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A specialized mesh-free radial basis function-based finite difference (RBF-FD) discretization is 
used to solve the large eigenvalue problems arising in hydrodynamic stability analyses of flows 
in complex domains. Polyharmonic spline functions with polynomial augmentation (PHS+poly) 
are used to construct the discrete linearized incompressible and compressible Navier-Stokes 
operators on scattered nodes. Rigorous global and local eigenvalue stability studies of these 
global operators and their constituent RBF stencils provide a set of parameters that guarantee 
stability without the need for hyperviscosity or other ad hoc regularizations, while balancing 
accuracy and computational efficiency. Specialized elliptical stencils to compute boundary-
normal derivatives are introduced, and the treatment of reflectional and rotational symmetries 
is discussed. In particular, treating the pole singularity in cylindrical coordinates permits 
dimensionality reduction from 3D to 2D in rotational flows like jets. The numerical framework 
is demonstrated and validated on several hydrodynamic stability methods ranging from classical 
linear theory of laminar flows to state-of-the-art non-modal approaches that are applicable to 
turbulent mean flows. The examples include linear stability, resolvent, and wavemaker analyses 
of cylinder flow at Reynolds numbers ranging from 47 to 180, and resolvent and wavemaker 
analyses of the self-similar flat-plate boundary layer at a Reynolds number as well as the turbulent 
mean of a high-Reynolds-number transonic jet at Mach number 0.9. All previously-known results 
are found in close agreement with the literature. Finally, the resolvent-based wavemaker analyses 
of the Blasius boundary layer and turbulent jet flows offer new physical insight into the modal 
and non-modal growth in these flows.

1. Introduction

Flow instabilities and large-scale coherent structures are ubiquitous phenomena in fluid mechanics that have been the focus of 
extensive research. Linear stability (LST) analysis is specifically designed to investigate the growth of small perturbations exclusively 
around laminar base flows, which are the steady-state solution to the Navier-Stokes equations. One-dimensional LST analysis was 
widely used in the past century, e.g., [18,28,49,75]. Eriksson and Rizzi [33] and Tuckerman and Marcus [137] were the pioneers 
in conducting LST analysis in two-dimensional (2D). Subsequently, Jackson [54] and Zebib [147] examined the 2D nature of vortex 
shedding in the wakes of bluff bodies. Readers are referred to Huerre and Monkewitz [50] and Theofilis [127] for comprehensive 
reviews of the concept of 2D LST modes. The implementation of the 2D LST framework has enabled improved identification of flow 
instability in non-parallel flows, including cylinder wakes [43,72,85], aerofoil wakes [31,144], boundary layers [1,32], and jets in 
cross-flow [9,89,101]. Studies have demonstrated that an open flow can possess marginal stability despite exhibiting local convective 
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instability. LST analysis around a steady laminar base flow, by its inherent nature, is not applicable to predict finite-amplitude flow 
instabilities arising from nonlinear interactions. The use of mean flow for LST analysis, despite violating the basic assumption of linear 
theory, has been used successfully to predict coherent flow features in diverse types of flows, including cylinder wakes [10,94], open 
cavity flows [118,119], mixing layers [42,83,142], and turbulent or transitional jets [45,86,108]. Theoretical conditions required for 
the validity of mean flow stability analysis have been explored by Beneddine et al. [17]. Although beyond the scope of this work, 
it is noteworthy that the weakly-nonlinear extension of LST analysis has been successfully employed for studying the dynamics of 
non-parallel flows [25,119]. The LST-based semi-empirical 𝑒𝑁 method [52,123] has succeeded in transition prediction for certain 
flows such as boundary layers. However, the prediction of disturbance behavior in more complex scenarios, such as crossflows or 
bypass transitions, falls outside the scope of LST theory.

Despite these limitations, resolvent, or input-output analysis, has recently emerged as a linear tool for accurately predicting 
large-scale coherent structures in fully turbulent flows. Resolvent analysis (RA) originally stems from the studies of transient growth 
[34,98,99,135] and seeks the optimal pairs of inputs and corresponding outputs through the linearized system that maximizes the 
energy gain. Within the laminar regime, RA has been utilized to investigate the linear response to external body forces or pertur-
bations for channel flows [61,80,105], boundary layers [4,19,22,84,91,120,133], and jets [41,56,110]. In contrast to classical LST 
analysis, the input-output perspective offers a mathematically rigorous framework for studying turbulent mean-flows by identify-
ing the forcing as the Reynolds stresses in the perturbation-interaction terms in the Reynolds-decomposed Navier–Stokes equations 
[77,116]. Applications include near-wall flows [51,1,116], boundary layers [5,55,104], incompressible [41,66] or compressible jets 
[56,109,134], and airfoil wakes [102,146]. The validation of fundamental relationships between RA and other modal decomposition 
techniques was facilitated by Towne et al. [134], establishing RA as a well-suited tool for turbulence modeling [92,93]. Both classical 
LST and RA require, in their most basic form, the construction of large matrices that have to be decomposed into their singular- or 
eigen-components. The construction and decomposition of these matrices are particularly challenging for flows in complex geome-
tries. Previous studies [30,103,117,146] have leveraged the flexibility of the finite-volume (FV) methods on unstructured meshes. 
However, a downside of unstructured FV methods is that the accuracy is usually restricted to 2nd-order. Alternatively, the utilization 
of finite-element (FE) methods for spatial discretization provides high-order accuracy for flow instability analysis [72,73,104,119]. 
The commonly employed weak formulation of governing equations in FE methods raises concerns regarding stability and conver-
gence. Finite-element (FE) methods offer the same flexibility, and the FreeFEM+ toolbox by Hecht [48] has been employed in 
a number of recent studies [72,73,104,119]. Matrix-free methods, such as the time-stepper [6,9,136] and other related techniques 
[29,74,84,87], provide an alternative approach where the decomposition of large matrix operations can be completely circumvented. 
Iterative Krylov subspace methods are commonly employed to obtain a partial eigendecomposition. However, their major limitation 
lies in their capacity to extract only a limited portion of the spectra at a time. Randomized approaches have also been explored as 
potential solutions to decrease the computational cost of the singular- or eigendecomposition of large stability matrices [81,102]. In 
this study, we demonstrate the capability and accuracy of radial basis functions (RBF) in effectively addressing the aforementioned 
challenges.

The use of RBF-based methods provides high flexibility in meshing complex geometries, allowing for local grid refinement and 
local adjustments to the order of accuracy of the discretization. The RBF methodology is rooted in scattered data interpolation, first 
introduced by Hardy [47], and offers a systematic means of approximating multivariate functions on arbitrarily scattered nodes. 
By generalizing the classical finite-difference (FD) methods, the so-called RBF-FD methods enable the approximation of spatial 
derivatives to arbitrary node layouts based on RBFs [130]. In fluid flow problems, Gaussian (GA), multiquadric (MQ), and inverse 
multiquadric (IMQ) are among the most commonly used radial basis functions (RBFs). Refer to Fornberg and Flyer [39] for a detailed 
overview. The computation of these RBFs requires specifying a shape parameter, a free parameter that can significantly impact both 
the numerical stability and accuracy. Recently, a new class of RBF-FD approximations has emerged that utilizes polyharmonic splines 
(PHS) augmented with polynomials (PHS+poly). This technique was first introduced by Flyer et al. [36] and has demonstrated great 
potential in achieving high-order accuracy while avoiding the difficulties associated with the shape parameter selection. Bayona et 
al. [14] and Flyer et al. [37] highlighted the advantages of local PHS+poly-generated RBF-FD stencils in achieving high-order accu-
racy for derivative approximations and solving elliptic partial differential equations (PDEs), while also eliminating stagnation errors 
under node refinement. The feasibility of implementing a larger stencil near domain boundaries to avoid the Runge phenomenon was 
analytically verified by Bayona [12] using RBFs in a closed-form. Additional numerical examples in 2-D and 3-D were presented in 
Bayona et al. [15] to demonstrate the effectiveness of the PHS+poly approach. The accuracy and stability of the PHS+poly RBF-FD 
method depend on the combination of the stencil size, PHS exponent, and the degree of polynomials. Several studies, including 
Chu and Schmidt [27], Le Borne and Leinen [64], Shankar and Fogelson [115], have investigated and discussed the optimal com-
binations of these parameters to achieve the ‘spectral-like’ accuracy of higher-order Padé-type compact FDs [65]. In addition, other 
approaches have been explored to improve the computational accuracy and efficiency of PHS+poly RBF-FDs, including overlapping 
stencils [114,115], the partition of unity (PU) method [79], and oversampling [131]. Comparative analyses have been carried out on 
various higher-order mesh-free discretizations, consistently demonstrating that PHS+poly-based RBF-FDs outperform other methods 
in accuracy, robustness, and computational efficiency, e.g., [13,37,44,88,106]. Recent successful applications of PHS+poly RBF-FDs 
in flow simulations on scattered nodes [111–113,138] highlight the potential of RBF methods for investigating flow instabilities in 
complex geometries. In our recent work [27], we introduced a staggered-node RBF-FD-based semi-implicit fractional-step solver for 
the incompressible Navier-Stokes equations, which will be utilized to compute the base state in the present study.

