


$i$


$\omega _k$


$\td {U}\td {\Sigma }\td {V}^* = 1/\sqrt {r_d}\td {W}^{1/2}\td {Q}_k$


$r_d$


$\td {\Psi }_k^{r_d} \in \mathbb {C}^{N_x \times r_d}$


$\td {W}^{-1/2}\td {U}$


$\td {\Lambda }_k^{r_d} \in \mathbb {R}^{r_d \times r_d}$


$\td {\Sigma }^2$


$r_d$


$k$


$\td {\Psi }_k^{r_d}$


$r$


$N_\omega r$


$\omega _k$


$N_\omega r$


\begin {equation}r_k = | \{ l : \lambda _{k,l} \geq \tilde {\lambda }_{N_\omega r} \} | \text {,} \label {Xeqn16-15}\end {equation}


$\tilde {\lambda }_{i}$


$i$


$\omega _k$


$\td {\Psi }_k \in \mathbb {C}^{N_x \times r_k}$


$\td {\Lambda }_k \in \mathbb {R}^{r_k \times r_k}$


$\ket {q}(t)$


$[0,T]$


\begin {equation}\ket {q}(t) \approx \frac {1}{N_\omega }\sum _{k = 0}^{N_{\omega } - 1} \td {\Psi }_k \ket {a}_k e^{i\omega _k t} \text {.} \label {Xeqn17-16}\end {equation}


$\omega _k$


\begin {equation}\label {eq:Uncor:a from qhat} \ket {a}_k = \td {\Psi }_k^* \td {W} \hat {\ket {q}}_k \in \mathbb {C}^{r_k} \text {.}\end {equation}


\begin {align}&\dot {\ket q}(t) = \td {A} \ket {q}(t) + \td {B}\ket {f}(t) \text {,} \label {Xeqn19-18a}\\ &\ket {y}(t) = \td {C} \ket {q}(t) \label {Xeqn20-18b}\end {align}


$t \in [0,T]$


$\ket {q}(t) \in \mathbb {C}^{N_x}$


$\td {A} \in \mathbb {C}^{N_x \times N_x}$


$\ket {f}(t) \in \mathbb {C}^{N_f}$


$\td {B} \in \mathbb {C}^{N_x \times N_f}$


$\ket {y} \in \mathbb {C}^{N_y}$


$C \in \mathbb {C}^{N_y \times N_x}$


$\ket {q}(0) = \ket {q}_0$


$\ket {q}(t)$


$N_\omega r$


$\ket {y}(t)$


$\hat {\ket {y}}_k = \td {C}\td {\Psi }_k \ket {a}_k$


$\ket {a}_k$


$\hat { \ket {q}}_k$


$\hat {\ket q}_k$


\begin {equation}\label {eq:DFT:of:TD} \vdh {q}_k = \sum _{j = 0}^{N_\omega - 1} e^{-i\omega _k j \Delta t}\left ( e^{\td {A}j \Delta t}\ket {q}_0 + \int _0^{j \Delta t} e^{\td {A} (j \Delta t - t')} \td {B} \ket {f}(t') \ dt' \right ) \text {.}\end {equation}


$\ket {f}(t) = \sum _{k = 0}^{N_\omega - 1} \vdh {f}_k e^{i\omega _k t}$


$i \omega _k \td {I} - \td {A}$


$k$


\begin {equation}\label {just IC term DFT} \hat {\ket {q}}_{k,ic} = \sum _{j = 0}^{N_\omega - 1} e^{(\td {A} - i \omega _k \td {I})j\Delta t} \ket {q}_0 \text {.}\end {equation}


\begin {equation}\hat {\ket {q}}_{k,ic} = (\td {I} - e^{(\td {A} - i \omega _k \td {I})\Delta t})^{-1} (\td {I} - e^{(\td {A} - i \omega _k)N_\omega \Delta t}) \ket {q}_0 \text {.} \label {Xeqn23-21}\end {equation}


$e^{i\omega _k N_\omega \Delta t} = 1$


\begin {equation}\hat {\ket {q}}_{k,ic} = (\td {I} - e^{(\td {A} - i \omega _k)\Delta t})^{-1} (\td {I} - e^{\td {A}T})\ket {q}_0 \text {.} \label {Xeqn24-22}\end {equation}


$i \omega _k \td {I} - \td {A}$


$\td {I} - e^{(\td {A} - i \omega _k \td {I})\Delta t}$


\begin {equation}\sum _{j = 0}^{N_\omega - 1} e^{-i\omega _k j \Delta t} \int _0^{j \Delta t} e^{\td {A} (j \Delta t - t')} \td {B} \ket {f}(t') \ dt' \text {.} \label {Xeqn25-23}\end {equation}


\begin {equation}\hat {\ket {q}}_{k,force} = \frac {1}{N_\omega } \sum _{j = 0}^{N_\omega - 1} e^{-i\omega _k j \Delta t} e^{\td {A} j \Delta t} \int _0^{j \Delta t} \sum _{l = 0}^{N_\omega - 1} e^{(i\omega _l\td {I} - \td {A})t'} \td {B} \hat {\ket {f}}_l \ dt' \text {.} \label {Xeqn26-24}\end {equation}


\begin {equation}\label {eq:intermediate3} \hat {\ket {q}}_{k,force} = \frac {1}{N_\omega } \sum _{j = 0}^{N_\omega - 1} e^{-i\omega _k j \Delta t} \sum _{l = 0}^{N_\omega - 1} \td {R}_l \left ( e^{i\omega _l j \Delta t} - e^{\td {A} j \Delta t} \right ) \td {B} \hat {\ket {f}}_l \text {.}\end {equation}


$\td {R}_k = (i\omega _k \td {I} - \td {A})^{-1}$


\begin {equation}\label {eq:intermediate4} \hat {\ket {q}}_{k,force} = \frac {1}{N_\omega } \sum _{j = 0}^{N_\omega - 1} \sum _{l = 0}^{N_\omega - 1} \td {R}_l \left ( e^{i(\omega _l - \omega _k) j \Delta t} - e^{(\td {A} - i\omega _k \td {I}) j \Delta t} \right ) \td {B} \hat {\ket {f}}_l \text {.}\end {equation}


$\omega _l \neq \omega _k$


\begin {equation}\hat {\ket {q}}_{k,force} = \td {R}_k \td {B} \hat {\ket {f}}_k - \frac {1}{N_\omega } (\td {I} - e^{(\td {A} - i \omega _k)\Delta t})^{-1} (\td {I} - e^{\td {A}T}) \sum _{l = 0}^{N_\omega - 1} \td {R}_l \td {B} \hat {\ket {f}}_l \text {.} \label {Xeqn29-27}\end {equation}


$\hat {\ket {q}}_{k,ic}$


$\hat {\ket {q}}_{k,force}$


$k$


\begin {equation}\label {solution} \hat {\ket {q}}_k = \td {R}_k \td {B} \hat {\ket {f}}_k + \left (\td {I} -e^{(\td {A} - i \omega _k)\Delta t} \right )^{-1} \left (\td {I} - e^{\td {A}T} \right ) \left (\ket {q}_0 - \frac {1}{N_\omega } \sum _{l = 0}^{N_\omega - 1} \td {R}_l \td {B} \hat {\ket {f}}_l \right ) \text {.}\end {equation}


$\td {R}_k \td {B} \hat {\ket {f}}_k$


$\omega _k$


$[0,T]$


\begin {equation}\label {eq:FD:wrong} \td {L}_k \vdh {q}_k = \td {B} \vdh {f}_k \text {,}\end {equation}


$\td {L}_k = (i\omega _k \td {I} - \td {A})$


$\ket {q}(t)$


$T$


$\td {\Psi }_k$


$\ket {a}_k = (\td {\Psi }_k^{*}\td {W}\td {L}_k\td {\Psi }_k^{})^{-1} \td {B} \vdh {f}_k$


$T$


$\ket {a}_k = (\td {\Phi }_k^{F*}\td {W}\td {L}_k\td {\Psi }_k^{})^{-1}\td {\Phi }_k^{F*}\td {W}\td {B}\vdh {f}$


$\td {\Phi }_k^{F}$


$T$


$\td {\Phi }_k^{F}$


$T$


$\vdh {q}_k = \td {R}_k\td {B} \vdh {f}_k$


$\td {\Psi }^*_k \td {W}$


$\ket {a}_k = \td {\Psi }^*_k \td {W}\td {R}_k\td {B} \vdh {f}_k$


$T\lambda _{\max }$


$e^{T\lambda _{\max }}$


\begin {equation}\label {eq:corrpgp:toapprox} \ket {a}_k = \td {\Psi }^{*}_k \td {W} \td {R}_k \td {B} \hat {\ket {f}}_k + \td {\Psi }^{*}_k \td {W} \left (\td {I} -e^{(\td {A} - i \omega _k \td {I})\Delta t} \right )^{-1} \left (\td {I} - e^{\td {A}T} \right ) \left (\ket {q}_0 - \frac {1}{N_\omega } \sum _{l = 0}^{N_\omega - 1} \td {R}_l \td {B} \hat {\ket {f}}_l \right ) \text {.}\end {equation}


$\td {M}_k = \td {\Psi }^{*}_k \td {W} \td {R}_k \td {B}$


$\td {M}_k$


\begin {equation}\label {eq:gdef} \ket {g}_k^i = \td {L}_k\hat {\ket q}_k^i \text {,}\end {equation}


$\td {L} = (i\omega _k \td {I} - \td {A})$


$\hat {\ket q}_k^i$


$i$


$\hat {\ket q}_k$


\begin {equation}\hat {\ket q}_k^i = \td {R}_k \ket {g}_k^i \text {.} \label {Xeqn34-32}\end {equation}


$\ket {g}_k^i$


$\td {A}$


\begin {equation}\td {Q}_k = \td {R}_k \td {G}_k \text {,} \label {Xeqn35-33}\end {equation}


$\td {Q}_k = [\hat {\ket {q}}_k^1, \hat {\ket {q}}_k^2, \dots , \hat {\ket {q}}_k^{r_d}]$


$\td {G}_k = [\ket {g}_k^1, \ket {g}_k^2, \dots , \ket {g}_k^{r_d}]$


$\td {R}_k$


\begin {equation}\td {R}_k \approx \td {Q}_k \td {G}^+ \text {,} \label {Xeqn36-34}\end {equation}


$\td {G}^+ = (\td {G}^* \td {W} \td {G})^{-1} \td {G}^* \td {W}$


$\td {G}_k$


$\td {Q}_k \td {G}^+ = \td {R}_k \td {P}_g$


$\td {P}_g$


$\td {W}$


$\td {Q}_k \td {G}^+$


$\td {R}_k$


$\td {G}_k$


$\td {M}_k = \td {\Psi }^{*}_k \td {W} \td {R}_k \td {B}$


$\td {E}_k$


\begin {equation}\td {M}_k \approx \td {E}_k = \td {\Psi }^{*}_k \td {W} \td {Q}_k \td {G}^+_k \td {B} \text {.} \label {Xeqn37-35}\end {equation}


$N_x$


$r_d$


$N_x$


$\td {\Psi }^{*}_k \td {W} \left (\td {I} -e^{(\td {A} - i \omega _k \td {I})\Delta t} \right )^{-1} \left (\td {I} - e^{\td {A}T} \right )$


$r_d$


$\td {\Psi }_{k,\text {full}} \td {\Psi }^{*}_{k,\text {full}} \td {W}$


\begin {align}\label {eq:corr:pgp:intermediate1} \td {\Psi }^{*}_k \td {W} & \left (\td {I} -e^{(\td {A} - i \omega _k \td {I})\Delta t} \right )^{-1} \left (\td {I} - e^{\td {A}T} \right )\nonumber \\ &= \td {\Psi }^{*}_k \td {W} \left (\td {I} -e^{(\td {A} - i \omega _k \td {I})\Delta t} \right )^{-1} \td {\Psi }_{k,\text {full}} \td {\Psi }^{*}_{k,\text {full}} \td {W} \left (\td {I} - e^{\td {A}T} \right ) \td {\Psi }_{k,\text {full}} \td {\Psi }^{*}_{k,\text {full}} \td {W} \text {.}\\ &=\td {P}_k \left (\td {I} -e^{(\td {\Psi }^{*}_{k,\text {full}} \td {W} \td {A}\td {\Psi }_{k,\text {full}} - i \omega _k \td {I})\Delta t} \right )^{-1} \left (\td {I} - e^{\td {\Psi }^{*}_{k,\text {full}} \td {W} \td {A}\td {\Psi }_{k,\text {full}}T} \right ) \td {\Psi }^{*}_{k,\text {full}} \td {W} \text {.}\label {eq:corr:pgp:intermediate2}\end {align}


$\td {P}_k = \begin {bmatrix} \td {I}_{r_k} && \td {0} \end {bmatrix} \in \mathbb {R}^{r_k \times r_d}$


$r_k$


$\td {\Psi }_{k,\text {full}} \to \td {\Psi }_k^{r_d}$


$\tilde {\td {A}} = \td {\Psi }^{r_d*}_k \td {W} \td {A}\td {\Psi }^{r_d}_k$


\begin {equation}\td {\Psi }^{*}_k \td {W} \left (\td {I} -e^{(\td {A} - i \omega _k \td {I})\Delta t} \right )^{-1} \left (\td {I} - e^{\td {A}T} \right ) \approx \td {P}_k \left (\td {I} -e^{(\tilde {\td {A}}_k - i \omega _k \td {I})\Delta t} \right )^{-1} \left (\td {I} - e^{\tilde {\td {A}}_kT} \right ) \td {\Psi }^{r_d*}_k \td {W} \text {.} \label {Xeqn38-37}\end {equation}