This work introduces a high-order, mesh-free framework for hydrodynamic stability analysis based on the PHS+poly RBF-FD 
discretizations. The efficient construction of global Jacobians on scattered nodes using RBF-based methods is demonstrated. The 
2

trade-off between computational efficiency and accuracy is addressed, and best practices are provided. Furthermore, we discuss 
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the practical treatment of boundary conditions, particularly the boundary-normal derivatives and the pole singularity in cylindrical 
coordinates. The numerical framework is demonstrated on various hydrodynamic stability theoretical methods and flows. Refer to 
Table 3 for an overview. In particular, LST, RA, and wavemaker (WM) analyses are shown for the canonical cylinder flow at Reynolds 
numbers ranging from 47 to 180, RA and WM analyses for a laminar zero-pressure-gradient (ZPG) flat-plate Blasius boundary layer 
at a Reynolds number of 6 × 105, RA and WM analyses for a turbulent transonic jet at Mach number 0.9 and a Reynolds number 
of approximately 106. The identified flow phenomena include vortex shedding in cylinder wakes [10,94], the Orr and Tollmien-
Schlichting waves in boundary layers [1,20,84,120], and Orr and Kelvin-Helmholtz wavepackets [24,41,66,109,125] as well as 
trapped acoustic waves [108,132] in turbulent jets. The comparisons of these benchmark problems with the literature allow us to 
highlight the viability, accuracy, and robustness. The study furthermore encapsulates the first application of RA-based WM analysis 
to the ZPG Blasius boundary layer and turbulent jets, providing a new perspective on modal and non-modal growth in these flows.

This paper is organized as follows: §2 introduces the PHS+poly RBF-FD method, §3 presents the mesh-free hydrodynamic stability 
analysis, and §4 discusses the numerical implementations. The performance of the mesh-free framework is demonstrated in §5. 
Finally, §6 concludes and summarizes the paper.

2. Radial basis function-based finite differences (RBF-FD)

The goal of the RBF-FD method is to compute the discrete representation of any linear differentiation operator  at a given 
location 𝑥0 as a linear combination of the function values 𝑔(𝒙𝑗 ), such that

𝑔(𝒙0) ≈
𝑛∑

𝑗=1
𝑤𝑗𝑔(𝒙𝑗 ). (1)

To obtain the unknown differentiation weights 𝑤𝑗 , we use the RBF interpolant,

𝑠(𝒙) =
𝑛∑

𝑗=1
𝛾𝑗𝜙(‖𝒙− 𝒙𝑗‖), (2)

to approximate the given function 𝑔(𝒙) by satisfying

𝑠(𝒙𝑗 ) = 𝑔(𝒙𝑗 ), 𝑗 = 1,2,⋯𝑛. (3)

Here, 𝜙(𝑟) is a smooth radial function, {𝒙𝑗}𝑛
𝑗=1 is a set of scattered nodes, and ‖ ⋅ ‖ denotes the standard Euclidean norm. Combining 

equations (1)-(3) leads to the linear system

⎡⎢⎢⎢⎣
𝜙(‖𝒙1 − 𝒙1‖) 𝜙(‖𝒙1 − 𝒙2‖) ⋯ 𝜙(‖𝒙1 − 𝒙𝑛‖)
𝜙(‖𝒙2 − 𝒙1‖) 𝜙(‖𝒙2 − 𝒙2‖) ⋯ 𝜙(‖𝒙2 − 𝒙𝑛‖)

⋮ ⋮ ⋮
𝜙(‖𝒙𝑛 − 𝒙1‖) 𝜙(‖𝒙𝑛 − 𝒙2‖) ⋯ 𝜙(‖𝒙𝑛 − 𝒙𝑛‖)

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑨

⎡⎢⎢⎢⎣
𝑤1
𝑤2
⋮

𝑤𝑛

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

𝜙(‖𝒙− 𝒙1‖)|||𝒙=𝒙0𝜙(‖𝒙− 𝒙2‖)|||𝒙=𝒙0
⋮

𝜙(‖𝒙− 𝒙𝑛‖)|||𝒙=𝒙0

⎤⎥⎥⎥⎥⎥⎦
, (4)

which can be solved directly to obtain the weight vector 𝒘 = [𝑤1, ⋯ , 𝑤𝑛]𝑇 . An implicit assumption for equation (4) is that the 
derivative of the basis function, 𝜙, is continuous.

Polynomial augmentation is commonly applied to the RBF-FD method to enforce consistency with Taylor expansion-based FD 
approximations [36,39,40,63,145]. The two-dimensional augmented RBF-FD method can be expressed as

𝑔(𝒙0) ≈
𝑛∑

𝑗=1
𝑤𝑗𝑔(𝒙𝑗 ) +

(𝑞+1)(𝑞+2)∕2∑
𝑖=1

𝑐𝑖𝑃𝑖(𝒙0), (5)

where {𝑃𝑖(𝒙)} are multivariate polynomials up to degree 𝑞. Taking Cartesian coordinates as an example, 𝑃𝑖(𝒙) represents the 𝑖th 
element in the multivariate polynomial series {1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, ⋯}. To match the local Taylor series, additional constraints for the 
differentiation weights,

𝑛∑
𝑗=1

𝑤𝑗𝑃𝑖(𝒙𝑗 ) =𝑃𝑖(𝒙0) for 1 ≤ 𝑖 ≤ (𝑞 + 1)(𝑞 + 2)
2

, (6)

are included in the computation. These constraints, also referred to as the vanishing momentum conditions [53], ensure that the 
RBF approximations locally reproduce polynomial behavior up to degree 𝑞 [37] and decay in the far-field [38]. A more general and 
compact representation of equations (5)-(6) are[

𝑨 𝑷

𝑷 𝑇 𝟎

]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

[
𝒘

𝒄

]
=
[𝝓

𝑷

]
, (7)
3

𝑨aug
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Table 1

Summary of flow state decompositions.

Base state Description Notation Obtained from Remaning forcing 𝒇 ′

(𝒖0, 𝑝0)
Base flow (𝑼 , 𝑃 ) equation (11) −

(
𝒖′ ⋅∇

)
𝒖′

Mean flow (𝒖, 𝑝) long-time average −
(
𝒖′ ⋅∇

)
𝒖′ + (𝒖′ ⋅∇)𝒖′

where 𝑨 represents the same interpolation matrix as defined in equation (4). In equation (1), only the weight vector 𝒘 is used 
to approximate the differentiation operator . Motivated by recent studies (see, e.g., [14,15,36,37]), we use polyharmonic splines 
(PHS),

𝜙(𝑟) = 𝑟𝑚, (8)

as the basis functions, where 𝑚 is an odd positive integer. The accuracy and stability of this PHS+poly RBF-FD method depend on 
the combination of the stencil size, PHS exponent, and the degree of polynomials. The selection of these parameters will be discussed 
later in §4.1.

RBF-FD methods provide a mesh-free approach for discretizing the domain without the need for a pre-defined mesh or explicit 
node connectivity. This feature enables the investigation of flow instabilities for complex geometries, thereby offering advantages 
over traditional discretizations that rely on structured meshes. The subsequent sections of this paper focus on the construction of the 
discrete linearized Navier-Stokes (LNS) and then the resolvent operators using PHS+poly RBF-FDs.

3. Mesh-free hydrodynamic stability analysis

3.1. Governing equations

The motion of a general incompressible Newtonian fluid is governed by the Navier-Stokes equations,

𝜕𝒖

𝑡
+ (𝒖 ⋅∇)𝒖 = −∇𝑝+Re−1∇2𝒖, (9a)

∇ ⋅ 𝒖 = 0. (9b)

Here, all variables are nondimensionalized by the velocity scale 𝑼∞ and the length scale 𝐿, and Re denotes the Reynolds number.
In the case of laminar flows, we can decompose the flow state around the steady-state solution of the Navier-Stokes equations (9)

as

𝒖 =𝑼 + 𝒖′, 𝑝 = 𝑃 + 𝑝′, (10)

where (𝑼 , 𝑃 ) represents the base flow that satisfies

(𝑼 ⋅∇)𝑼 = −∇𝑃 +Re−1∇2𝑼 , (11a)

∇ ⋅𝑼 = 0, (11b)

and (⋅)′ denotes the small fluctuating components. In turbulent flows, we take the Reynolds decomposition of the flow state into the 
temporal mean, (⋅), and fluctuating components, given by

𝒖 = 𝒖+ 𝒖′, 𝑝 = 𝑝+ 𝑝′. (12)

By generalizing the notation of the base state as (𝒖0, 𝑝0), the resulting governing equations for the fluctuations take the form of

𝜕𝒖′

𝑡
+
(
𝒖0 ⋅∇

)
𝒖′ +

(
𝒖′ ⋅∇

)
𝒖0 = −∇𝑝′ + Re−1∇2𝒖′ + 𝒇 ′, (13a)

∇ ⋅ 𝒖′ = 0. (13b)

Here, the term 𝒇 ′ represents the remaining nonlinear interactions between the fluctuation components. Table 1 summarizes the two 
aforementioned decompositions.

Equation (13) can be written compactly in terms of the fluctuating state, 𝒒′ = [𝑢′, 𝑣′, 𝑝′]𝑇 , as

𝑇
(

𝜕

𝑡
𝒒′
)
= 𝒒′ +𝒇 ′, (14)

where  is the prolongation operator that extends the velocity vector [𝑢, 𝑣]𝑇 into [𝑢, 𝑣, 0]𝑇 , and its transpose is the restriction 
operator that extracts the velocity vector from the extended state vector [120]. The incompressible linearized Navier-Stokes (LNS) 
operator takes the form of

 ≡
(
−
(
𝒖0 ⋅∇

)
() − [() ⋅∇]𝒖0 + Re−1∇2 −∇

)
. (15)
4

∇ ⋅ () 0
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The governing equations for compressible flows will be discussed in §5.3 and Appendix A. Beyond the linear dynamics, the remaining 
forcing 𝒇 ′ in equation (14) comprises products of fluctuating quantities, as outlined in Table 1. These terms will be either neglected 
or modeled.

Classical (temporal) linear stability (LST) analysis investigates fluctuations with complex frequency 𝜆 = 𝜆𝑟 + i𝜆𝑖, where 𝜆𝑟 is 
the exponential growth rate and 𝜆𝑖 the oscillation frequency. The fluctuations are assumed to be infinitesimally small, and the 
forcing term, 𝒇 ′, is, therefore, negligible at 𝑂(1), see, e.g., Schmid and Henningson [107]. Substituting perturbations of the form 
𝒒′(𝒙, 𝑡) = 𝒒̃(𝒙)e𝜆𝑡 into the governing equations (13) yields the LST equation,

𝜆𝑇 𝒒̃ =𝒒̃. (16)

Equation (16) is a generalized eigenvalue problem, and the eigenvector associated with the largest growth rate ought to predict the 
dominant flow instability mechanism.

The nonlinear interactions in equation (14) are no longer negligible for general cases of finite amplitude fluctuations. Within 
the resolvent framework of turbulent flows, the nonlinear interactions, along with the background turbulence, can be interpreted 
as external forcing, 𝒇 ′, to the otherwise linear dynamics. This interpretation was first proposed by McKeon and Sharma [77]. By 
assuming a normal mode form for the fluctuating components,

[𝒖′,𝒒′, 𝒇 ′](𝒙, 𝑡) = [𝒖̂, 𝒒̂, 𝒇̂ ](𝒙)ei𝜔𝑡 + 𝑐.𝑐., (17)

where 𝜔 is the angular frequency, or equivalently by taking the Fourier transform, we obtain the linear time-invariant (LTI) repre-
sentation of the governing equation (13) in the frequency domain,(

i𝜔𝑇 −) 𝒒̂ =  (𝒇̂) , (18a)

𝒖̂ = 𝑇 (𝒒̂) . (18b)

The linear operators  and  are used to select spatial regions of particular interest. We write equations (18) in a compact form as

𝒖̂ =(𝜔)𝒇̂ , (19)

where (𝜔) = 𝑇  (i𝜔𝑇 −)−1 is known as the resolvent operator. The numerical discretization of the global operator, , is 
at the core of both LST and resolvent analyses. In this work, the PHS+poly RBF-FDs are utilized to construct differentiation matrices 
and global Jacobians on scattered nodes, taking advantage of their flexibility and accuracy in numerical discretization.

3.2. Global Jacobians and mesh-free stability analysis

For differentiation operators  = 𝜕(𝛼+𝛽)

𝜕𝑥𝛼
1𝜕𝑥

𝛽

2
with 𝛼 + 𝛽 ≤ 2, we seek sparse differentiation matrices 𝑫

𝑥𝛼
1𝑥

𝛽

2
that satisfy

⎡⎢⎢⎢⎣
𝒘𝑇

1
𝒘𝑇

2
⋮
𝒘𝑇

𝑁

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑫
𝑥𝛼
1𝑥

𝛽
2

⎡⎢⎢⎢⎣
𝑔(𝒙1)
𝑔(𝒙2)
⋮

𝑔(𝒙𝑁 )

⎤⎥⎥⎥⎦ ≈
⎡⎢⎢⎢⎢⎢⎢⎣

𝜕(𝛼+𝛽)

𝜕𝑥𝛼
1𝜕𝑥

𝛽

2
𝑔(𝒙)|𝒙=𝒙1

𝜕(𝛼+𝛽)

𝜕𝑥𝛼
1𝜕𝑥

𝛽

2
𝑔(𝒙)|𝒙=𝒙2
⋮

𝜕(𝛼+𝛽)

𝜕𝑥𝛼
1𝜕𝑥

𝛽

2
𝑔(𝒙)|𝒙=𝒙𝑁

⎤⎥⎥⎥⎥⎥⎥⎦
. (20)

Here, (𝑥1, 𝑥2) represents the coordinate system, and {𝒙𝑖}𝑁
𝑖=1 represents the global computational grid. The 𝑗th row of the sparse 

matrix 𝑫 , denoted as 𝒘𝑇
𝑗

, contains the 𝑛 ≪ 𝑁 non-zero weights that approximate the derivative at node 𝒙𝑗 . The matrix hence has 
𝑁 ×𝑛 nonzero elements. For example, with the best-practice values later listed in Table 2, the sparsity of the differentiation operators 
exceeds 99.97%. In a slight change of notation, to enhance readability, we now denote by 𝒖= 𝒖(𝒙) and 𝒗 = 𝒗(𝒙) the global velocity 
fields, and by 𝒑 = 𝒑(𝒙) the global pressure field in the computational domain Ω.

Upon the use of these global RBF-FD-based differentiation matrices, we assemble the discrete global LNS operator from equation 
(15), taking the two-dimensional Cartesian coordinate system as an example, as

𝑳 =
⎛⎜⎜⎝
𝑺 − diag

(
𝑫𝑥𝒖0

)
+Re−1

(
𝑫𝑥𝑥 +𝑫𝑦𝑦

)
−diag

(
𝑫𝑦𝒖0

)
−𝑫𝑥

−diag
(
𝑫𝑥𝒗0

)
𝑺 − diag

(
𝑫𝑦𝒗0

)
+Re−1

(
𝑫𝑥𝑥 +𝑫𝑦𝑦

)
−𝑫𝑦

𝑫𝑥 𝑫𝑦 𝟎

⎞⎟⎟⎠ , (21)

where 𝑺 = − 
(
𝒖0◦𝑫𝑥 + 𝒗0◦𝑫𝑦

)
, and ◦ denotes the Hadamard product.