$r_d \times r_d$


$N_\omega $


\begin {equation}\td {R}_l \td {B} \hat {\ket {f}}_l \approx \td {\Psi }_l^{}\td {\Psi }_l^{*} \td {W} \td {R}_l \td {B} \hat {\ket {f}}_l \text {.} \label {Xeqn39-38}\end {equation}


$l$


$\hat {\ket {q}}_l$


$\td {R}_l \td {B} \hat {\ket {f}}_l$


$\hat {\ket {q}}_l$


$\td {\Psi }_l^{*} \td {W} \td {R}_l \td {B}$


$\td {E}_l$


\begin {equation}\label {eq:simplerpgpnoib} \ket {a}_k = \td {E}_k \hat {\ket {f}}_k + \td {F}_k \left (\ket {q}_0 - \frac {1}{N_\omega } \sum _{l} \td {\Psi }_l \td {E}_l \hat {\ket {f}}_l \right ) \text {,}\end {equation}


$\td {F}_k = \left (\td {I} -e^{(\tilde {\td {A}}_k - i \omega _k \td {I})\Delta t} \right )^{-1} \left (\td {I} - e^{\tilde {\td {A}}_kT} \right ) \td {\Psi }^{*}_k \td {W} \in \mathbb {C}^{r_k \times N_x}$


$\mathcal {O}(N_x^3)$


$\mathcal {O}(N_x)$


$\td {F}_k$


$\omega _k$


$N_x N_\omega r$


$p$


$\td {\Phi } \in \mathbb {C}^{N_x \times p}$


$\td {F}_k$


\begin {equation}\label {eq:corrpgp:finaleq} \ket {a}_k = \td {E}_k \hat {\ket {f}}_k + \td {H}_k \left (\td {\Phi }^*\td {W} \ket {q}_0 - \frac {1}{N_\omega } \sum _{l} \td {T}_l \td {E}_l \hat {\ket {f}}_l \right ) \text {,}\end {equation}


$\td {H}_k = \td {F}_k \td {\Phi } \in \mathbb {C}^{r_k \times p}$


$\td {T}_l = \td {\Phi }^* \td {W} \td {\Psi }_l \in \mathbb {C}^{p \times r_l}$


$\ket {q}_0$


$\ket {f}(t)$


$\ket {y}$


$\td {C} \td {\Psi }_k$


\begin {equation}\label {eq:alg:scaling} \mathcal {O} ((r p + r N_f + N_f \log N_\omega ) N_\omega ) \text {.}\end {equation}


$\mathcal {O}( (rN_f + r^2 )N_t)$


$p$


$r$


$N_t$


$N_\omega $


$N_f$


$N_x$


$N_f$


$\hat {\ket {q}}$


$\hat {\ket {g}}$


$\mathcal {O}(r_d^2N_xN_\omega )$


$r_d$


$\td {A}\ket {q}$


$N_x$


$\td {A}$


$\mathcal {O}(r_d^2N_xN_\omega )$


$\td {A}\ket {q}$
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are then evolved by projecting the governing equations into the space of POD modes, yielding a much smaller dynamical system 
to evolve. Many alternative choices have been explored for both steps. Examples of the compression step include using balanced 
truncation modes [4] and autoencoders [5,6], and examples of deriving the equations in the reduced space include using Petrov-
Galerkin projections [7–9] and learning the equations from data [10,11]. All of these approaches to model reduction, however, fall 
within the two-step strategy outlined above.

We have investigated a different approach in this work: instead of representing the state (at a particular time) in a reduced manner, 
we instead employ a reduced representation for the entire trajectory, i.e., the state’s evolution for some time interval. Whereas POD 
modes are the most efficient (linear) representation of the state, they are far from the most efficient representation of trajectories. 
This is true intuitively – to represent a trajectory with POD modes, one has to specify the POD coefficients for each time step along 
the trajectory, but from one time step to the next, the POD coefficients are highly correlated. The analog of POD for entire trajectories 
is space-time POD [12–14]. Space-time POD modes are themselves time- and space-dependent, so to represent a trajectory, they are 
weighted by static coefficients. These modes are the most efficient linear representation of trajectories in the sense that to represent a 
trajectory to some desired accuracy, fewer degrees of freedom are needed if the trajectory is represented with space-time POD modes 
than any other linear encoding scheme. Unfortunately, space-time POD modes have a number of characteristics that make them 
undesirable for model reduction; computing them requires much training data, storing them is memory intensive, and computing 
space-time inner products, which would be necessary in a space-time ROM method, is expensive.

Fortunately, an efficient space-time basis that does not share the undesirable properties of space-time POD modes exists. Spectral 
POD (SPOD) modes are most naturally formulated as a POD in the frequency domain. More precisely, at every temporal frequency, 
there exists a set of spatial modes that optimally represent the spatial structure at that frequency. These modes are the SPOD modes, 
and they may be thought of as space-time modes where each spatial mode 𝝍𝑘,𝑗 at frequency 𝜔𝑘 has the time dependence 𝑒𝑖𝜔𝑘𝑡. Each 
mode is associated with an energy, and these energies may be compared across frequencies; for example, the second mode at one 
frequency may have more energy than the first mode at another frequency. The fact that motivates this work is that the most energetic 
SPOD modes are also an excellent basis for representing trajectories. In fact, SPOD modes converge to space-time POD modes as the 
time interval becomes long, so for long intervals, the representation of a trajectory with SPOD modes is nearly as accurate (on average) 
as the space-time POD representation, which is optimal among all linear representations [14].

With this motivation, the goal of this work is to develop an algorithm to solve quickly for the SPOD coefficients that represent a 
trajectory for forced linear dynamical systems given the initial condition and forcing, as shown in Fig. 1. If these coefficients can be 
obtained accurately, then the resulting error will be substantially lower than that of a POD-Galerkin model with the same number of 
modes. The method works as follows. The SPOD coefficients at a given frequency are related to the (temporal) Fourier transform of 

Fig. 1. The proposed model reduction approach (bottom panel) compared against a standard space-only linear model reduction (top panel). To 
represent a trajectory, the space-only basis vectors are multiplied by time-dependent coefficients; the SPOD modes with their oscillatory time 
dependence are multiplied by static coefficients. In the space-only case, the coefficients are obtained by integrating a set of ODEs forward in time, 
whereas in the SPOD case, the coefficients are obtained by solving a linear algebraic system.
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the state at the same frequency, which in turn is related to the forcing and initial condition. We derive these relations by starting from 
the fundamental solution to linear time-invariant (LTI) systems, then performing a discrete Fourier transform analytically, and finally 
projecting the result onto the SPOD modes at each frequency. Using the LTI solution as a starting point makes the method applicable 
to general linear systems, avoiding the requirement that the system be periodic, which might otherwise arise with a temporal Fourier 
basis. The operators involved are all linear and are precomputed, leaving only small matrix-vector multiplications to be done online. 
The method amounts to a space-time projection of a space-time solution operator, and we refer to it as Spectral Solution Operator 
Projection (SSOP).

We demonstrate the method on two problems: a linearized Ginzburg-Landau problem with a spatial dimension of 𝑁𝑥 = 220 and 
an advection-diffusion problem with 𝑁𝑥 = 9604. We show that, indeed, we can solve for the SPOD coefficients accurately, resulting 
in two-orders-of-magnitude lower error than even the projection of the solution onto the same number of POD modes, which is 
itself a lower bound for the error in any time-domain Petrov-Galerkin method, such as balanced truncation (BT) [4]. We show that 
this accuracy improvement does not come with an increase in CPU time; the computational cost of our method is similar to that of 
POD-Galerkin projection and balanced truncation, consistent with scaling estimates we derive.

The SPOD modes that form the basis for the method are obtained from data. A data-free version of the method is made possible 
by a connection between SPOD modes and the left singular vectors of the resolvent operator. The resolvent operator comes directly 
from the matrices that define the LTI system, so its singular value decomposition does not rely on data. As established by Ref. [15], 
the left singular vectors of the resolvent operator at a given frequency are equivalent to the SPOD modes at the same frequency if 
the forcing in the system is spatially white. Many studies [16–20], however, have shown that remarkable similarity between the 
two types of modes persists even when the forcing is far from white. Given that the SPOD modes and resolvent modes are similar, 
the latter serves as an excellent space-time basis for trajectories. We find that the data-free method that results from substituting the 
resolvent modes for the SPOD modes in the proposed method yields lower error than balanced truncation, the state-of-the-art data-free
method.

Though the space-time approach is uncommon, we are not the first to attempt it [21–25]. Previous methods have formed space-time 
basis vectors by assigning time dependence to POD modes, i.e., where each space-time basis vector is formed as the Kronocker product 
of a POD mode and a time dependent function. The time dependent functions are obtained from time series of the corresponding 
POD coefficients in the training data. We believe that the representational advantage of SPOD modes relative to previous choices of 
space-time basis, as well as their analytic time dependence, make them a more compelling choice for model reduction.

Using SPOD modes for linear model reduction has been explored before by Refs. [26] and [27]. Both methods can be viewed as 
reduced-order models for the frequency-domain equation (𝑖𝜔𝐈 − 𝐀)𝒒̂(𝜔) = 𝐁𝒇 (𝜔), where 𝒒̂ and 𝒇 are the Fourier transformed state and 
forcing, respectively, and 𝐀 and 𝐁 are the standard state-space matrices. However, this equation cannot capture transient behavior; 
it describes the steady state when the system is subjected to a periodic forcing, and this restriction precludes these ROMs from being 
applicable to many systems. In this paper, we derive a different frequency-domain equation that captures both transient and steady-
state behavior and use it as the starting point for the proposed reduced-order model. By projecting a space-time solution operator onto 
SPOD modes, we prevent unretained modes from affecting the accuracy of retained coefficients. This was achieved by Ref. [27] (in 
the periodic case) by employing a Petrov-Galerkin projection, but not by Ref. [26] wherein a Galerkin projection was used. Another 
advancement of this work relative to Refs. [26,27] is the use of different numbers of SPOD modes at different frequencies. This allows 
for more computational resources to be devoted to the more energetic frequencies. We also note that SPOD modes have been used to 
construct time-domain ROMs [28,29]. However, these models are only superficially related to the space-time ROM proposed in this 
paper.

Our approach may also be related to the harmonic balance method [30,31]. In this technique, the governing equations for a 
temporally periodic system are Fourier-transformed in time, resulting in a set of nonlinear equations to be solved for the transformed 
fields. This has been applied to the periodic flows arising in turbomachinery [32], resulting in significant computational speedup due 
to the relatively small number of relevant harmonics. Harmonic balance does not employ a spatial reduction, and our method may 
be viewed as a spatially-reduced harmonic balance method for linear problems. Another important difference is that our method is 
applicable to non-periodic systems as well as periodic ones.

One requirement for the application of the proposed method bears mentioning here: the first step in the method is to take the 
temporal Fourier transform of the forcing. Therefore, the forcing on the entire time interval of interest must be available before 
starting computation in the reduced-order model. Any space-time or frequency-domain method that incorporates forcing, such as the 
ones mentioned above [21–24,26,27,33], is restricted in the same way. The proposed method is designed for applications where the 
forcing is known beforehand, such as, e.g., adjoint-based optimization and open loop control.

The remainder of this paper is organized as follows. In Section 2, we discuss the properties of POD, space-time POD, and SPOD 
that are relevant to the method. We present the method in Section 3, and demonstrate it applied to a linearized Ginzburg-Landau 
problem and a scalar transport problem in Section 4. We conclude the paper in Section 5.

2.  Space-only, space-time, and spectral POD

We briefly review the space-only, space-time, and spectral forms of POD here; see Refs. [14] and [15] for additional details. The 
most significant point for the purposes of this paper is the fact that spectral POD modes approach space-time POD modes as the time 
interval becomes long, and thus are very efficient in representing trajectories.
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2.1.  Space-only POD

Space-only POD aims to reconstruct snapshots of the state by adding together prominent modes weighted by expansion coefficients. 
In the continuous setting, the state 𝒒 ∶ Ω → ℂ𝑁𝑣  is a function that maps elements of the spatial domain 𝐱 ∈ Ω to the 𝑁𝑣 state variables. 
The first space-only POD mode 𝝓1 ∶ Ω → ℂ𝑁𝑣  is defined to maximize the functional 𝜆[𝝓(𝐱)], which quantifies the expected value of 
the energy captured by its argument, 

𝜆[𝝓(𝐱)] =
𝔼
[

|⟨𝒒(𝐱),𝝓(𝐱)⟩𝑥|2
]

‖𝝓(𝐱)‖2𝑥
, (2.1a)

𝝓1(𝐱) = argmax𝜆[𝝓(𝐱)]. (2.1b)

The subsequent modes are defined to maximize the energy captured under the constraint that they are orthogonal to all previous 
ones,

𝝓𝑗 (𝐱) = argmax⟨𝝓(𝐱),𝝓𝑘<𝑗 (𝐱)⟩𝑥=0𝜆[𝝓(𝐱)]. (2.2)

The space-only inner product ⟨⋅, ⋅⟩𝑥, which defines the energy captured, is defined as an integral over the spatial domain Ω,

⟨𝒒(𝐱),𝝓(𝐱)⟩𝑥 = ∫Ω
𝝓∗(𝐱)𝖶(𝐱)𝒒(𝐱)𝑑𝐱, (2.3)

where 𝖶(𝐱) is a weight matrix used to account for inter-variable importance or possibly to preference certain regions of the domain. 
The space-only norm ‖ ⋅ ‖𝑥 is induced by the space-only inner product. One can show [12,15] that the solution to the optimization 
problem Eqs. (2.1b) and (2.2) is modes that are eigenfunctions of the space-only correlation tensor,