For a weighted inner product ⟨𝒒1,𝒒2⟩ = 𝒒∗2𝑾 𝒒1 that accounts for the non-uniformly distributed nodes, the discrete LST and its 
adjoint eigenvalue problems take the form of

𝜆𝑷𝑷 𝑇 𝒒̃ =𝑳𝒒̃, (22a)
5

𝜆+𝑷𝑷 𝑇 𝒒̃+ =𝑳+𝒒̃+, (22b)



Journal of Computational Physics 502 (2024) 112822T. Chu and O.T. Schmidt

respectively, where

𝑳+ =𝑾 −1𝑳𝐻𝑾 (23)

is the discrete adjoint LNS operator. Here, the restriction matrix for two-dimensional problems takes the form of 𝑷 𝑇 =
[
𝑰 𝟎 𝟎
𝟎 𝑰 𝟎

]
, 

and (⋅)𝐻 denotes the Hermitian transpose. The eigenvectors of these two generalized eigenvalue problems, 𝒒̃ = [𝒖̃, ̃𝒗, ̃𝒑]𝑇 and 𝒒̃+ =
[𝒖̃+, ̃𝒗+, ̃𝒑+]𝑇 , are referred to as the LST and adjoint modes, respectively.

The wavemaker (WM), introduced by Giannetti and Luchini [43], identifies the flow region with the strongest localized feedback, 
where the dominant instability mechanisms act. Based on the leading LST and adjoint modes, the WM is locally defined as

𝜁LST(𝑥1, 𝑥2) =
‖𝑷 𝑇 𝒒̃+(𝑥1, 𝑥2)‖‖𝑷 𝑇 𝒒̃(𝑥1, 𝑥2)‖| ⟨𝒒̃+, 𝒒̃⟩ | , (24)

where the norm ‖ ⋅ ‖ measures the localized energy. Referred to Luchini and Bottaro [67] for a comprehensive review. In addition to 
quantifying the receptivity, the wavemaker also indicates the non-normality level of the flow field [25]. Initially introduced for base 
flows, Meliga et al. [78] extended the application of wavemaker as a sensitivity analysis technique for mean flows. We utilize this 
methodology to gauge the structural sensitivity of the RBF-FD-based global LNS operator, 𝑳.

3.3. Mesh-free resolvent analysis (RA)

The construction of the global Jacobian, 𝑳, leads to the direct discretization of the input-output system in equation (19), yielding

𝒖̂ =𝑯(𝜔)𝒇̂ , (25)

where

𝑯(𝜔) = 𝑷 𝑇𝑪
(
i𝜔𝑷𝑷 𝑇 −𝑳

)−1
𝑷𝑩 (26)

is referred to as the discrete resolvent operator.
In the absence of nonlinear interactions described in table (1), the application of input-output, or resolvent analysis (RA) provides 

a means to model them as optimal forcing inputs to the linear system in equation (25). The objective of resolvent analysis is to 
identify pairs of optimal forcings and their corresponding responses that maximize the gain, 𝜎2, defined as the ratio of the energy of 
the response to the energy of the forcing,

𝜎2(𝒇̂ ;𝜔) =
‖𝒖̂‖2𝑢‖𝒇̂‖2

𝑓

=

⟨
𝑯(𝜔)𝒇̂ ,𝑯(𝜔)𝒇̂

⟩
𝑢⟨

𝒇̂ , 𝒇̂
⟩

𝑓

. (27)

Refer to Schmid and Henningson [107] for a detailed discussion. The energy of the response and the forcing are measured in the 
norms ‖ ⋅ ‖𝑢 and ‖ ⋅ ‖𝑓 , induced by the inner products

⟨𝒖̂1, 𝒖̂2⟩𝑢 = 𝒖̂∗2𝑾 𝑢𝒖̂1 and
⟨
𝒇̂ 1, 𝒇̂ 2

⟩
𝑓
= 𝒇̂

∗
2𝑾 𝑓 𝒇̂ 1 (28)

on the output and input spaces, respectively. Here, 𝑾 𝑢 and 𝑾 𝑓 are weight matrices containing both the numerical quadrature 
weights and weights associated with these inner products.

We further define the modified, or weighted, resolvent operator

𝑹(𝜔) ≡𝑾
1
2
𝑢 𝑯(𝜔)𝑾

− 1
2

𝑓
= 𝑼̂𝚺𝑭̂ ∗

(29)

to account for the energy in the input and output spaces. The optimal responses 𝑼̂ = [𝒖̂1, ⋯ , ̂𝒖𝑁 ] and the corresponding forcings 𝑭̂ =
[𝒇̂ 1, ⋯ , 𝒇̂𝑁 ] are obtained from the singular value decomposition (SVD) of the modified resolvent operator and ranked by the energy 
gains Σ = [𝜎1, ⋯ 𝜎𝑁 ]. The resulting modes are orthogonal in their respective inner products, that is, 

⟨
𝒖̂𝑗 , 𝒖̂𝑘

⟩
𝑢
=
⟨
𝒇̂ 𝑗 , 𝒇̂𝑘

⟩
𝑓
= 𝛿𝑗𝑘. 

The optimal input and output modes are related through

𝑹(𝜔)𝒇̂ 𝑗 = 𝜎𝑗 (𝜔)𝒖̂𝑗 , (30)

which provides a physical interpretation of the singular values and vectors. In practice, the optimal input forcings, 𝒇̂ 𝑗 , are determined 
as the solutions of the eigenvalue problem

𝑾 −1
𝑓
𝑯(𝜔)∗𝑾 𝑢𝑯(𝜔)𝒇̂ 𝑗 = 𝜎2

𝑗
𝒇̂ 𝑗 , (31)

where 𝑾 −1
𝑓
𝑯(𝜔)∗𝑾 𝑢𝑯(𝜔) is Hermitian. The matrix inversion of 

(
i𝜔𝑷𝑷 𝑇 −𝑳

)
is solved using LU-factorization [120].

The RA-based wavemaker,‖𝒖̂1(𝑥1, 𝑥2)‖‖𝒇̂ 1(𝑥1, 𝑥2)‖

6

𝜁RA(𝑥1, 𝑥2) = |𝒖̂∗1𝑾 𝑢𝒇̂ 1| , (32)
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Fig. 1. Maximum local -Lebesgue function for different combinations of PHS exponents, 𝑚, and polynomial orders, 𝑞 for the first (a-c) and second derivatives (d-f) 
in the 𝑥- (solid line), 𝑦- (‘+’) and 𝑥𝑦-directions (circle).

is defined analogous to equation (24). Within the framework of RA, it provides a quantitative measure of the effect of the localized 
feedback at any given frequency [96,103,122,126].

4. Numerical implementations

4.1. Node generation and parameter selection

We employ the unstructured triangular mesh generator DistMesh developed by Persson [90] to efficiently generate scattered 
nodes with localized refinement in regions of interest. We highlight that the local connection information is not used in the com-
putation. The accuracy and stability of the PHS+poly RBF-FD method are contingent upon three parameters: the stencil size, 𝑛, the 
PHS exponent, 𝑚, and the polynomial degree, 𝑞. We investigate the order of accuracy ranging from the standard choice of 𝑞 = 2 to 
the desired high-order accuracy for hydrodynamic stability analysis, here 𝑞 = 4. Increasing the order of accuracy generally leads to a 
decrease in the size of the linear operator.

The local -Lebesgue function proposed by Shankar and Fogelson [115] provides a measure of the eigenvalue stability of the 
RBF-FD method. For a given linear operator , the local Lebesgue function takes the form of the 1-norm of the RBF-FD weight in 
equation (1), that is

Λ(𝒙0; {𝒙𝑗}𝑛
𝑗=1) = ‖𝒘‖1 = 𝑛∑

𝑗=1
|𝑤𝑗 |. (33)

Larger values of the local Lebesgue function indicate an increased susceptibility to numerical instability in the assembled global 
differentiation matrix. Fig. 1 shows the maximum value of the local Lebesgue function across various parameter combinations based 
on the test grid shown in Fig. 4. Refer to the accompanying context of Fig. 4 for more details of the grid. For all considered stencil 
sizes, polynomial degrees, and relevant operators, the minimax value is consistently achieved at 𝑚 = 3, suggesting its suitability for 
hydrodynamic stability analysis.