∫Ω
𝖢(𝐱1, 𝐱2)𝖶(𝐱2)𝝓𝑗 (𝐱2)𝑑𝐱2 = 𝜆𝑗𝝓𝑗 (𝐱1), (2.4)

where the eigenvalue is equal to the energy of the mode, i.e., 𝜆𝑗 = 𝜆[𝝓𝑗 ], and the correlation tensor is
𝖢(𝐱1, 𝐱2) = 𝔼[𝒒(𝐱1)𝒒∗(𝐱2)]. (2.5)

2.2.  Space-time POD

Whereas space-only POD modes optimally represent snapshots, space-time POD modes optimally represent trajectories over the 
time window [0, 𝑇 ]. The formulation is much the same as in space-only POD; the modes optimize the expected energy Eqs. (2.1b) and 
(2.2), but in space-time POD, the inner product involved in defining the energy functional includes time as well as space,

⟨𝒒(𝐱, 𝑡),𝝓(𝐱, 𝑡)⟩𝑥,𝑡 = ∫

𝑇

0 ∫Ω
𝝓∗(𝐱, 𝑡)𝖶(𝐱)𝒒(𝐱, 𝑡)𝑑𝐱 𝑑𝑡. (2.6)

The space-time POD modes that solve this optimization are eigenfunctions of the space-time correlation 𝖢(𝐱1, 𝑡1, 𝐱2, 𝑡2) =
𝔼[𝒒(𝐱1, 𝑡1)𝒒∗(𝐱2, 𝑡2)], and the eigenvalues represent the energy of each mode. The most important property of space-time POD modes 
for the purpose of this paper is that the space-time POD reconstruction of a trajectory achieves lower error, on average, than the 
reconstruction with the same number of modes in any other space-time basis. More concretely, using the first 𝑟 space-time POD 
modes to reconstruct the trajectory,

𝒒(𝐱, 𝑡) =
𝑟
∑

𝑗=1
𝝓𝑗 (𝐱, 𝑡)⟨𝒒(𝐱, 𝑡),𝝓𝑗 (𝐱, 𝑡)⟩𝑥,𝑡, (2.7)

yields lower expected error
𝔼[‖𝒒(𝐱, 𝑡) − 𝒒(𝐱, 𝑡)‖2𝑥,𝑡] (2.8)

than would any other space-time basis. The expected error Eq. (2.8) is measured over space and time using the norm ‖ ⋅ ‖𝑥,𝑡 induced 
by the inner product Eq. (2.6).

2.3.  Spectral POD

Spectral POD is most easily understood as the frequency domain variant of space-only POD for statistically stationary systems. In 
other words, SPOD modes at a particular frequency optimally reconstruct (in the same sense as above) the state at that frequency, on 
average. The property that makes them attractive for model reduction, however, is that SPOD modes are also the long-time limit of 
space-time POD modes for statistically stationary systems. These ideas are made precise below, but for a more complete discussion, 
see Ref. [15].

Spectral POD modes at frequency 𝑘 maximize

𝜆𝑘[𝝍(𝐱)] =
𝔼
[

|⟨𝒒̂𝑘(𝐱),𝝍(𝐱)⟩𝑥|2
]

‖𝝍(𝐱)‖2𝑥
, (2.9)
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again subject to the constraint that each mode 𝝍𝑘,𝑗 (𝐱) is orthogonal to the previous ones at that frequency 𝝍𝑘,𝑖<𝑗 (𝐱). The Fourier-
transformed state 𝒒̂𝑘 ∶ Ω → ℂ𝑁𝑣  is defined as

𝒒̂𝑘(𝐱) = ∫

∞

−∞
𝑒−𝑖𝜔𝑘𝑡𝒒(𝐱, 𝑡)𝑑𝑡. (2.10)

The solution to the optimization Eq. (2.9) is that the modes are eigenvectors of the cross-spectral density 𝖲𝑘(𝐱1, 𝐱2) = 𝔼[𝒒̂𝑘(𝐱1)𝒒̂∗𝑘(𝐱2)],

∫
Ω

𝖲𝑘(𝐱1,𝒙2)𝖶(𝐱2)𝝍𝑘,𝑗 (𝐱2)𝑑𝐱2 = 𝜆𝑘,𝑗𝝍𝑘,𝑗 (𝐱1). (2.11)

The eigenvalue is again equal to the energy of the mode, i.e., 𝜆𝑘,𝑗 = 𝜆𝑘[𝝍𝑘,𝑗 ]. Modes at frequency 𝑘 have an implicit time dependence 
of 𝑒𝑖𝜔𝑘𝑡.

SPOD modes and their energies become identical to space-time POD modes as the time interval on which the latter are defined 
becomes long [12,14,15]. Thus, the SPOD modes with the largest energies among all frequencies are the dominant space-time POD 
modes (for long times) and are most efficient for reconstructing long-time trajectories. We denote by 𝜆̃𝑗 the 𝑗-th largest SPOD eigen-
value among all frequencies, which may be compared to the space-time POD eigenvalues. The convergence in the energy of the 
trajectory they capture is relatively fast, so for time intervals beyond a few correlation times, the SPOD modes capture nearly as 
much energy as the space-time modes [14]. If the simulation time of a reduced-order model is long enough for this convergence to 
be met, the ability of the SPOD modes to capture structures is not diminished relative to that of space-time POD modes.

SPOD modes also have two properties that make them more suitable for model reduction than space-time modes: they have 
analytic time dependence, and they are separable in space and time. The former makes some analytic progress possible in writing 
the equations that govern the modes and enables Fourier theory to be applied. The latter means that storing the modes requires 𝑁𝑡
times less memory, where 𝑁𝑡 is the number of times steps in the simulation.

Fig. 2 shows the convergence in the representational ability of space-time POD and SPOD as the time interval becomes long. 
Specifically, to represent trajectories with some level of accuracy, 98%, say, one needs the same number of SPOD coefficients as 
space-time POD coefficients if the interval is long compared to the correlation time in the system. This convergence in representation 
ability occurs because the SPOD modes themselves converge to space-time POD modes in the limit of a long time interval. With 
space-only POD, one must specify the coefficients for every time step, which leads to a far less efficient encoding of the data because 
the coefficients are highly correlated from one time step to the next. That SPOD modes are near-optimal in representing trajectories, 
and that they are substantially more efficient than space-only POD modes, motivate this work. If one can efficiently solve for some 
number of the SPOD coefficients of a trajectory, then these coefficients will lead to substantially lower error than solving for the same 
number of space-only POD coefficients.

2.4.  Discretization and truncation

Upon spatial discretization, the state and modes become vectors in ℂ𝑁𝑥 , where 𝑁𝑥 denotes the number of gridpoints multiplied 
by 𝑁𝑣. Frequency is also discretized, and a finite number 𝑁𝜔 of evenly spaced frequencies is retained. The lowest one, 𝜔1, induces 
a time 𝑇 = 2𝜋∕𝜔1, which determines the interval [0, 𝑇 ] on which the modes are periodic. The trajectories themselves are, of course, 
not periodic on this interval, so 𝑇  is the longest we may use SPOD modes for prediction, though, if a longer prediction is needed, the 

Fig. 2. Number of degrees of freedom (DOFs) required to achieve 98% representation accuracy of trajectories as a function of the length of the time 
interval of the trajectory [0, 𝑇 ]. For POD, one must specify all the mode coefficients at every time step, whereas spectral and space-time POD modes 
are themselves time-dependent. Thus, by leveraging spatiotemporal correlations, fewer DOFs are needed to represent a trajectory to a given accuracy 
by specifying the SPOD or space-time POD coefficients. As the time interval becomes long, the SPOD and space-time POD modes become equally 
efficient at representing trajectories. The data come from the Ginzburg-Landau system introduced in Section 4, and the details on the comparison 
of POD and SPOD with the same number of degrees of freedom can be found there.
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method may be repeated. The fastest frequency corresponds to a time step Δ𝑡. The discrete Fourier transform of a trajectory 𝒒(𝑡) at 
frequency 𝜔𝑘 = 2𝜋𝑘∕𝑇  is defined as

𝒒̂𝑘 =
𝑁𝜔−1
∑

𝑗=0
𝒒(𝑗Δ𝑡)𝑒−𝑖𝜔𝑘𝑗Δ𝑡, (2.12)

where 𝒒̂𝑘 and 𝒒(𝑗Δ𝑡) are both in ℂ𝑁𝑥 .
With the spatial discretization, integration over space becomes matrix-vector multiplication. For example, the full set of discrete 

SPOD modes at frequency 𝜔𝑘 are defined as the eigenvectors of the (weighted) cross-spectral density matrix
𝐒𝑘𝐖𝚿𝑘,full = 𝚿𝑘,full𝚲𝑘,full. (2.13)

Here, 𝐒𝑘 ∈ ℂ𝑁𝑥×𝑁𝑥  is the cross-spectral density, and 𝐖 ∈ ℂ𝑁𝑥×𝑁𝑥  is a weight matrix. 𝚿𝑘,full ∈ ℂ𝑁𝑥×𝑁𝑥  is the matrix with the full 
set discrete SPOD modes as its columns, and 𝚲𝑘,full is the diagonal matrix of corresponding eigenvalues, which are the SPOD mode 
energies. However, in practice, the matrix 𝐒𝑘 is not formed, and too little data will be available to create a full-rank set of SPOD 
modes. Instead, the SPOD modes are calculated by the method of snapshots [15,34] or by using the singular value decomposition. 
In particular, given 𝑟𝑑 trajectories from which to obtain SPOD modes, each 𝑁𝜔 time steps in length, the discrete Fourier transform 
(DFT) of each trajectory is taken. This yields 𝑟𝑑 realizations of the 𝑘-th frequency, for every frequency 𝑘. These can be formed into a 
data matrix

𝐐𝑘 =
[

𝒒̂1𝑘, 𝒒̂
2
𝑘,… , 𝒒̂𝑟𝑑𝑘

]

, (2.14)

where 𝒒̂𝑖𝑘 ∈ ℂ𝑁𝑥  is the 𝑘-th frequency of the DFT of the 𝑖-th trajectory. The SPOD modes at frequency 𝜔𝑘 and the associated energies 
may then be obtained by first taking the singular value decomposition 𝐔𝚺𝐕∗ = 1∕

√

𝑟𝑑𝐖1∕2𝐐𝑘. The 𝑟𝑑 available SPOD modes 𝚿𝑟𝑑
𝑘 ∈

ℂ𝑁𝑥×𝑟𝑑  are then given by 𝐖−1∕2𝐔 and the energies 𝚲𝑟𝑑
𝑘 ∈ ℝ𝑟𝑑×𝑟𝑑  by 𝚺2 [15]. In practice, the 𝑟𝑑 trajectories are usually obtained as 

(possibly overlapping) sub-trajectories of one long trajectory, as is done in Welch’s method [35] for computing power spectra.
The set of available SPOD modes at the 𝑘-th frequency 𝚿𝑟𝑑

𝑘  must be truncated in forming a reduced-order model, however, the order 
of this truncation should not be the same for all frequencies. Intuitively, allocating more SPOD modes to the energetic frequencies 
leads to more accuracy than keeping the number of modes constant across frequency. We denote the mean number of modes retained 
at each frequency as 𝑟, thus 𝑁𝜔𝑟 modes are retained in total. We determine the number of SPOD modes retained at frequency 𝜔𝑘 as 
the number of modes at this frequency that are among the 𝑁𝜔𝑟 most energetic overall. That is,

𝑟𝑘 = |{𝑙 ∶ 𝜆𝑘,𝑙 ≥ 𝜆̃𝑁𝜔𝑟}|, (2.15)

where 𝜆̃𝑖 denotes the 𝑖-th largest eigenvalue over all frequencies. With this notation established, we denote the retained SPOD modes 
at frequency 𝜔𝑘 as 𝚿𝑘 ∈ ℂ𝑁𝑥×𝑟𝑘 , and the corresponding energies as 𝚲𝑘 ∈ ℝ𝑟𝑘×𝑟𝑘

The trajectory 𝒒(𝑡) on the interval [0, 𝑇 ] is then approximated using the retained SPOD modes as

𝒒(𝑡) ≈ 1
𝑁𝜔

𝑁𝜔−1
∑

𝑘=0
𝚿𝑘𝒂𝑘𝑒𝑖𝜔𝑘𝑡. (2.16)

The vector of expansion coefficients at frequency 𝜔𝑘 is given by
𝒂𝑘 = 𝚿∗

𝑘𝐖𝒒̂𝑘 ∈ ℂ𝑟𝑘 . (2.17)

3.  Spectral solution operator projection method

Our goal is to derive an SPOD-based method to solve the linear ordinary differential equation 
𝒒̇(𝑡) = 𝐀𝒒(𝑡) + 𝐁𝒇 (𝑡), (3.1a)

𝒚(𝑡) = 𝐂𝒒(𝑡) (3.1b)

on the interval 𝑡 ∈ [0, 𝑇 ], where 𝒒(𝑡) ∈ ℂ𝑁𝑥  is the state, 𝐀 ∈ ℂ𝑁𝑥×𝑁𝑥  is the system matrix, 𝒇 (𝑡) ∈ ℂ𝑁𝑓  is some known forcing that is 
mapped onto the system by the matrix 𝐁 ∈ ℂ𝑁𝑥×𝑁𝑓 , and 𝒚 ∈ ℂ𝑁𝑦  is an observable extracted from the state by the matrix 𝐶 ∈ ℂ𝑁𝑦×𝑁𝑥 . 
Given the forcing and initial condition 𝒒(0) = 𝒒0, our goal is to find the retained SPOD coefficients for the trajectory 𝒒(𝑡), thereby 
obtaining the near-optimal rank-𝑁𝜔𝑟 space-time representation of the trajectory. With these coefficients, 𝒚(𝑡) can be easily obtained 
taking the inverse DFT of 𝒚̂𝑘 = 𝐂𝚿𝑘𝒂𝑘.