For two-dimensional problems, it has been suggested that the stencil size should satisfy 𝑛 ≳ (𝑞 + 1)(𝑞 + 2) [36,37]. In practice, 
including a few additional nodes beyond the minimum requirement is often beneficial to improve performance. The specific choice 
of additional nodes may depend on the type of node sets used. For instance, a recommended formula for Halton nodes is 𝑛 =
(𝑞 + 1)(𝑞 + 2) + ⌊ln [(𝑞 + 1)(𝑞 + 2)]⌋ [64,115]. We here select the stencil size 𝑛 based on the assumption of a perfectly arranged 
hexagonal node distribution comprising 𝑞∕2 + 1 layers, despite the actual distribution of nodes being heterogeneous. For practical 
examples, refer to Fig. 3 and the surrounding context. The recommended parameter combinations are summarized in Table 2. With 
these parameters, hyperviscosity or other means of regularization are not needed to stabilize the solution further. In particular, we 
use (𝑛, 𝑚, 𝑞) = (37, 3, 4) for interior nodes and (𝑛, 𝑚, 𝑞) = (19, 3, 2) for nodes near boundaries in the construction of the discrete LNS 
operator, 𝑳. The RBF stencil for each node is determined as the nearest 𝑛 nodes acquired through a k-nearest neighbor (kNN) search.

The condition number of the augmented matrix 𝑨aug, defined in equation (7), affects the numerical stability in a similar way 
and hence needs to be considered separately. The condition number for various parameter combinations has been investigated and 
discussed in Le Borne and Leinen [64]. Independent of the parameter selection, Shahane et al. [111] demonstrated that scaling the 
local stencil to a unit length scale can improve the condition number. We further reveal the existence of an optimal range for the 
7

averaged local grid spacing, wherein the condition number of the augmented matrix 𝑨aug reaches its minimum value.
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Table 2

Summary of parameter selections.

Shankar and Fogelson [115] Le Borne and Leinen [64] present

𝑞 = 2 (𝑛,𝑚) = (14,3) (𝑛,𝑚) = (14,5) (𝑛,𝑚) = (19,3)
𝑞 = 3 (𝑛,𝑚) = (22,3) (𝑛,𝑚) = (22,7) (𝑛,𝑚) = (28,3)
𝑞 = 4 (𝑛,𝑚) = (33,3) (𝑛,𝑚) = (33,7) (𝑛,𝑚) = (37,3)

Fig. 2. Maximum condition number of 𝑨aug as a function of local grid spacing Δ𝑟: (a) 𝑛 = 19, 𝑞 = 2; (b) 𝑛 = 28, 𝑞 = 3; (c) 𝑛 = 37, 𝑞 = 4. The recommended local spacing 
of Δ𝑟 = 0.25 is highlighted as dashed lines.

For a given stencil {𝒙𝑗}𝑛
𝑗=1, we perform scaling with respect to the location of 𝒙0 with a scaling factor 𝜅 such that

{𝒙̃𝑗}𝑛
𝑗=1 = {𝜅(𝒙𝑗 − 𝒙0)}𝑛

𝑗=1, (34)

and the averaged local grid spacing becomes Δ𝑟 = 𝜅Δ𝑟. Fig. 2 shows the maximum condition number within the test grid as a function 
of Δ𝑟 for the considered parameters. Optimal performance is consistently achieved within the range of 0.15 ≲ Δ𝑟 ≲ 0.3 across all 
examined parameter combinations. Based on this, we perform spatial scaling to ensure an averaged local spacing of Δ𝑟 = 0.25 before 
solving the RBF-FD weights in equation (1). The chain rule is applied to transform the RBF weights back to the original grid.

4.2. Boundary condition treatments

4.2.1. Homogeneous Dirichlet boundary conditions

Homogeneous Dirichlet boundary conditions, 𝒒′ = 0, are widely employed in hydrodynamic stability analysis based on the as-
sumption that perturbation variables either vanish at the solid wall or in the far field. Different methods to enforce Dirichlet boundary 
conditions in RBF-based [140,141] or other mesh-free collocation methods [97] have been proposed in the past. To approximate 
spatial derivatives for a node near such a boundary, we follow the Kansa method [62] and compute the RBF-FD weights using the 
local stencil consisting of both the interior nodes, {𝒙(𝑖)}𝑛(𝑖)

𝑗=1, and the boundary nodes, {𝒙(𝑏)}𝑛(𝑏)

𝑗=1. Letting 𝑔(𝒙(𝑏)
𝑗
) = 0, equation (1)

becomes

𝑔(𝒙0) =
𝑛(𝑖)∑
𝑗=1

𝑤
(𝑖)
𝑗

𝑔(𝒙(𝑖)
𝑗
) +

𝑛(𝑏)∑
𝑗=1

𝑤
(𝑏)
𝑗

𝑔(𝒙(𝑏)
𝑗
) =

𝑛(𝑖)∑
𝑗=1

𝑤
(𝑖)
𝑗

𝑔(𝒙(𝑖)
𝑗
), (35)

and only the weights for the interior nodes will be used in the computation.

4.2.2. Boundary-normal derivatives

Neumann conditions, inflow/outflow conditions, or the enforcement of continuity necessitate the evaluation of boundary-normal 
derivatives and require special treatment for scattered nodes that are not structured near boundaries. Using ghost nodes requires 
additional, generally non-physical, conditions for their evaluation. To avoid using ghost nodes and their associated computational 
overhead and implementation complexity, we propose the use of specialized stencils with boundary-normal alignment. To accurately 
approximate derivatives in the boundary-normal direction, we propose an elliptical stencil with its major axis perpendicular to the 
boundary. The elliptical form is achieved by utilizing a weighted Euclidean distance metric

𝑟 =
√

𝑎2 + 𝑏2

√(
(𝒙− 𝒙0) ⋅ 𝒏

)2
𝑎2

+
(
(𝒙− 𝒙0) ⋅ 𝒕

)2
𝑏2

, (36)

where 𝒏 and 𝒕 are the normal and tangential directions, respectively, and 𝑎 and 𝑏 denote the corresponding scaling factors. An √ √

8

eccentricity of 𝑎2−𝑏2

𝑎
= 2 6

5 is used in the computation. We use the 𝑞 = 2 polynomial augmentation for the boundary-tangential 
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Fig. 3. RBF stencils (red-shaded circles) for a given node (blue star): (a) boundary-normal derivatives; (b) interior node near the symmetric centerline (dot-dashed). 
The latter stencil includes the interior nodes ({𝒙∙}𝑛∙

𝑗=1 , dot) and image ghost nodes ({𝒙+}𝑛+

𝑗=1 , ‘+’). The counterparts of the image nodes, {𝒙Δ}𝑛+

𝑗=1 , and the remaining 
nodes, {𝒙◦

𝑗
}𝑛∙−𝑛+

𝑗=1 , are shown as triangles and circles, respectively. The area of each red-shaded circle represents the corresponding local radial control volume, d𝑉𝑖. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

direction and a higher-order of accuracy of 𝑞 = 4 for the boundary-normal direction. An illustrative example is shown in Fig. 3(a). 
This new strategy circumvents the need to increase the local stencil near domain boundaries to prevent the Runge phenomenon 
[12,14]. Without this special treatment, a significantly larger stencil size will be needed to attain stable solutions.

4.2.3. Symmetric and anti-symmetric boundary conditions

Exploiting physical and geometrical symmetries in flow problems leads to drastic computational savings. For example, a problem 
with simple reflectional symmetry will reduce the size of the linearized stability and resolvent operators to 25% of that in the full 
problem. This is particularly important for the direct solutions of eigen- and singular-value problems, for which memory is the 
bottleneck. For axisymmetric problems, like the jet problem at hand, the saving is even more severe; the problem is reduced, without 
loss of generality, from 3D to 2D. To address pole singularities that arise in these coordinates and symmetric or anti-symmetric 
boundary conditions, we propose a generalization of the pole treatment method by Mohseni and Colonius [82] for scattered nodes. 
We introduce a set of ghost nodes, denoted as +, which are symmetric to the interior nodes,  ∙ , with respect to the centerline. 
For each interior node, we divide its local stencil into two disjoint sets such that {𝒙}𝑛

𝑗=1 = {𝒙∙
𝑗
}𝑛∙

𝑗=1 ∪ {𝒙+
𝑗
}𝑛+

𝑗=1, where 𝒙∙ ∈  ∙ and 
𝒙+ ∈ +, respectively, and 𝑛 = 𝑛∙ + 𝑛+. Additionally, we define {𝒙Δ