The starting point for finding the retained coefficients is Eq. (2.17), which gives 𝒂𝑘 in terms of 𝒒̂𝑘. The Fourier-transformed state 
𝒒̂𝑘 must be obtained from the known forcing and initial condition, and we derive this relation in the following subsection.

3.1.  Frequency-domain equation

We begin by inserting the analytic solution to Eq. (3.1a) into the definition of the DFT Eq. (2.12),

𝒒̂𝑘 =
𝑁𝜔−1
∑

𝑗=0
𝑒−𝑖𝜔𝑘𝑗Δ𝑡

(

𝑒𝐀𝑗Δ𝑡𝒒0 + ∫

𝑗Δ𝑡

0
𝑒𝐀(𝑗Δ𝑡−𝑡

′)𝐁𝒇 (𝑡′) 𝑑𝑡′
)

. (3.2)
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The term in parentheses is the well-known solution to the linear ODE Eq. (3.1a) [36]. Analytic progress can be made with the 
assumptions that the forcing can be written as 𝒇 (𝑡) = ∑𝑁𝜔−1

𝑘=0 𝒇𝑘𝑒𝑖𝜔𝑘𝑡, and that the matrices 𝑖𝜔𝑘𝐈 − 𝐀 are invertible for all 𝑘. To aid in 
the ensuing discussion, we split Eq. (3.2) into two parts: the response to the initial condition and the response to the forcing. The first 
of these is

𝒒̂𝑘,𝑖𝑐 =
𝑁𝜔−1
∑

𝑗=0
𝑒(𝐀−𝑖𝜔𝑘𝐈)𝑗Δ𝑡𝒒0. (3.3)

This term may be evaluated by noticing that it is a matrix geometric sum, so, it can be written as
𝒒̂𝑘,𝑖𝑐 = (𝐈 − 𝑒(𝐀−𝑖𝜔𝑘𝐈)Δ𝑡)−1(𝐈 − 𝑒(𝐀−𝑖𝜔𝑘)𝑁𝜔Δ𝑡)𝒒0. (3.4)

Because 𝑒𝑖𝜔𝑘𝑁𝜔Δ𝑡 = 1, this simplifies to
𝒒̂𝑘,𝑖𝑐 = (𝐈 − 𝑒(𝐀−𝑖𝜔𝑘)Δ𝑡)−1(𝐈 − 𝑒𝐀𝑇 )𝒒0. (3.5)

Note that the assumption that 𝑖𝜔𝑘𝐈 − 𝐀 is invertible implies that 𝐈 − 𝑒(𝐀−𝑖𝜔𝑘𝐈)Δ𝑡 is also invertible.
Second, the response to the forcing is

𝑁𝜔−1
∑

𝑗=0
𝑒−𝑖𝜔𝑘𝑗Δ𝑡

∫

𝑗Δ𝑡

0
𝑒𝐀(𝑗Δ𝑡−𝑡

′)𝐁𝒇 (𝑡′) 𝑑𝑡′. (3.6)

To evaluate this term, we first insert the Fourier expansion of the forcing and take the constant matrix exponential out of the integral, 
giving

𝒒̂𝑘,𝑓𝑜𝑟𝑐𝑒 =
1
𝑁𝜔

𝑁𝜔−1
∑

𝑗=0
𝑒−𝑖𝜔𝑘𝑗Δ𝑡𝑒𝐀𝑗Δ𝑡 ∫

𝑗Δ𝑡

0

𝑁𝜔−1
∑

𝑙=0
𝑒(𝑖𝜔𝑙𝐈−𝐀)𝑡′𝐁𝒇𝑙 𝑑𝑡′. (3.7)

Integration inverts the matrix in the exponential, and the expression evaluates to

𝒒̂𝑘,𝑓𝑜𝑟𝑐𝑒 =
1
𝑁𝜔

𝑁𝜔−1
∑

𝑗=0
𝑒−𝑖𝜔𝑘𝑗Δ𝑡

𝑁𝜔−1
∑

𝑙=0
𝐑𝑙

(

𝑒𝑖𝜔𝑙𝑗Δ𝑡 − 𝑒𝐀𝑗Δ𝑡
)

𝐁𝒇𝑙. (3.8)

We refer to 𝐑𝑘 = (𝑖𝜔𝑘𝐈 − 𝐀)−1 as the resolvent operator. Eq. (3.8) can then be written as

𝒒̂𝑘,𝑓𝑜𝑟𝑐𝑒 =
1
𝑁𝜔

𝑁𝜔−1
∑

𝑗=0

𝑁𝜔−1
∑

𝑙=0
𝐑𝑙

(

𝑒𝑖(𝜔𝑙−𝜔𝑘)𝑗Δ𝑡 − 𝑒(𝐀−𝑖𝜔𝑘𝐈)𝑗Δ𝑡
)

𝐁𝒇𝑙. (3.9)

The frequency difference term in Eq. (3.9) evaluates to zero for 𝜔𝑙 ≠ 𝜔𝑘, and the other term may be evaluated by the same geometric 
sum argument as before. The entire forcing term in Eq. (3.2) becomes

𝒒̂𝑘,𝑓𝑜𝑟𝑐𝑒 = 𝐑𝑘𝐁𝒇𝑘 −
1
𝑁𝜔

(𝐈 − 𝑒(𝐀−𝑖𝜔𝑘)Δ𝑡)−1(𝐈 − 𝑒𝐀𝑇 )
𝑁𝜔−1
∑

𝑙=0
𝐑𝑙𝐁𝒇𝑙. (3.10)

Recombining our simplified expressions for 𝒒̂𝑘,𝑖𝑐 and 𝒒̂𝑘,𝑓𝑜𝑟𝑐𝑒, we obtain the following equation for the 𝑘-th component of the DFT of 
the state:

𝒒̂𝑘 = 𝐑𝑘𝐁𝒇𝑘 +
(

𝐈 − 𝑒(𝐀−𝑖𝜔𝑘)Δ𝑡
)−1(𝐈 − 𝑒𝐀𝑇

)

(

𝒒0 −
1
𝑁𝜔

𝑁𝜔−1
∑

𝑙=0
𝐑𝑙𝐁𝒇𝑙

)

. (3.11)

The first term in Eq. (3.11) 𝐑𝑘𝐁𝒇𝑘, is familiar: it is the component at frequency 𝜔𝑘 of the steady-state response to a periodic 
forcing. The second term in Eq. (3.11) represents the transient. This transient may persist for the entirety of the interval [0, 𝑇 ], so 
including it is crucial.

Refs. [26,27] took an expression equivalent to the first term as their starting point for SPOD-based model reduction. Specifically, 
they began with the equation

𝐋𝑘𝒒̂𝑘 = 𝐁𝒇𝑘, (3.12)

where 𝐋𝑘 = (𝑖𝜔𝑘𝐈 − 𝐀) is the inverse of the resolvent operator. We stress that unless the solution 𝒒(𝑡) is 𝑇 -periodic, this relation is 
incorrect, and this issue was not fully appreciated in either Ref. [26] or [27]. We note that [37] has discussed this issue in another 
context.

Ref. [26] proceeded to reduce Eq. (3.12) by applying a Galerkin projection with 𝚿𝑘 as the trial basis, resulting in the equation 
𝒂𝑘 = (𝚿∗

𝑘𝐖𝐋𝑘𝚿𝑘)
−1𝐁𝒇𝑘. Even in 𝑇 -periodic systems, this reduction does not recover the exact SPOD coefficients — the unretained 

modes influence the retained coefficients. An innovation made Ref. [27] was to use a Petrov-Galerkin projection of Eq. (3.12), 
resulting in the equation 𝒂𝑘 = (𝚽𝐹∗

𝑘 𝐖𝐋𝑘𝚿𝑘)
−1𝚽𝐹∗

𝑘 𝐖𝐁𝒇 . Ref. [27] showed that the test basis 𝚽𝐹
𝑘  can be chosen in such a way that the 

retained SPOD coefficients are exact (for 𝑇 -periodic systems). The expression for the test basis 𝚽𝐹
𝑘  required to achieve this involved 

the statistics of the forcing and was written in terms of the singular value decomposition of the product of the resolvent operator and 
a matrix that contained these forcing statistics.

Computer Methods in Applied Mechanics and Engineering 447 (2025) 118382 

7 



P. Frame et al.

The 𝑇 -periodic Petrov-Galerkin method from Ref. [27] may be alternatively derived by left-multiplying the full-order equation 
𝒒̂𝑘 = 𝐑𝑘𝐁𝒇𝑘 by 𝚿∗

𝑘𝐖, resulting in the following relation for the SPOD coefficients 𝒂𝑘 = 𝚿∗
𝑘𝐖𝐑𝑘𝐁𝒇𝑘. Since our goal is to arrive at a 

ROM without the constraint of periodicity, we instead apply the left-multiplication to Eq. (3.11).
While the frequency domain Eq. (3.11) remains valid regardless of the stability of the system as long as the assumptions listed 

above are met, we do not recommend the method in the case of an unstable system unless 𝑇𝜆max is relatively close to unity. When there 
is significant exponential growth along the unstable eigenvectors, i.e., 𝑒𝑇𝜆max  is large, capturing these directions, and the projection 
of the forcing onto them is crucial, so eigensystem methods are superior.

3.2.  Reduction and operator approximations

As described above, we proceed by left-multiplying Eq. (3.11) according to Eq. (2.17),

𝒂𝑘 = 𝚿∗
𝑘𝐖𝐑𝑘𝐁𝒇𝑘 +𝚿∗

𝑘𝐖
(

𝐈 − 𝑒(𝐀−𝑖𝜔𝑘𝐈)Δ𝑡
)−1(𝐈 − 𝑒𝐀𝑇

)

(

𝒒0 −
1
𝑁𝜔

𝑁𝜔−1
∑

𝑙=0
𝐑𝑙𝐁𝒇𝑙

)

. (3.13)

If the system is small, all operators may be computed analytically. However, for large systems, direct computation of, e.g., the 
inverse that defines the resolvent operator or the matrix exponentials, is not tractable. For these systems, these operators must be 
approximated.

3.2.1.  Steady-state operator
We begin with the operator 𝐌𝑘 = 𝚿∗

𝑘𝐖𝐑𝑘𝐁. An accurate and simple-to-implement approximation of 𝐌𝑘 can be obtained by 
leveraging the availability of data as follows. Defining

𝒈𝑖𝑘 = 𝐋𝑘𝒒̂𝑖𝑘, (3.14)

where, again, 𝐋 = (𝑖𝜔𝑘𝐈 − 𝐀) is the inverse of the resolvent and 𝒒̂𝑖𝑘 is the 𝑖-th realization of 𝒒̂𝑘 in the training data, we have
𝒒̂𝑖𝑘 = 𝐑𝑘𝒈𝑖𝑘. (3.15)

Forming each 𝒈𝑖𝑘 is not computationally expensive so long as 𝐀 is sparse. Using the many realizations of the training data (the same 
ones used to generate the SPOD modes), we have

𝐐𝑘 = 𝐑𝑘𝐆𝑘, (3.16)

where 𝐐𝑘 = [𝒒̂1𝑘, 𝒒̂
2
𝑘,… , 𝒒̂𝑟𝑑𝑘 ] and 𝐆𝑘 = [𝒈1𝑘, 𝒈

2
𝑘,… , 𝒈𝑟𝑑𝑘 ]. We approximate the resolvent operator 𝐑𝑘 as

𝐑𝑘 ≈ 𝐐𝑘𝐆+, (3.17)

where the pseudoinverse is defined 𝐆+ = (𝐆∗𝐖𝐆)−1𝐆∗𝐖. It may be shown that the action of this approximate resolvent is equivalent 
to an orthogonal projection into the column space of 𝐆𝑘, followed by a multiplication by the resolvent. In other words, 𝐐𝑘𝐆+ = 𝐑𝑘𝐏𝑔 , 
where 𝐏𝑔 is an orthogonal projection matrix (in the 𝐖-based norm). This means that 𝐐𝑘𝐆+ is an effective approximation of 𝐑𝑘 to 
the extent that the vectors to which it is applied are near the column space of 𝐆𝑘. By inserting this approximation of the resolvent 
operator into the expression 𝐌𝑘 = 𝚿∗

𝑘𝐖𝐑𝑘𝐁, we define the matrix 𝐄𝑘 as
𝐌𝑘 ≈ 𝐄𝑘 = 𝚿∗

𝑘𝐖𝐐𝑘𝐆+
𝑘𝐁. (3.18)

The total cost of these operations scales linearly with 𝑁𝑥 and quadratically with 𝑟𝑑 , thus the approximation avoids the superlinear 
𝑁𝑥 scaling required by most methods for computing the (non-approximate) action of the resolvent operator. We note that if more 
accuracy is required, time-stepping approaches, such as those developed by [38], may be used.

3.2.2.  Transient operator
Next, we approximate the operator 𝚿∗

𝑘𝐖
(

𝐈 − 𝑒(𝐀−𝑖𝜔𝑘𝐈)Δ𝑡
)−1(𝐈 − 𝑒𝐀𝑇

)

. This is accomplished using the 𝑟𝑑 available SPOD modes at 
each frequency. We first multiply by the identity, expressed as 𝚿𝑘,full𝚿∗

𝑘,full𝐖, in various places, 

𝚿∗
𝑘𝐖

(

𝐈 − 𝑒(𝐀−𝑖𝜔𝑘𝐈)Δ𝑡
)−1(𝐈 − 𝑒𝐀𝑇

)

= 𝚿∗
𝑘𝐖

(

𝐈 − 𝑒(𝐀−𝑖𝜔𝑘𝐈)Δ𝑡
)−1𝚿𝑘,full𝚿∗

𝑘,full𝐖
(

𝐈 − 𝑒𝐀𝑇
)

𝚿𝑘,full𝚿∗
𝑘,full𝐖. (3.19a)

= 𝐏𝑘

(

𝐈 − 𝑒(𝚿
∗
𝑘,full𝐖𝐀𝚿𝑘,full−𝑖𝜔𝑘𝐈)Δ𝑡

)−1(
𝐈 − 𝑒𝚿

∗
𝑘,full𝐖𝐀𝚿𝑘,full𝑇

)

𝚿∗
𝑘,full𝐖. (3.19b)

The full-rank set of SPOD modes are brought into the matrix exponentials in Eq. (3.19b), and it is straightforward to show that this 
does not introduce any approximation. In Eq. (3.19b), the matrix 𝐏𝑘 =

[

𝐈𝑟𝑘 𝟎
]

∈ ℝ𝑟𝑘×𝑟𝑑  selects the first 𝑟𝑘 rows of the matrix it 
multiplies. Finally, truncating the operators in Eq. (3.19b), i.e., 𝚿𝑘,full → 𝚿𝑟𝑑

𝑘 , and denoting 𝐀̃ = 𝚿𝑟𝑑∗
𝑘 𝐖𝐀𝚿𝑟𝑑

𝑘 , the approximated term 
is

𝚿∗
𝑘𝐖

(

𝐈 − 𝑒(𝐀−𝑖𝜔𝑘𝐈)Δ𝑡
)−1(𝐈 − 𝑒𝐀𝑇

)

≈ 𝐏𝑘

(

𝐈 − 𝑒(𝐀̃𝑘−𝑖𝜔𝑘𝐈)Δ𝑡
)−1(

𝐈 − 𝑒𝐀̃𝑘𝑇
)

𝚿𝑟𝑑∗
𝑘 𝐖. (3.20)

As desired, all matrix exponentials and inverses are of size 𝑟𝑑 × 𝑟𝑑 , which makes them tractable.
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The forcing sum in Eq. (3.13), which is difficult to compute directly because it involves resolvents, must also be approximated. 
In the unreduced equations, this term is the same at each frequency, so the sum over frequencies only needs to be computed once. 
Any approximation of this term should be the same for each frequency to avoid quadratic scaling in 𝑁𝜔. The natural choice is to 
approximate each term by

𝐑𝑙𝐁𝒇𝑙 ≈ 𝚿𝑙𝚿
∗
𝑙𝐖𝐑𝑙𝐁𝒇𝑙. (3.21)

This approximation is accurate because the SPOD modes at the 𝑙-th frequency are the best basis for 𝒒̂𝑙 and are thus a very good basis 
for 𝐑𝑙𝐁𝒇𝑙, which is the steady-state component of 𝒒̂𝑙. The operator 𝚿∗

𝑙𝐖𝐑𝑙𝐁 may again be approximated with 𝐄𝑙.
The equations can, at this point, be written as

𝒂𝑘 = 𝐄𝑘𝒇𝑘 + 𝐅𝑘

(

𝒒0 −
1
𝑁𝜔

∑

𝑙
𝚿𝑙𝐄𝑙𝒇𝑙

)

, (3.22)

where 𝐅𝑘 =
(

𝐈 − 𝑒(𝐀̃𝑘−𝑖𝜔𝑘𝐈)Δ𝑡
)−1(

𝐈 − 𝑒𝐀̃𝑘𝑇
)

𝚿∗
𝑘𝐖 ∈ ℂ𝑟𝑘×𝑁𝑥 . The operators have been approximated, so far, to avoid (𝑁3

𝑥 ) scaling in 
the offline phase of the algorithm. To avoid (𝑁𝑥) scaling in the online phase, one final approximation must be made. The term in 
parentheses in Eq. (3.22) is multiplied on the left by 𝐅𝑘 for every frequency 𝜔𝑘, leading to 𝑁𝑥𝑁𝜔𝑟 scaling. This can be avoided by 
storing the term in parentheses in Eq. (3.22) in a rank-𝑝 reduced basis 𝚽 ∈ ℂ𝑁𝑥×𝑝 and precomputing the product of this basis with 
each 𝐅𝑘. This basis should represent the initial condition and forcing sum terms accurately, and in practice, we choose POD modes 
of the state. With this approximation, the equations become

𝒂𝑘 = 𝐄𝑘𝒇𝑘 +𝐇𝑘

(

𝚽∗𝐖𝒒0 −
1
𝑁𝜔

∑

𝑙
𝐓𝑙𝐄𝑙𝒇𝑙

)

, (3.23)

where 𝐇𝑘 = 𝐅𝑘𝚽 ∈ ℂ𝑟𝑘×𝑝 and 𝐓𝑙 = 𝚽∗𝐖𝚿𝑙 ∈ ℂ𝑝×𝑟𝑙 . Given an initial condition 𝒒0 and forcing 𝒇 (𝑡), the online stage of the method 
consists of taking the Fourier transform of the forcing, inserting this and the initial condition into Eq. (3.23) in order to get the SPOD 
coefficients, then transforming back to the time domain. The details are given in the following subsection.

3.3.  Formal statement of the algorithm and scaling

The offline and online phases of the SSOP method are shown in Algorithms  1 and 2, respectively.

Algorithm 1 SSOP (offline).
1: Inputs: 𝐀, 𝐁, 𝐂, 𝐖, {𝚿𝑟𝑑

𝑖 }, {𝚲𝑟𝑑
𝑖 },{𝐆𝑖}, {𝑟𝑖}, 𝚽

2: for 𝑘 ∈ {1, 2,… , 𝑁𝜔} do
3:  𝚿𝑘 ← [𝝍𝑘,1,… ,𝝍𝑘,𝑟𝑘 ] ⊳ Retained SPOD modes
4:  𝐋𝑘 ← 𝑖𝜔𝑘𝐈 − 𝐀 ⊳ Inverse of resolvent
5:  𝐄𝑘 ← 𝚿∗

𝑘𝐖𝐐𝑘𝐆+
𝑘𝐁 ⊳ Precomputation of first operator

6:  𝐀̃𝑘 ← 𝚿𝑟𝑑∗
𝑘 𝐖𝐀𝚿𝑟𝑑

𝑘 ⊳ Reduced 𝐀 to compute matrix exponentials
7:  𝐏𝑘 ←

[

𝐈𝑟𝑘 𝟎
]

⊳ Row selector matrix
8:  𝐇𝑘 ← 𝐏𝑘(𝐈 − 𝑒(𝐀̃𝑘−𝑖𝜔𝑘𝐈)Δ𝑡)−1(𝐈 − 𝑒𝐀̃𝑘𝑇 )(𝚿𝑟𝑑∗

𝑘 𝐖𝚽) ⊳ Precomputation of second operator
9:  𝐓𝑘 ← 𝚽∗𝐖𝚿𝑘 ⊳ Precomputation of third operator
10:  𝐂𝚿

𝑘 ← 𝐂𝚿𝑘 ⊳ 𝐂 in SPOD basis
11: end for
Inputs: 𝐀, 𝐁, 𝐂, the system matrices; 𝐖, the weight matrix; {𝚿𝑟𝑑

𝑖 }, the 𝑟𝑑 SPOD modes at each frequency; {𝚲𝑟𝑑
𝑖 }, the 𝑟𝑑 SPOD energies 

at each frequency; {𝐆𝑖}, the matrix with columns defined in Eq. (3.14); {𝑟𝑖}, the number of modes to be kept at each frequency; 𝚽, 
the basis for reducing the initial condition and forcing terms.
Outputs: {𝐄𝑖}, {𝐇𝑖}, {𝐓𝑖}, the operators in Eq. (3.23) for each frequency; {𝐂𝚿

𝑖 }, the operators that map the SPOD mode coefficients 
to 𝒚 for each frequency. 

So long as the offline time is feasible, which we show next, the online scaling is the salient cost. In calculating the online cost, 
we count the operations necessary to go from the time domain forcing and initial condition to the SPOD coefficients. In practice, 𝒚
is likely small, thus multiplying the SPOD coefficients by 𝐂𝚿𝑘 and taking the inverse DFT contributes insignificantly to the scaling. 
The complexity of the online algorithm is

((𝑟𝑝 + 𝑟𝑁𝑓 +𝑁𝑓 log𝑁𝜔)𝑁𝜔). (3.24)

This time should be compared with the complexity of a POD-Galerkin model, which is ((𝑟𝑁𝑓 + 𝑟2)𝑁𝑡). The two are similar, and the 
differences are due to how 𝑝 compares with 𝑟, how 𝑁𝑡 compares with 𝑁𝜔, and the constants involved. In our numerical experiments, we 
find that the SPOD method is slightly faster for equal rank (but much more accurate). In Appendix B we detail a further approximation 
that removes the 𝑁𝑓  scaling from Eq. (3.24) by employing the discrete empirical interpolation method (DEIM) [39] to approximate 
the forcing, and other 𝑁𝑥-tall vectors, via sparse samplings. This can lead to significant speed-up in cases where 𝑁𝑓  is large.
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Algorithm 2 SSOP (online).
1: Input parameters: 𝒒0, 𝒇 , 𝐖, {𝚿𝑖}, 𝚽, {𝐄𝑖}, {𝐇𝑖}, {𝐓𝑖}, {𝐂𝚿

𝑖 }
2: 𝒇 ← 𝙵𝙵𝚃(𝒇 ) ⊳ FFT of forcing
3: 𝒂𝚽0 = 𝚽∗𝐖𝒒0 ⊳ Reduced initial condition
4: 𝒂̃𝚽0 ← 𝟎𝑝×1 ⊳ Initializing forcing sum term
5: for 𝑘 ∈ {1, 2,… , 𝑁𝜔} do
6:  𝒃𝑘 ← 𝐄𝑘𝒇𝑘
7:  𝒂̃𝚽0 ← 𝒂̃𝚽0 + 1

𝑁𝜔
𝐓𝑘𝒃𝑘 ⊳ Forcing sum

8: end for
9: for 𝑘 ∈ {1, 2,… , 𝑁𝜔} do
10:  𝒂𝑘 ← 𝒃𝑘 +𝐇𝑘(𝒂𝚽0 − 𝒂̃𝚽0 ) ⊳ Assigning SPOD coefficients
11:  𝒚̂𝑘 ← 𝐂𝚿

𝑘 𝒂𝑘 ⊳ Constructing observable in frequency domain
12: end for
13: 𝒚 ← 𝙸𝙵𝙵𝚃(𝒚̂) ⊳ Observable in time domain

Inputs: 𝒒0, the initial condition; 𝒇 , the forcing as a function of time; 𝐖, the weight matrix; {𝚿𝑖}, the retained SPOD modes for each 
frequency; 𝚽, the basis for reducing the initial condition and forcing terms; {𝐄𝑖}, {𝐇𝑖}, {𝐓𝑖}, the operators in Eq. (3.23) for each 
frequency; {𝐂𝚿

𝑖 }, the operators that map the SPOD mode coefficients to 𝒚 for each frequency.
Output: 𝒚, the observable in the time domain. 

In Algorithm 1, we have assumed that the SPOD modes for the 𝒒̂ and 𝒈̂ have already been obtained. These modes can be obtained 
using the techniques described in, e.g., Refs. [15,40], and the cost for this step is (𝑟2𝑑𝑁𝑥𝑁𝜔), where again 𝑟𝑑 is the number of SPOD 
modes obtained from the data, which is the same as the number of temporal blocks formed in Welch’s algorithm. If evaluation of 𝐀𝒒
scales linearly with 𝑁𝑥 (i.e., 𝐀 is sparse), then the offline scaling is (𝑟2𝑑𝑁𝑥𝑁𝜔). If the evaluation of 𝐀𝒒 scales quadratically with 𝑁𝑥, 
then the offline scaling is (𝑟2𝑑𝑁𝑥𝑁𝜔 + 𝑟𝑑𝑁2

𝑥𝑁𝜔).

3.4.  Data-free method

Here, we briefly outline a data-free version of the method. Ref. [15] established a connection between SPOD modes, which come 
from data, and resolvent modes, which come directly from the system matrices. We first define the singular value decomposition

𝐗𝑞𝐑𝑘𝐁𝐗−1
𝑓 = 𝐔̃𝑘𝚺𝑘𝐕̃∗

𝑘. (3.25)

Here, 𝐗𝑞 is the Cholesky factor of the weight matrix that defines the energy of the state, and 𝐗𝑓  is the Cholesky factor of the 
weight matrix that defines the norm of the forcing, i.e., 𝐖 = 𝐗∗

𝑞𝐗𝑞 , 𝐖𝑓 = 𝐋∗
𝑓𝐋𝑓  and ‖𝒇‖2 = 𝒇 ∗𝐖𝑓𝒇 . The resolvent response modes at 

frequency 𝜔𝑘 are then defined as 𝐔𝑘 = 𝐗−1
𝑞 𝐔̃𝑘. The relation between these modes and the SPOD modes is the following: if the forcing 

at frequency 𝜔𝑘 is white in space with respect to the forcing norm, i.e., 𝔼[𝐟𝑘𝐟∗𝑘 ] = 𝛼𝐖−1
𝑓  for some constant 𝛼, then the SPOD modes 

are equivalent to the resolvent modes,
𝚿𝑘 = 𝐔𝑘, (3.26)

and the SPOD energies are proportional to the square singular values,
𝚲𝑘 = 𝛼2𝚺2

𝑘. (3.27)

Formally, this equivalence holds only if the forcing is white; however it has been demonstrated extensively in the fluid mechanics 
literature that the two sets of modes are often remarkably similar even when the forcing is far from white [16–20]. This can be 
leveraged to formulate a data-free ROM by substituting the resolvent modes for the SPOD modes at each frequency. We refer to this 
version of the method as resolvent SSOP.