𝑗
}𝑛+

𝑗=1 ∈ {𝒙∙
𝑗
}𝑛∙

𝑗=1 as the counterparts of the image nodes, and 
{𝒙◦

𝑗
}𝑛∙−𝑛+

𝑗=1 = {𝒙∙
𝑗
}𝑛∙

𝑗=1 ⧵ {𝒙Δ
𝑗
}𝑛+

𝑗=1 represents the remaining nodes within the interior nodes, Refer to Fig. 3(b) for detailed symbol 
explanations. The function values at the image nodes are determined by their corresponding counterparts, given by

𝑔(𝒙+
𝑗
) = 𝜂𝑔(𝒙Δ𝑗 ), (37)

where 𝜂 depends on the type of boundary conditions being imposed. Specifically, we use 𝜂 = 1 for symmetric boundary conditions 
and 𝜂 = −1 for anti-symmetric boundary conditions. The RBF-FD weights in equation (1) can be written as

𝑔(𝒙0) =
𝑛∙∑

𝑗=1
𝑤∙

𝑗𝑔(𝒙
∙
𝑗 ) +

𝑛+∑
𝑗=1

𝑤+
𝑗
𝑔(𝒙+

𝑗
) =

𝑛∙−𝑛+∑
𝑗=1

𝑤◦
𝑗 𝑔(𝒙

◦
𝑗 ) +

𝑛+∑
𝑗=1

(
𝜂𝑤+

𝑗
+𝑤Δ

𝑗

)
𝑔(𝒙Δ𝑗 ). (38)

This treatment allows us to approximate derivatives solely based on the function values at the interior nodes, effectively handling 
pole singularities and addressing the challenges associated with scattered nodes.

5. Applications

We demonstrate the mesh-free RBF-FD-based hydrodynamic stability framework outlined in §3 using three representative exam-
ples: canonical steady and unsteady cylinder wakes, a self-similar non-parallel steady laminar boundary-layer flow, and the turbulent 
mean of a transonic jet, as summarized in Table 3. These three examples are benchmark problems for open flows and are appropriate 
for validating mesh-free hydrodynamic stability.

5.1. Cylinder wake

We first consider the incompressible cylinder flow at diameter-based Reynolds numbers, Re = 𝑈∞𝐷

𝜈
, ranging from 47 to 180 

and investigate the mean-flow stability within the two-dimensional laminar regime. The occurrence of the periodic von Kármán 
9

vortex shedding in the cylinder wake beyond the critical Reynolds number of Rec ≃ 47 is a well-known phenomenon, owing to 
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Table 3

Overview of datasets and analyses. The columns from left to right indicate the flow description, Reynolds 
number, Mach number, flow type, base state, analysis type, and section number. The zero-pressure-gradient 
(ZPG) Blasius solution is used for analyzing the boundary layer. Analyses include linear stability (LST) and 
resolvent analyses (RA), along with wavemaker (WM).

Flow Re 𝑀 Flow type Base state Analysis Sec.

Cylinder wake [27] 47 − 180 - 2D laminar 𝑢, 𝑣 LST/RA/WM §5.1
Boundary layer (ZPG) 6 × 105 - 2D laminar 𝑢ZPG, 𝑣ZPG RA/WM §5.2
Jet [21] ≈ 106 0.9 3D turbulent 𝜌, 𝑢𝑥, 𝑢𝑟, 𝑢𝜃 , 𝑇 RA/WM §5.3

Fig. 4. Computational grid for cylinder flows with 𝑁 = 118225 nodes, colored using the mean vorticity, 𝝎 =𝑫𝑥𝒗−𝑫𝑦𝒖, at Re = 100.

a Hopf bifurcation that results in flow instability, see, e.g., [16,139]. Beyond the limit of Re ≃ 188, the cylinder flow becomes 
three-dimensional [11,143].

Classical LST analysis of the cylinder base flow ought to predict the onset of unsteadiness [54,147] but fails to capture the 
vortex-shedding frequency beyond Re𝑐 [10,119]. Previous studies by Hammond and Redekopp [46] and Pier [94] show that LST 
analysis around the cylinder mean flow accurately identifies the vortex-shedding frequency compared to experimental measurements. 
Barkley [10] supported these findings and showed that the cylinder mean flow is marginally stable in the 2D regime. Sipp and 
Marquet [119] subsequently provided theoretical underpinning by conducting a weakly nonlinear analysis and establishing criteria 
for utilizing mean flows in LST analysis. The vortex-shedding dynamics beyond the critical Reynolds number were later investigated 
using a self-consistent model [70,71] and RA [58,126] based on the mean flow stability. We here conduct both LST and resolvent 
analyses of the cylinder wake mean flow.

We define the computational domain Ω as the exterior of the cylinder 𝑟 ≥ 𝐷∕2 = 0.5 and within the rectangle −15 ≤ 𝑥 ≤ 30, −15 ≤
𝑦 ≤ 15. The computational domain is discretized using 𝑁 = 118225 scattered nodes. Local grid refinement is employed near the cylin-
der with a characteristic distance of Δ𝑟 = 0.03 and around the wake centerline with Δ𝑟 = 0.04 to better resolve the flow structures. 
The unsteady cylinder flow is simulated using the PHS+poly RBF-FD version of the fractional-step, staggered-grid incompressible 
Navier-Stokes solver by Chu and Schmidt [27]. The mean-flow profiles are obtained as the time average of flow over 20 vortex-
shedding cycles. Fig. 4 shows the mean vorticity at Re = 100 and the computational grid. Homogeneous boundary conditions, 
𝑢′ = 𝑣′ = 0, are prescribed at the inlet and the cylinder surface. Symmetric boundary conditions with 𝑣′ = 𝜕𝑢′∕𝜕𝑦 = 0 are applied at 
the transverse boundaries. A stress-free outflow condition, −𝑝′𝒏+ 1

Re∇𝒖
′ ⋅𝒏 = 0, where 𝒏= [1, 0]𝑇 is the outflow direction, is enforced 

at the outflow.
The local wavemaker sensitivity in equation (24) and the resolvent gain in equation (27) and are both quantified in terms of the 

perturbed kinetic energy. To this end, we define the integration matrices

𝑾 𝑢 =𝑾 𝑓 ≡
[
𝟏 𝟎
𝟎 𝟏

]
⊗ diag(d𝑉1,d𝑉2,⋯ ,d𝑉𝑁 ) (39)

in equation (28) to approximate the integral within the computational domain, where ⊗ denotes the Kronecker product. Here, 
d𝑉𝑖 = 𝜉𝜋(Δ𝑟𝑖)2 is the local radial control volume for each grid. The constant 𝜉 ensures consistency with the total control volume and 
is defined by letting 

∑𝑁
𝑖=1 d𝑉𝑖 = 𝜉𝜋

∑𝑁
𝑖=1(Δ𝑟𝑖)2 = ∫Ω 1d𝒙. Refer to Fig. 3 for practical illustrations.

Fig. 5 shows the Strouhal number, St = 𝜆𝑖∕2𝜋, associated with the leading eigenvalues at varying Reynolds numbers. Starting 
from the critical Reynolds number of Re𝑐 ≈ 47, the frequency-Reynolds number dependence exhibits the typical features of a Hopf 
bifurcation. Our results are in good agreement with Barkley [10], and similarly, deviate no more than 3% from those reported by 
Pier [94]. The maximum growth rates are almost identical to zero (see also Fig. 6 below), confirming that the mean flow is marginally 
stable.

We next conduct a comparative study of LST and RA at two representative Reynolds numbers, the critical Reynolds number 
10

of Re = 47 and Re = 100, as an example of the unsteady regime. Fig. 6 shows the resulting resolvent singular value and stability 



Journal of Computational Physics 502 (2024) 112822T. Chu and O.T. Schmidt

Fig. 5. Vortex shedding frequency predicted by the leading eigenvalue of the mean-flow stability problem as a function of Reynolds number. The frequency is given as 
the non-dimensional Strouhal number St = 𝜆𝑖∕2𝜋. Shown for comparison are results from Pier [94] (green square) and Barkley [10] (blue circle). Two representative 
Reynolds numbers for the following analysis, Re𝑐 ≈ 47 and Re = 100, are highlighted as dashed lines.