The scaling for a straightforward computation of the inverse that defines the resolvent, and the matrix exponential and inverse in 
Eq. (3.13) is cubic in 𝑁𝑥. However, data-free methods [38] exist that can be used to drastically reduce this scaling, as is required for 
large systems.

The natural point of comparison for the resolvent SSOP method is balanced truncation, which is also data-free. We make this 
comparison in Section 4.1, finding that at most parameter values, resolvent SSOP is more accurate. Balanced truncation shares the 
worst-case offline scaling, and approximations that reduce the scaling exist as well [41,42].

4.  Examples

Here, we demonstrate the proposed method on two examples: a linearized Ginzburg-Landau problem and a scalar transport 
problem. The former is a dense system of dimension 𝑁𝑥 = 220, and the latter is a sparse system of dimension 𝑁𝑥 = 9604. For the 
Ginzburg-Landau system, we compare the accuracy and cost of the proposed method to those of POD-Galerkin projection and a 
statistics-enhanced version of balanced truncation. The error is roughly two orders of magnitude lower for the proposed method than 
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the other two (depending on the case), and the CPU time is similar for all methods. For the scalar transport case, the offline time for 
balanced truncation makes the method (in its unapproximated form) infeasible, so we compare only to a POD-Galerkin model. The 
proposed method is again orders of magnitude more accurate at similar CPU cost.

The SSOP method with an average of 𝑟 modes at each frequency is compared to the two time-domain methods with 𝑟 modes. In both 
time-domain methods, we use an integrator with an adaptive time step, but calculate the error at the temporal grid corresponding to 
the fastest frequency used in the SSOP method (which was longer than the time steps taken by the integrators in both examples). This 
means that the time-domain methods, as well as the proposed SSOP method, use 𝑟𝑁𝜔 degrees of freedom to represent the solution 
over the interval. We will show that the SSOP and the two time-domain methods at the same 𝑟 are comparable in terms of CPU time, 
so the comparison that ultimately is the most meaningful is the accuracy of the methods at the same 𝑟.

4.1.  Linearized Ginzburg-Landau problem

In continuous space, the complex linearized Ginzburg-Landau equation is
𝑞̇(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) + 𝑓 (𝑥, 𝑡), (4.1)

where

 = −𝜈 𝜕
𝜕𝑥

+ 𝛾 𝜕2

𝜕𝑥2
+ 𝜇(𝑥), (4.2)

and 𝑓 (𝑥, 𝑡) is a forcing. Following Ref. [43], we set 𝜈 = 2 + 0.4𝑖 and 𝛾 = 1 − 𝑖. The parameter 𝜇(𝑥) takes the form
𝜇(𝑥) = (𝜇0 − 𝑐2𝜇) +

𝜇2
2
𝑥2, (4.3)

with 𝑐𝜇 = 0.2, 𝜇2 = −0.01 [43]. The parameter 𝜇0 is a bifurcation parameter; the linearized system transitions from global stability to 
global instability when 𝜇0 exceeds 0.397. We set 𝜇0 = 0.229 [15] for the majority of our numerical experiments and later explore the 
effectiveness of the ROMs as 𝜇0 varies from 0.079 to 0.379. The system can be interpreted as an advection-diffusion equation with a 
local exponential growth term. The equation supports traveling wave behavior in the positive 𝑥-direction and is stable in the sense 
that all the eigenvalues of the linear operator (discretized or continuous) are negative, so all solutions to the unforced equations decay 
asymptotically. Whether the exponential term promotes local growth or local decay depends on the sign of 𝜇(𝑥). With the parameters 
used, 𝜇(𝑥) is positive when 𝑥 ∈ [−6.15, 6.15] and negative elsewhere, so as waves move through this region, they grow substantially 
before decaying once again after passing through it.

When the equation is discretized in space, it takes the general form in (3.1). Following Refs. [43,44], we use a pseudo-spectral 
Hermite discretization with 𝑁𝑥 = 220 collocation points [15], and solve the discretized equations using MATLAB’s ode45, an explicit 

Fig. 3. Ginzburg-Landau state and forcing trajectories: (a) the state resulting from the white forcing in (c); (b) the state resulting from the Gaussian 
forcing in (d). Both forcings have the same spatial correlation, but the short temporal correlation in the white forcing leads to more jagged structures 
in the corresponding state. Both trajectories consist of waves traveling in the positive 𝑥-direction that are amplified in a region near 𝑥 = 0.
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Runge-Kutta (4,5) integrator. Following Ref. [15], training data to compute the SPOD modes is generated from a single long run of 
the forced system comprising a short transient followed by 12000 time steps of data with Δ𝑡 = 0.2. The transient is discarded so that 
the modes are independent of the initial condition used in the run, and the 12000 time steps are segmented into 𝑟𝑑 = 142 overlapping 
blocks, each of length 𝑁𝜔 = 1024 time steps.

Fig. 3(a,b) shows two space-time trajectories of the state 𝑞, each 1024 time steps in length. The diagonally oriented structures 
demonstrate the traveling wave behavior of the system, and it is clear that the waves are amplified and then attenuated as they pass 
through 𝑥 = 0. These space-time trajectories are to space-time POD (and thus SPOD) as snapshots are to POD: the more structure there 
is in the trajectories, the fewer space-time modes are needed to accurately represent them. For example, in Fig. 3(a) the state is forced 
with band-limited temporally white noise and a Gaussian spatial correlation while the state in Fig. 3(b) is forced with a temporally, 
as well as spatially, Gaussian noise. The resulting state from the white forcing has more detailed structures – a good proxy for higher 
rank behavior – so trajectories with this forcing require more space-time modes to be accurately represented. The temporally white 
and temporally Gaussian forcings are shown in Fig. 3(c,d). Note that the forcing occupies the entire domain in this example, i.e., 
𝑁𝑓 = 𝑁𝑥. We thus choose 𝑝 = 𝑁𝑥 vectors in the intermediary basis used to reduce the transient operator, because this will not have a 
large impact on the CPU time in this case. The SPOD method, therefore, scales like 𝑁𝑥, as do POD-Galerkin projection and balanced 
truncation, and there is no scaling benefit gained by using an intermediary basis, so we set it to the identity in this example. Despite 
this spatially extensive forcing, all three ROMs maintain a significant advantage over the FOM due to the latter being dense, resulting 
from the pseudo-spectral discretization.

Fig. 4 illustrates various features of the mode energies. The top panel shows the SPOD mode energies 𝜆 as a function of 𝜔. Each 
curve is a particular mode number as a function of frequency. The decision to retain 𝑁𝜔𝑟 total modes in the ROM selects an energy 
threshold below which modes are not retained (indicated by the dashed line in the figure). After ordering the energies of all mode 
numbers at all frequencies, the threshold is given by the 𝑁𝜔𝑟-th energy 𝜆̃𝑁𝜔𝑟. At frequencies where a given mode number is above 
(red) the energy threshold (dashed), it is retained. Where it is below (blue) the energy threshold, it is truncated. The green curve 
shows the number of modes that meet or exceed this threshold as a function of 𝜔. For example, at the dominant frequency in the 
white noise case, 22 modes are retained, whereas at the highest and lowest frequencies, only 3 are retained. The bottom panel shows 

Fig. 4. SPOD mode energies: (a-b, left axis) energy 𝜆 of the retained and unretained modes. The top red curve is the energy of the first SPOD mode 
as a function of frequency 𝜔. The lower red and blue curves are the energies of the lower mode numbers, as functions of frequency. The retained 
modes (red) are the overall highest-energy modes, and the threshold (dashed) is determined as the energy of the 𝑁𝜔𝑟 = 10240-th most energetic 
mode; (a-b, right axis) number of modes that clear the threshold as a function of frequency. (c-d): the fraction of excluded energy (see Eq. (4.4)) 
as a function of 𝑟, the average number of modes per frequency. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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the fraction of energy that is excluded depending on the number of modes retained, as given by the formula
∑𝑁𝜔−1

𝑘=0
∑𝑁𝑥

𝑗=𝑟𝑘+1
𝜆𝑘𝑗

∑𝑁𝜔−1
𝑘=0

∑𝑁𝑥
𝑗=1 𝜆𝑘𝑗

. (4.4)

This quantity represents the fraction of the energy in the training data that is not representable by the retained modes. It depends 
on 𝑟, the average number of modes retained per frequency, and as 𝑟 is increased the excluded energy decreases as the SPOD basis at 
each frequency is enriched. For the Gaussian forcing case, the excluded energy fraction drops more quickly initially, indicating that 
the state is more accurately represented with a given number of SPOD modes in the Gaussian case relative to the white case.

The test data comprise 173 trajectories, again with Δ𝑡 = 0.2 and with each trajectory of length 1024 time steps. These test trajectories 
are generated as sub-trajectories from a long run, and the initial conditions and forcings used are not present in the training data. 
For each ROM, we calculate the error at the 1024 points for each trajectory as the square norm of the difference with the FOM 
solution. Throughout this section, we compare the performance of the proposed SSOP method to that of POD-Galerkin projection and 
an enhanced version of balanced truncation. The reader is referred to Ref. [45] for a description of POD-Galerkin projection. We use 
the MATLAB function balreal to generate the reduced system matrices and basis for balanced truncation, which is based on Ref. 
[4,46]. In its usual form, balanced truncation does not make use of (i.e., does not require) data or knowledge of the statistics of the 
problem it is applied to. It may be improved with this information by ‘whitening’ the forcing, i.e., transforming the system to one 
where the forcing is spatially white before performing the usual balanced truncation algorithm. In this application, where the forcing 
is far from spatially white, we observe that this variant of balanced truncation substantially outperforms the standard version, so we 
use it as a benchmark along with POD-Galerkin projection. We solve the reduced equations with the MATLAB function ode45 for 
both methods, and run both the FOM and all ROMs using six cores of an Intel Xenon 6128 processor. The cost of building the ROM 
(with 𝑟 = 10) was 0.7% of the cost generating the FOM data.

Fig. 5 shows the three ROM approximations of a trajectory, along with the errors in these approximations. All ROMs here use 𝑟 = 2
modes, and the error field shown here is the absolute value of the difference between the FOM and ROM trajectories, i.e., |𝑞(𝑥, 𝑡) −
𝑞(𝑥, 𝑡)| where 𝑞(𝑥, 𝑡) is the ROM result. The enhanced balanced truncation produces a better result than POD-Galerkin projection, but 
the error of the SSOP method is much lower than both benchmarks.

Fig. 5. FOM trajectory (a) and ROM predictions thereof (b-d) along with the errors for the Ginzburg-Landau system. The error fields shown are the 
absolute value of the difference of the FOM and ROM trajectories. The peak error value (and the upper limit on the error color scale) is 87% of the 
peak absolute value of the state.
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Fig. 6. Error with 𝑟 = 10 modes relative to the FOM for the Ginzburg-Landau system, averaged over 173 trajectories. The large difference in accuracy 
is due, in large part, to the ability of the SPOD modes to represent trajectories more accurately than space-only modes. This difference is larger in 
the Gaussian forcing case.

Hereafter, we compute the error as a function of time as the square norm of the difference of the ROM and FOM solutions, averaged 
over the test trajectories and normalized by the mean square norm of the FOM solution, i.e.,

𝑒(𝑡) =
∑𝑁test

𝑖=1 ‖𝒒𝑖(𝑡) − 𝒒𝑖(𝑡)‖2𝑥
1
𝑇
∑𝑁test

𝑖=1 ∫ 𝑇
0 ‖𝒒𝑖(𝑡′)‖2𝑥 d𝑡′

. (4.5)

We also report the mean of this quantity over time.
Fig. 6 shows the error, defined in Eq. (4.5), for the various ROMs. For the POD-Galerkin and enhanced balanced truncation models, 

10 spatial modes are used for each of the 1024 time steps. For the SSOP method, the 10 × 1024 = 10240 most energetic SPOD modes are 
used, and are distributed over the frequencies as shown in Fig. 4. Most notably, the error is nearly two orders of magnitude smaller 
for the SSOP method than it is for the other two methods. Given the analysis in the previous sections, this is not surprising: the SPOD 
modes are (nearly) optimal in that the representation error with some number of SPOD modes is smaller than (nearly) every other 
space-time basis. Again, this representation is recovered by the SSOP method up to the errors introduced from approximating the 
operators and the non-periodicity of the forcing on the temporal interval. The error from all methods is larger in the white-noise 
forcing case. This is to be expected because the resulting behavior of the state is higher rank in this case relative to the Gaussian 
forcing. The error of the SSOP method decreases by more in the Gaussian forcing case because it takes explicit advantage of the 
additional spatiotemporal coherence relative to the white forcing case.

Next, we investigate the dependence of the error on the number of modes retained. Fig. 7 shows, as one might expect, that 
the error in all methods decreases with the number of modes retained. The gulf between the SSOP method and the two space-only 
ROMs is roughly maintained over the range of modes shown for both the white and Gaussian forcing cases. The dashed lines are the 
projection of the full-order solution onto each respective set of modes, which we refer to as the representation error. For example, 

Fig. 7. Error as a function of the number of modes for the Ginzburg-Landau system. The values reported here are the time averages of the error 
defined in Eq. (4.5).
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Fig. 8. Average CPU time as a function of the number modes for the Ginzburg-Landau system. The values are normalized by the CPU time of the 
FOM.

the dashed green line is the SPOD mode representation error, i.e., the error of the FOM solution projected into the span of the SPOD 
modes. We emphasize that the motivation for this work is the fact that the SPOD representation error is substantially below the POD 
representation error. The SSOP solution error and representation error are nearly identical before the accuracy of the former is limited 
by the full-order frequency domain error at around 16 modes and 10−6 error. Until this point, the SSOP method indeed achieves the 
lowest error possible using SPOD modes, which is nearly the lowest error with any set of space-time modes. The SSOP solution error 
is not only lower than the POD-Galerkin and enhanced balanced truncation solution errors, but also the respective representation 
errors of these bases. The POD representation error is a lower bound for the error for any time-domain Petrov-Galerkin method, such 
as balanced truncation or least-squares Petrov-Galerkin [7], because this is precisely the quantity that POD modes minimize. Indeed, 
the balanced truncation error is within this bound. We view the fact that the SSOP solution error is significantly below the POD 
representation error as one of the major achievements of this work.