Fig. 6. Resolvent singular values (blue curve) and stability eigenvalue (red circle) spectra for Re = 47 (a) and Re = 100 (b). The 20 eigenvalues closest to 𝜆𝑐 = 0 +0.753i
or St𝑐 = 0.1199 and 𝜆 = 0 +1.038i or St = 0.1652 (dashed lines) were found within the regions outlined by the black dot-dashed lines using the shift-and-invert Arnoldi 
algorithm for Re = 47 and 100, respectively.

eigenvalue spectra. At Re = Re𝑐 , both the peak of the resolvent gain and the leading eigenvalue identify the same frequency, 
St𝑐 = 0.1199, as the vortex shedding frequency. This value is in good agreement with the results of the LST analysis around the base 
flow, see, e.g., Giannetti and Luchini [43] (St𝑐 ≃ 0.118 for Re𝑐 ≃ 46.7), Marquet et al. [72] (St𝑐 ≃ 0.116 for Re𝑐 ≃ 46.8), and Sipp 
and Marquet [119] (St𝑐 ≃ 0.118 for Re𝑐 ≃ 46.6). Similarly, the resolvent singular value spectrum at Re = 100 in panel 6(b) displays a 
clear peak at the vortex shedding frequency, which is now at St = 0.1652, and again coinciding with the least stable LST eigenvalue. 
This result matches closely with the findings of earlier Strouhal-Reynolds number relationship [35,57,70,95,143] and RA [58,126]
studies.

Fig. 7 shows the leading LST and RA modes for the cylinder mean flow at Re = Re𝑐 and Re = 100. The leading LST and optimal 
response modes, along with their corresponding adjoint and forcing modes, are near-identical at both Reynolds numbers. The resem-
blance observed between the LST and resolvent response modes is to be anticipated, as the singular value of the resolvent attains its 
peak at the vortex-shedding frequency [17,126], thus exhibiting the characteristic vortex-shedding structure. This implies that the 
optimal forcing leverages the global instability mode to achieve maximum gain. Differing from the optimal response and LST modes, 
the optimal forcing and adjoint modes are active far upstream of the cylinder but peak downstream in close vicinity to the cylinder. 
This hallmark of convective instability was similarly observed in previous works [58,72,126].

We finally investigate the wavemaker 𝜁LST, defined in equation (24), in Fig. 8 to quantify the sensitivity of spatially localized 
feedback. Wavemakers obtained from LST and RA look similar for both Reynolds numbers and reach their maxima in two symmetri-
cally positioned lobes located across the separation bubble. This result signifies the promising applicability of RA-based wavemakers 
in accurately identifying the region where the flow instability mechanisms happen. The wavemaker patterns at the critical Reynolds 
number shown in panels 8 (a,c) compare well to those previously reported by Giannetti and Luchini [43] and Marquet et al. [72]. 
The shrinking of wavemaker region at Re = 100 in panels 8 (b,d) closely matches with the findings in Meliga et al. [78] and Symon 
11

et al. [126].
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Fig. 7. Leading modes for Re = 47 at St = 0.1199 (a-d) and Re = 100 at St = 0.1652 (e-h): (a,e) LST modes; (b,f) response modes; (c,g) adjoint modes; (d,h) forcing 
modes.

Fig. 8. Wavemakers 𝜁LST for mean flow at (a) Re = 47 and (c) Re = 100. Respective results for 𝜁RA are shown in (b) and (d). The blue curve represents the mean flow 
streamlines.

5.2. Blasius boundary layer

We now examine the incompressible two-dimensional non-normal flat-plate boundary layer, a classic example of convectively 
unstable flows characterized by the amplification of disturbances during downstream advection. The convective instability of 
boundary-layer flows has been extensively studied through 1D LST analysis over the past century, e.g., [60,68,69,100,124]. Above 
the critical displacement-thickness Reynolds number of Re𝛿,𝑐 ≈ 520, the Tollmien–Schlichting (TS) waves are known to arise as 
unstable eigenmodes of the Orr-Sommerfeld equation [23]. While these locally unstable waves are damped in 2D LST [1,2,6,32], 
investigations into the non-normality of the linearized Navier-Stokes equations for open flows have revealed an alternative pathway 
for disturbance amplification [25,73,121]. To analyze the non-modal behavior of boundary-layer flows, input-output analysis has 
been conducted to determine the optimal harmonic forcing that results in the largest asymptotic response [3,7,8,84,107,120].

Following the setup by Sipp and Marquet [120], we compute the resolvent gain in the restricted domain ΩRA = [𝑥, 𝑦∕𝛿] ∈
[0.02, 1] ×[0, 22.52] within the computational domain Ω = [𝑥, 𝑦∕𝛿] ∈ [0.02, 1.27] ×[0, 22.52] such that the forcing optimizes the ratio 
between the restricted kinetic energy, ∬ΩRA

(|𝑢̂|2 + |𝑣̂|2) d𝑥d𝑦, and the integral of forcing, ∬Ω
(|𝑓𝑢|2 + |𝑓𝑣|2) d𝑥d𝑦. The zero-pressure-
12

gradient (ZPG) asymptotic Blasius solution, characterized by a local Reynolds number of Re𝑥 =
𝑈∞𝑥

𝜈
= 6 ×105 or Re𝛿 =

𝑈∞𝛿(𝑥)
𝜈

= 1332
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Fig. 9. Resolvent gains (solid lines) and peak frequencies (dashed lines) for the flat-plate boundary layer and Re = 6 ⋅ 105 .

at the end of the restricted domain ΩRA, is used as the base flow to investigate the flow instabilities, where 𝛿(𝑥) = 1.72
√

𝑥∕Re𝑥 is 
the displacement thickness. The leading edge (𝑥 < 0.02) is removed to avoid the singularity of the self-similar solution. Hereafter, we 
use the notations Re = Re𝑥=1 and 𝛿 = 𝛿(𝑥 = 1) for simplicity. Conversely, 𝑥 = 1 in Figs. 10, 11, and 13 corresponds to Re = 6 × 105. 
All quantities and coordinates presented are dimensionless.

The computational domain Ω is discretized using 𝑁 = 726143 scattered nodes, corresponding to 2.2 × 106 degrees of freedom. In 
comparison, Sipp and Marquet [120] employ 13.7 × 106 degrees of freedom. The characteristic distances of the grid are Δ𝑟 = 0.069𝛿
near the flat plate (𝑦∕𝛿 < 4), Δ𝑟 = 0.077𝛿 near the inlet (𝑥 < 0.025), and average at 0.081𝛿 over the whole domain. At the inlet and 
the flat plate, we prescribe 𝑢′ = 𝑣′ = 0. A symmetric boundary condition with 𝑣′ = 𝜕𝑢′∕𝜕𝑦 = 0 is applied at the far-field (𝑦∕𝛿 = 22.52). 
A stress-free outflow condition is enforced at the outflow. The weight matrix 𝑾 𝑢 is defined in equation (39), but with zero weights 
in the region Ω ⧵ΩRA.

We first examine the leading resolvent singular value as a function of the normalized frequency, 𝐹 = 106 ⋅𝜔∕Re, in Fig. 9. Overall, 
our results agree well with those reported by Sipp and Marquet [120]. The slight deviation of the peak and the resolvent gains beyond 
the peak (𝐹 ≳ 88) are most likely attributed to differences in the base flows, that is, the ZPG self-similar Blasius solution in the present 
study and the fully non-parallel numerical data of Sipp and Marquet [120] that includes the leading edge. The discrepancy at higher 
frequencies is potentially also related to the truncation of the leading edge, where the asymptotic Blasius solution becomes singular.

Fig. 10 shows the optimal and suboptimal forcings and corresponding responses at 𝐹 = 100. The optimal response exhibits 
clear Tollmien–Schlichting (TS) wavepackets in the downstream region, while the upstream tilted structures in the optimal forcing 
highlight the active role of the Orr mechanism in extracting energy from the mean shear via the Reynolds stress [23]. The clear spatial 
separation between leading resolvent forcing and response modes indicates the stream-wise non-normality of the system [25,72,121]. 
The suboptimal forcing and response are similar to the leading modes except for two local maxima. This modulation confirms the 
orthogonality in their respective inner products. Qualitative comparisons with previous studies by Åkervik et al. [1], Monokrousos et 
al. [84], Brandt et al. [20] and Sipp and Marquet [120] verify the capability of the present framework in identifying the convective 
instability of the boundary-layer flow.