In Fig. 8, we show the CPU time as a function of the number of modes retained. All values are reported as a fraction of the FOM 
time of 3543 seconds in total for the 173 runs. The SSOP CPU time scales linearly with the number of modes retained, but here, there 
are too few modes to see this scaling. Nonetheless, the SSOP method is substantially faster than the two benchmarks and runs in 
roughly two thousandths of the FOM time. This time includes the time to take the Fourier transform of the forcing and the inverse 
Fourier transform of the response. The times for the white forcing cases and Gaussian forcings are comparable for the SSOP method, 
but the FOM takes substantially longer with the white forcing.

Thus far, we have tested the method on a system with the same statistics as the system on which the model was trained. In many 
applications, this assumption is too generous; a model trained on one system may be used to predict the behavior of a different system. 
We test the robustness of the method by training it on the Ginzburg-Landau system where the bifurcation parameter is 𝜇0 = 0.229, then 
testing it on a range of Ginzburg-Landau systems with 𝜇0 ∈ [0.079, 0.379] with increments of 0.03. Physically, this range corresponds to 
shifting from modal behavior at the lower end to strongly non-modal behavior at the upper end [43]. The training system (𝜇0 = 0.229) 
is the center of this range, but its behavior is more similar to systems at the lower end than the higher end; one metric for this is the 
optimal transient growth [47,48], which is just above 1 for 𝜇0 = 0.079, approximately 5 for 𝜇0 = 0.229, and nearly 200 for 𝜇0 = 0.379. 
We compare the performance of the SSOP model on the out-of-sample data to that of the POD-Galerkin model. For both, using training 
data from one system consists of simulating that system and obtaining the SPOD or POD modes from the data. To build the model on 
the test system, the ROM operators are computed with the modes from the training system and the 𝐀 and 𝐁 operators from the test 
system. We also compare results to the enhanced balanced truncation, which does not use data but does use the statistics of the forcing.

Before considering out-of-sample conditions, in Fig. 9(a), we first show the performance where the ROMs are trained and tested 
on the same system, i.e., 𝜇0 is the same. The error is computed with 𝑟 = 10 for all models and is shown for the range of 𝜇0. The dashed 
lines once again denote the projection of the FOM solution onto the respective modes; they are a lower bound for the respective 
methods. SSOP maintains its substantial accuracy superiority relative to the two baseline methods and to the POD projection over the 
range of 𝜇0. Both the balanced truncation and SSOP models take advantage of the lower rank behavior at the high 𝜇0 values, while 
the POD-Galerkin model is slightly less accurate due to the strong non-normality of 𝐀 at high 𝜇0.

Fig. 9(b) shows the results for the same range of test systems, but where the POD-Galerkin and SSOP models use modes from 
𝜇0 = 0.229. The enhanced balanced truncation is the same between (a) and (b) because it only uses the statistics of the forcing, not 
the state, which are the same between the systems. Most notably, the SSOP model delivers low error over the range of test systems 
when it is trained on 𝜇0 = 0.229. Even at high 𝜇0, where the system is dominated by non-modal mechanisms that are far less prevalent 
in the training system [43], the SSOP method is remarkably accurate. In fact, the SSOP method trained on the ‘wrong’ data ((b), solid 
green) is more accurate than the projection of the POD modes from the ‘right’ data ((a), dashed brown). That the system at, e.g., 
𝜇0 = 0.379 is substantially different from the one at 𝜇0 = 0.229 may be seen by comparing the projection errors (dashed) for the POD 
and SPOD modes in (a) and (b) at 𝜇0 = 0.379. For example, the error in the projection of the 𝜇0 = 0.379 system onto the 𝜇0 = 0.379
POD modes ((a), dashed brown) is an order of magnitude lower than the error in the projection of the 𝜇0 = 0.379 system onto the 
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Fig. 9. Data-driven ROM performance across a range of Ginzburg-Landau systems parameterized by 𝜇0: (a) Models are trained and tested on the 
same system for a range of 𝜇0; (b) Models are trained on a system with 𝜇0 = 0.229 and tested on a range of 𝜇0. All models use 𝑟 = 10. The enhanced 
version of balanced truncation in this figure does not use data to obtain its test and trial bases, so the BT results are the same in (a) and (b). It is 
included among the data-driven results because it uses the forcing statistics to whiten the system. All values of 𝜇0 shown are smaller than the critical 
value of 𝜇0 = 0.397.

𝜇0 = 0.229 POD modes ((b), dashed brown). The same can be said of the SPOD projection error between the two. The difference in 
the systems may also be seen in the fact that the POD-Galerkin model built from the 𝜇0 = 0.229 POD modes is unstable at 𝜇0 = 0.379
((b), solid brown).

Next, we investigate the robustness of the model to out-of-sample forcings using the following two tests. First, we train the model 
with 𝑟 = 5 on the data generated by the white forcing and test it on the Gaussian forcing. We compare the statistics of the model output 
over 142 blocks, namely the variance as a function of 𝑥 and the power spectral density as a function of 𝜔. Second, we use the same 
white-forcing-trained model to predict trajectories for four different non-stationary forcings. Unlike the white and Gaussian forcings, 
which are active in the entire domain, these non-stationary forcings are only nonzero in the interval 𝑥 ∈ [−12, 12]. Within this region, 
the forcings are given by 𝑓 (𝑥, 𝑡) = 𝑇 (𝑡)𝑋(𝑥) where 𝑋(𝑥) is a Gaussian bump centered at 𝑥 = −10. We test four choices of 𝑇 (𝑡).

Fig. 10 shows the results of the first test. The FOM variance, i.e., the turbulent kinetic energy, is shown in panel (a) and the errors 
in the ROM predictions thereof are shown in panel (c). Likewise, the FOM power spectral density is shown in panel (b) and the errors 
in the ROM PSDs are shown in panel (d). Both the mean energy and the PSD are normalized such that their peak is 1, and both errors 
are computed as the absolute value of the difference between the FOM and ROM statistics. For both quantities, the proposed method 
produces more accurate statistics for the out-of sample forcings than does either POD-Galerkin projection or balanced truncation. We 
also note that the error in the SSOP prediction of the state for this test is 84 and 20 times lower than the POD-Galerkin and balanced 
truncation predictions, respectively. Fig. 10 shows the results of the first test. The FOM variance, i.e., the turbulent kinetic energy, is 
shown in panel (a) and the errors in the ROM predictions thereof are shown in panel (c). Likewise, the FOM power spectral density is 

Fig. 10. Error in the prediction of statistics for the Ginzburg-Landau system: (a) the FOM variance (TKE) as a function of 𝑥; (b) the power spectral 
density (PSD); (c) the ROM errors in predictions of the TKE; (d) the ROM errors in predictions of the PSD. The ROMs are built using data from the 
white-noise forcing.
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Fig. 11. Results of the models trained with the white forcing on four out-of-sample non-stationary forcings to the Ginzburg-Landau system. The 
time-dependence of these forcings is shown in the top panel, and the resulting error for the three ROMs in the bottom panel. Respectively, the mean 
errors for the SSOP, POD-Galerkin, and balanced truncation models are (a) .007, .03, .02; (b) .008, .03, .02; (c) .002, .02, .007; (d) .002, .01, .007.

shown in panel (b) and the errors in the ROM PSDs are shown in panel (d). Both the mean energy and the PSD are normalized such 
that their peak is 1, and both errors are computed as the absolute value of the difference between the FOM and ROM statistics. For 
both quantities, the proposed method produces more accurate statistics for the out-of sample forcings than does either POD-Galerkin 
projection or balanced truncation. We also note that the error in the SSOP prediction of the state for this test is 84 and 20 times lower 
than the POD-Galerkin and balanced truncation predictions, respectively.

Fig. 11 shows the four non-stationary forcings, along with the error in the ROM predictions of the state for each. In each case, the 
errors are normalized by the mean square energy of the solution over the interval. The SSOP error is lower than that of the other two 
methods for all tests, but the difference is smaller than in previous tests. This likely may be attributed to the fact that the support of 
the forcing is quite different than in the training data for the model. Nevertheless, the method gives relatively accurate predictions 
for this out-of-sample forcing.

Fig. 12 compares the accuracy of the resolvent SSOP model, described in Section 3.4, to that of non-whitened balanced truncation, 
both with 𝑟 = 10. The test is conducted for the same range of 𝜇0 values as used in Fig. 9. The non-whitened version of balanced 
truncation does not transform the system to one where the forcing is spatially white, and, as such, is data-free. Notably, the resolvent 
SSOP method, which is also data-free, outperforms balanced truncation, the current gold-standard for linear model reduction, over 
most of the range. The online algorithm for resolvent SSOP is identical to SSOP, so its cost is also comparable to balanced truncation. 
We also note resolvent SSOP nearly recovers the projection of the FOM solution onto the resolvent modes, as can be seen by comparing 
the solid and dashed green lines in Fig. 12.

4.2.  Scalar transport problem

Next, we demonstrate the proposed algorithm on an advection-diffusion system modeling the transport of a scalar quantity in a 
steady fluid flow. The flow profile is the mean of a lid-driven cavity flow simulation at 𝑅𝑒 = 30, 000. This problem differs from the 
Ginzburg-Landau example in three important ways: it is substantially larger (𝑁𝑥 = 9604 as opposed to 220 in the Ginzburg-Landau 
case), the matrix 𝐀 is sparse, and the forcing occupies only a subset of the domain. The former means that the model is too large 
to compute the matrix operations without the approximations we described earlier. With this large 𝑁𝑥, computing the Gramians in 
balanced truncation is too costly as well, so we do not compare to it here, though we do note that there are effective data-driven 
approximations of it as well [41,42]. A balanced truncation model must have greater error than the POD representation error, which 
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Fig. 12. The accuracy of the resolvent SSOP model and unwhitened balanced truncation for Ginzburg-Landau systems with a range of 𝜇0. Both 
methods are data-free; the resolvent modes come directly from the system matrices in the governing equation, and ‘unwhitened’ indicates that we 
did not transform the system to one where the forcing is white using forcing data before performing balanced truncation. The dashed lines are the 
projections of the FOM solution onto the respective modes.

we do report, and can be expected to share the CPU time of a POD-Galerkin model. That the forcing does not occupy the entire 
domain means that there is a CPU time savings in using the intermediary basis described in Section 3.2.2.

The continuous governing equations for the scalar transport case may be written in the same form as Eq. (4.1), where  is now 
defined as

 = −𝒖(𝐱) ⋅ ∇ + 𝜂∇2, (4.6)

and where 𝒖(𝐱) is the mean flow in the lid-driven cavity. We take 𝜂 = 0.001 and the velocity of the lid to be Gaussian in 𝑥 (as opposed to 
a constant) to avoid discontinuities at the upper corners. The problem is nondimensionalized such that the maximum speed, occurring 
in the center of the lid, is 1. We prescribe a forcing that is stochastic with Gaussian spatial and temporal autocorrelation in a region 
of Gaussian support centered at 𝒙 = [0.75, 0.25]𝑇 ; its statistics are given by

𝐶𝑓𝑓 (𝒙1𝒙2, 𝑡1, 𝑡2) = exp

[

−
(

|𝒙1 − 𝒙|2 + |𝒙2 − 𝒙|2

𝑙2
+

|𝒙2 − 𝒙1|2

𝜉2
+

(𝑡2 − 𝑡1)2

𝜏2

)

]

, (4.7)

where | ⋅ | is Euclidean distance. Here, 𝑙 = 0.1 is the spatial width of the support of the forcing, 𝜉 = 0.07 is the spatial correlation 
length, and 𝜏 = 1 is the temporal correlation length. We use a second-order finite difference discretization with 98 points in both 
directions and Dirichlet boundary conditions so as to mimic a heat bath. The FOM is solved using MATLAB’s ode45. The vorticity of 
the underlying velocity field and a snapshot of the transported scalar are shown in Fig. 13. The red dashed circle in the latter indicates 
the region in which the equations are substantially forced – it is the radius at which the autocorrelation of the forcing defined by 
Eq. (4.7) drops by a factor of 𝑒 from its peak value.

For this example, we gather 50, 000 time steps of FOM data spaced Δ𝑡 = 0.5 apart from which to calculate SPOD modes and 
approximate operators. Time is nondimensionalized such that it takes one time unit for the lid to cross the cavity. In this example, the 
time step used in the FOM integration was much smaller – more than an order of magnitude for most times – due to the stiffness of the 
system. The data was then segmented into 648 overlapping blocks, each 256 time steps in length, so 𝑁𝜔 = 256, and 𝑇 = 128. The test 

Fig. 13. Visualization of the scalar transport problem: (a) the vorticity of the steady velocity field that transports the scalar; (b) a snapshot of the 
scalar field with the forcing region highlighted.
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Fig. 14. Error snapshots for the scalar transport problem: (a, c, e) POD-Galerkin ROM error for 2, 10, and 20 modes; (b, d, f) SSOP ROM error for 
the same numbers of modes. The extremes of the color scale are 31% of the maximum absolute value of the FOM solution, and the maximum in the 
2-mode POD-Galerkin error field is 62% of the maximum absolute value of the FOM solution.

data is 128 trajectories of the system, and error is defined in the same way as before – as the square norm of the difference of the ROM 
and FOM solutions averaged over all test trajectories and normalized by the mean square norm of the solution itself. Both the ROMs 
and the FOM use 56 cores on a pair of Intel Xeon 6242R processors. The cost of building the 10-mode ROM, including 168 seconds to 
compute the SPOD modes, was 30% of the cost of generating the FOM data. The additional offline time for the POD-Galerkin ROM 
was trivial in comparison to the cost of running the FOM to generate data from which to obtain the POD modes. Finally, we use 
𝑝 = 50 for the intermediary basis.

Fig. 14 shows error field snapshots for the two ROMs for 2, 10, and 20 modes. The error field for the POD-Galerkin model with 20
modes is larger than that for the proposed model with 2 modes.

Fig. 15. Accuracy of the proposed method compared to that of a POD-Galerkin model applied to the scalar transport problem. The dashed lines are 
the error of the full-order solution projected on the respective bases and are lower bounds for the error of the methods.
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Fig. 16. Average CPU time to solve the scalar transport problem as a function of the number of space-time modes used as a fraction of the FOM 
CPU time. The timing results from using DEIM to remove the 𝑁𝑓  scaling from the complexity of the model (and from the POD-Galerkin model) are 
also shown, and the details for this method are given in Appendix  B.

Fig. 15 shows the accuracy over a range of mode numbers. Once again, the proposed method produces error two orders of 
magnitude lower than that of the POD-Galerkin model. The dashed lines are again the representation error. The error of the POD 
projection is a lower bound for the POD-Galerkin error, as well as any spatial Petrov-Galerkin method, such as balanced truncation. 
We see that in this problem, like in the Ginzburg-Landau problem, the SSOP model far outperforms even this bound and is indeed 
fairly close to its own error bound.

Fig. 16 shows the CPU time required to solve the scalar transport problem. The SSOP model is slightly faster in this case than 
the POD-Galerkin one. Too few modes are used to see the asymptotic linear scaling with the number of modes. Timing results from 
using DEIM to remove the 𝑁𝑓  scaling are also shown for both methods, and the DEIM-augmented version of the method is described 
in Appendix  B. There, we show that the error is not meaningfully affected by the DEIM approximation, but we also discuss some 
drawbacks of the augmented version of the method.

5.  Conclusions

Space-time bases allow for a more accurate representation of a trajectory than do space-only bases with the same number of 
coefficients. In particular, the SPOD encoding of a trajectory with some number of coefficients may be orders of magnitude more 
accurate than the POD encoding of the same trajectory with the same number of coefficients. The obvious objectives are, therefore, 
to solve for these coefficients quickly and accurately, and we have pursued these for linear time-invariant systems.

The method works as follows. The SPOD coefficients 𝒂𝑘 at frequency 𝜔𝑘 are given by the Fourier transform of the trajectory 
𝒒̂𝑘 at that frequency left-multiplied by the (weighted) transpose of the SPOD modes. In a linear system, 𝒒̂𝑘 obeys a linear relation 
involving the forcing (at all frequencies) and the initial condition. We derive this relation and left-multiply it by the transpose of the 
SPOD modes, which amounts to a projection of a solution operator onto SPOD modes. The resulting matrices are small and may be 
precomputed, and the online phase of the method involves small matrix-vector products to obtain the SPOD coefficients given the 
forcing and initial condition.

We show, via two examples, that the SSOP method can indeed accomplish both objectives outlined above: it takes comparable 
CPU time to benchmark time-domain methods like POD-Galerkin projection and balanced truncation, and the solution from SSOP is 
roughly two orders of magnitude more accurate than both benchmarks. In fact, the SSOP solution is nearly two orders of magnitude 
more accurate than the projection of the FOM solution onto the POD modes, which is the lower bound on error for any time-domain 
Petrov-Galerkin method. We also demonstrated the robustness of the method by training and testing it on different systems.

A few negative aspects of the method are worth mentioning. The most limiting is that the method requires the entire forcing 
over the time interval of interest to be known before beginning the computation; the first step of the method is to take a FFT of 
the forcing, which cannot be done without the entire forcing in time. For some applications, this prevents the method from being 
applicable, while for others, it is not a problem. Second, the method works on a preprescribed interval [0, 𝑇 ]. If one wishes to obtain 
the solution longer than this interval, one can repeat the method with the value at the end of the interval as the initial condition. This 
is more cumbersome than extending the solution in a time-domain method. Finally, SPOD modes require more training data than 
POD modes, which limits the applicability of the proposed method in cases where training data is scarce. Where these disadvantages 
are not obstacles, however, we have shown the proposed method to be substantially more accurate at the same CPU cost compared 
to standard methods for linear model reduction. We hope that this will aid in applications of linear model reduction and increase 
interest in space-time methods.

Finally, we also described a resolvent-based version of the SSOP method that is data-free. Leveraging the ability of resolvent modes 
obtained directly from the linear system to approximate SPOD modes [15], the resolvent SSOP method uses resolvent modes in place 
of SPOD modes within the SSOP method, eliminating the need for training data. We showed this method to be more accurate than 
balanced truncation, the state of the art for data-free model reduction. We see this result as quite promising, calling for further work 
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comparing the method to balanced truncation. We also believe that this result underscores the promise of space-time techniques for 
model reduction.

One clear area for further inquiry is whether the method can be generalized to the case of nonlinear governing equations. The 
method uses the fundamental solution to the LTI system, and, of course, no analogous solution exists for general nonlinear systems. 
One possible remedy is to treat the nonlinearity that would result from the present SPOD coefficients as an additional forcing on 
the system, and then again use the fundamental LTI solution. Nonlinearity as a forcing to a linear system is the perspective taken by 
resolvent analysis [16], and the successes of that field in predicting turbulent structures are cause for optimism that this perspective 
would be useful for model reduction. With such an approach, Eq. (3.23) would become a coupled system of nonlinear algebraic 
equations, which would be solved online for the SPOD coefficients given the initial condition and forcing.
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Appendix A.  Fourier representation of the time derivative

Here, we illustrate why substituting 𝑖𝜔𝑘𝒒̂𝑘 for 𝒒̇ when going to the frequency domain is only correct if 𝒒 starts and ends at the 
same value on the interval. It is easier to do this using the continuous definition of the Fourier coefficients, rather than the DFT, so 
we compute the integral

̂̇𝒒𝑘 = 1
𝑇 ∫

𝑇

0
𝒒̇𝑒−𝑖𝜔𝑘𝑡 𝑑𝑡. (A.1)

This integral may be solved by parts,

̂̇𝒒𝑘 = 1
𝑇
𝒒||
|

𝑇

0
− ∫

𝑇

0
−𝑖𝜔𝑘𝒒(𝑡)𝑒−𝑖𝜔𝑘𝑡𝑑𝑡. (A.2)

The boundary term gives Δ𝒒𝑇  [49], where Δ𝒒 = 𝒒(𝑇 ) − 𝒒(0), and the integral is the naive term 𝑖𝜔𝑘𝒒̂𝑘. The Fourier representation of 
the derivative is thus

̂̇𝒒𝑘 = 𝑖𝜔𝑘𝒒̂𝑘 +
Δ𝒒
𝑇
. (A.3)

Appendix B.  DEIM-augmented algorithm

Here, we present a means of improving the cost scaling in cases where the dimension of the forcing 𝑁𝑓  is large but the forcing 
is spatially structured. The idea is to use a sparse sampling of the forcing vectors, which are size 𝑁𝑓 , using the discrete empirical 
interpolation method (DEIM) [39]. We also sparse sample the two vectors that are size 𝑁𝑥, the initial condition and the forcing sum 
terms in Eq. (3.22), though these terms can also be handled using an intermediary basis, as before. The rank-𝑝 DEIM approximation 
of a vector 𝒗 ∈ ℂ𝑁𝑥  is 𝒗 ≈ 𝐔𝒗(𝐏𝑇

𝒗𝐔𝒗)
−1𝐏𝑇

𝒗 𝒗, where the columns of 𝐔𝒗 ∈ ℂ𝑁𝑥×𝑝 are the POD modes for the ensemble from which 𝒗 is a 
sample, and 𝐏𝑇

𝒗 ∈ {0, 1}𝑝×𝑁𝑥  samples 𝑝 elements from 𝒗 and is formed via the DEIM algorithm.
The DEIM algorithm is run for the forcing in the time domain, giving a set of sample points 𝐏𝑇

𝒇 ∈ ℂ𝑝×𝑁𝑓  from which the forcing 
can be reconstructed accurately. The structures in the forcing at different frequencies will, in general, be different, so it is best to use 
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Fig. B.17. Accuracy of the DEIM-augmented version of the method compared to POD-Galerkin projection (and the DEIM version thereof) applied 
to the scalar transport problem. As long as enough sample points are used, DEIM does not introduce additional error. Again, the dashed lines are 
the error of the full-order solution projected on the respective bases.

a different spatial basis at each frequency to complete the DEIM approximation. We label the spatial basis for the forcing at the 𝑘-th 
frequency 𝐔𝒇𝑘 . The approximation for the 𝑘-th forcing is 𝒇𝑘 ≈ 𝐔𝒇𝑘 (𝐏

𝑇
𝒇𝐔𝒇𝑘 )

−1𝐏𝑇
𝒇𝒇𝑘, so the first term in Eq. (3.22) is now

𝐄𝑘𝒇𝑘 ≈ 𝐊𝒇𝑘𝐏
𝑇
𝒇𝒇𝑘, (B.1)

where the matrix 𝐊𝒇𝑘 = 𝐄𝑘𝐔𝒇𝑘 (𝐏
𝑇
𝒇𝐔𝒇𝑘 )

−1 ∈ ℂ𝑟𝑘×𝑝 is precomputed for each frequency. Note that the same sampling is used for each 
frequency; if the sampling were different for each frequency, one would need to take the DFT of the entire forcing (or the union of 
all the samplings), which would negate the scaling benefit of sparse sampling. This approach for the forcing term can be used in 
conjunction with the intermediary basis approach for the initial condition and forcing sum terms in Eq. (3.22). These latter terms can 
also be handled with DEIM, which we show now.

The initial condition and forcing sum terms can be approximated with DEIM matrices 𝐔𝒒0  and 𝐏𝑇
𝒒0
 for the initial condition, and 

𝐔𝑓𝑠 and 𝐏𝑇
𝑓𝑠 for the forcing sum. For the former, these matrices are formed by gathering all initial conditions within the training data 

and running the DEIM algorithm to obtain 𝐔𝒒0  and 𝐏𝑇
𝒒0
. From these matrices, the initial condition multiplied by 𝐅𝑘 is approximated 

as

𝐅𝑘𝒒0 ≈ 𝐊𝒒0𝐏
𝑇
𝒒0
𝒒0, (B.2)

where 𝐊𝒒0 ,𝑘 = 𝐅𝑘𝐔𝒒0 (𝐏
𝑇
𝒒0
𝐔𝒒0 )

−1 ∈ ℂ𝑟𝑘×𝑝 is precomputed. Similarly, 𝐔𝑓𝑠 and 𝐏𝑇
𝑓𝑠 are obtained by running DEIM on the set of forcing 

sums, which must be calculated from each trajectory in the training data. With these matrices, the forcing sum multiplied by 𝐅𝑘 is 
approximated as

𝐅𝑘
1
𝑁𝜔

∑

𝑙
𝚿𝑙𝐄𝑙𝒇𝑙 ≈

1
𝑁𝑡

𝐊𝑓𝑠,𝑙
∑

𝑙
𝐓𝑙,𝑓𝑠𝐄𝑙𝒇𝑙, (B.3)

where 𝐊𝑓𝑠,𝑙 = 𝐅𝑘𝐔𝑓𝑠(𝐏𝑇
𝑓𝑠𝐔𝑓𝑠)−1 ∈ ℂ𝑟𝑘×𝑝 and 𝐓𝑙,𝑓𝑠 = 𝐏𝑇

𝑓𝑠𝚿𝑙 ∈ ℂ𝑝×𝑟𝑙  are both precomputed. These operators are kept separate (as op-
posed to multiplied as a precomputation step) to avoid 𝑁2

𝜔 scaling. With these approximations, the DEIM-augmented equation is

𝒂𝑘 = 𝐊𝒇𝑘𝐏
𝑇
𝒇𝒇𝑘 +𝐊𝒒0𝐏

𝑇
𝒒0
𝒒0 −

1
𝑁𝑡

𝐊𝑓𝑠,𝑙
∑

𝑙
𝐓𝑙,𝑓𝑠𝐄𝑙𝒇𝑙. (B.4)

This method removes the 𝑁𝑓  scaling and replaces it with 𝑝, thus, the DEIM-augmented version of the algorithm scales like ((𝑟𝑝 +
𝑝 log𝑁𝜔)𝑁𝜔).

To demonstrate the augmented version of the method, we apply it to the scalar transport problem described in the main text. 
The forcing in this problem meets the conditions for a large improvement: 𝑁𝑓 = 2050 is large, but the forcing is spatially structured, 
coming from Eq. (4.7), so it can be approximated via sparse sampling effectively. Fig. B.17 shows the error of the DEIM-augmented 
version with 𝑝 = 200 along with that of the non-augmented version. There is almost no error sacrifice relative to the non-approximated 
method with this number of sample points. The timing for the method applied to the scalar transport problem is shown in Fig. 16, 
along with the timing for a DEIM-augmented version of POD-Galerkin projection. Indeed, DEIM offers substantial speedup, both for 
the proposed method and for POD-Galerkin projection.

Two drawbacks of the DEIM-augmented version lead us to favor the non-augmented method in most cases. First, the DEIM-
augmented version of the method relies on the initial condition and forcing being accurately approximated by sparse samplings, and 
these sparse samplings will only be accurate if the initial condition and forcing are similar in character to those in the training data. 
Second, the DEIM-augmented version is cumbersome to implement, requiring more precomputation of modes and matrices, relative 
to the non-augmented method.
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