As a quantitative assessment of the flow structures, we examine the energy density functions,

𝑑𝑓 (𝑥) =

𝑦max

∫
0

(|𝑓𝑢|2 + |𝑓𝑣|2) d𝑦, and 𝑑𝑢(𝑥) =

𝑦max

∫
0

(|𝑢̂|2 + |𝑣̂|2) d𝑦, (40)

in Fig. 11 for the modes shown in Fig. 10. Our results are almost identical to Sipp and Marquet [120] The spatial distribution of 
the optimal forcing unambiguously identifies the location of the upstream neutral point (branch I) from a local stability analysis 
at 𝑥 = 0.3 and the corresponding response is localized at 𝑥 = 0.89, which is in close proximity to the downstream neutral point 
(branch II).

Fig. 12 shows the energy density distributions of the optimal forcing and response as a function of frequency, with the stream-wise 
coordinate given in terms of the local Reynolds number, Re𝛿 . The optimal forcings agree well with Sipp and Marquet [120], and 
their maxima effectively delineate the convectively stable/unstable boundary (branch I) obtained using local stability theory. The 
Orr and TS mechanisms coexist and compete while both contribute to the overall energy gain of RA. As frequency increases, the 
spatial support of the TS-like optimal responses decreases, suggesting that the TS mechanism is only supported in a limited region of 
the shear layer at high frequencies. Additionally, the energy density of the forcing shows an increasing trend, indicating that the Orr 
mechanism becomes dominant at high frequencies. Similar to the deviation in the resolvent gain spectra shown in Fig. 9, we observe 
a slight downstream shift in the peak of optimal responses compared to the results reported Sipp and Marquet [120] for increasing 
13

frequency (𝐹 ≳ 130).
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Fig. 10. Optimal and suboptimal resolvent forcings (b,d) and corresponding responses (a,c) for the flat-plate boundary layer at 𝐹 = 106 ⋅𝜔∕Re = 100. The normalized 
stream-wise velocity components have been interpolated onto a stretched Cartesian mesh for visualization. Panels (e) and (f) show the local regions of the optimal 
forcing (magenta box) and corresponding response modes (red box) with the largest magnitudes, respectively, on the scattered nodes used for the computation. The 
Blasius displacement thickness, 𝛿(𝑥), is highlighted as the white dashed line.

Fig. 11. Spatial distributions of energy density for optimal (dashed) and suboptimal (dotted) forcings and corresponding responses (solid and dot-dashed, respectively) 
at 𝐹 = 100. The results (red) are compared to those reported by Sipp and Marquet [120] (blue). The two vertical solid lines represent the upstream neutral point 
(branch I) and the downstream neutral point (branch II) from a local stability analysis.

Finally, we show the RA-based wavemaker, defined in equation (32), in Fig. 13 to examine the instability mechanisms at different 
frequencies. The maximum magnitude of 𝜁RA shows an increasing trend with frequency. The large magnitudes of the wavemaker are 
attributed to the fact that the value of the term |𝒖̂∗1𝑾 𝑢𝒇̂ 1|−1 is considerably greater than the value of the self-adjoint modes, which 
is equal to 1 [73]. This again confirms that the boundary-layer flow exhibits high non-normality. For 𝐹 ≲ 100 (panels 13 (a-c)), the 
RA-based wavemaker exhibits an elongated shape and is artificially restricted within the optimization domain ΩRA. The wavemaker 
becomes more concentrated towards the upstream region for higher frequencies (𝐹 ≳ 140, panels 13 (d-g)). This observation suggests 
14

a transition from the TS-dominated to the Orr-dominated mechanism as the frequency increases.
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Fig. 12. Energy density distributions for the optimal forcings (a) and responses (b) as a function of frequency. The locations of maximum energy densities are marked 
as red circles. The results reported by Sipp and Marquet [120] are shown as blue stars for comparison. The neutral curve obtained from a local LST analysis is shown 
as the magenta line.

Fig. 13. RA-based wavemaker 𝜁RA for the flat-plate boundary layer as a function of frequency.

5.3. Turbulent jet

The above two examples demonstrate the capability of the proposed numerical framework for analyzing incompressible flows 
within the laminar regime. We now focus on the mean flow analysis of a turbulent iso-thermal jet at Mach number, based on the 
jet velocity and the far-field speed of sound, of 𝑀 = 0.9 and Reynolds number, based on the nozzle diameter and the jet velocity, of 
ℜ ≈ 106. The large eddy simulation (LES) data, generated using the unstructured flow solver ‘Charles’, is used for analysis. Further 
details about the dataset can be found in Brès et al. [21]. Previous studies have demonstrated that the transonic turbulent jet under 
consideration displays a variety of coherent features, including the well-known Kelvin–Helmholtz instabilities of the shear layer [21], 
downstream non-modal Orr-type waves [93,109], and trapped acoustic waves in the potential core [108,132].

The state vector,

𝒒 = [𝜌, 𝑢𝑥, 𝑢𝑟, 𝑢𝜃, 𝑇 ]𝑇 , (41)

comprises primitive variables: density 𝜌, temperature 𝑇 , and cylindrical velocity components 𝑢𝑥, 𝑢𝑟 and 𝑢𝜃 in the streamwise, 𝑥, 
radial, 𝑟, and circumferential, 𝜃, directions, respectively. The fluctuating state is defined as 𝒒′ = [𝜌′, 𝑢′

𝑥
, 𝑢′

𝑟
, 𝑢′

𝜃
, 𝑇 ′]𝑇 . Owing to the 

rotational symmetry of the jet, we may decouple the governing equations and construct the compressible linear operator  in 
cylindrical coordinates, without loss of generality, for each azimuthal wavenumber 𝑚𝜃 independently. For a round jet, the mean 
15

azimuthal velocity component is zero. Upon linearization of the compressible Navier-Stokes equations shown in (A.1), we obtain the 
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Fig. 14. Computational grid for jet with 𝑁 = 210817 ≈ 1013 × 208 nodes, colored using the mean streamwise velocity 𝑢𝑥 at Re ≈ 106 . The potential core (white solid) 
and the jet width (white dashed) are delineated as isolines corresponding to 99% and 5% of the jet velocity, respectively.

Fig. 15. Leading resolvent singular value spectra for the transonic jet and 𝑚𝜃 = 0. Results reported by Schmidt et al. [109] are shown as comparisons (blue dashed).

linearized Navier-Stokes operator around the azimuthally averaged long-time mean of the primitive state, 𝒒 = [𝜌, 𝑢𝑥, 𝑢𝑟, 0, 𝑇 ]𝑇 , such 
that

𝜕

𝑡
𝒒′ =𝒒′ + 𝒇 . (42)

The general setup, including boundary conditions, sponge regions, and a molecular Reynolds number of Re = 3 ×104, follows Schmidt 
et al. [108] and Schmidt et al. [109].

The computational domain Ω = [−1, 31.01] × [0, 9.65] includes the physical domain 𝑥, 𝑟 ∈ [0, 30] × [0, 6] and the surrounding 
sponge regions that prevent waves from being reflected. Local refinement is used near the nozzle with Δ𝑟 = 0.005 and near the jet 
centerline with Δ𝑟 = 0.008, resulting in 𝑁 = 210817 scattered nodes for the construction of the RBF-FD-based global Jacobian 𝑳, see 
Fig. 14. A structured mesh with a comparable number of 𝑁 = 185250 was used in Schmidt et al. [109].

The resolvent gain is quantified in terms of the compressible energy norm [26] through the weight matrices

𝑾 𝑞 =𝑾 𝑓 ≡ diag

(
𝑇

𝛾𝜌𝑀2 , 𝜌, 𝜌, 𝜌,
𝜌

𝛾(𝛾 − 1)𝑇𝑀2

)
⊗ diag(2𝜋𝑟1d𝑉1,2𝜋𝑟2d𝑉2,⋯ ,2𝜋𝑟𝑁d𝑉𝑁 ). (43)

For compressible flows, the discrete weighted resolvent operator takes the form of

𝑹(𝜔) =𝑾
1
2
𝑞 𝑪 (i𝜔𝑰 −𝑳)−1𝑩𝑾

− 1
2

𝑓
, (44)

where the input and output matrices, 𝑩 and 𝑪 , are used to are used to focus the analysis exclusively on the physical domain. As a 
first demonstration, we conduct the mesh-free RA for the symmetric component of the jet with 𝑚𝜃 = 0 in the following.

Fig. 15 compares the leading resolvent singular value spectra to those reported by Schmidt et al. [109], obtained using a 4th-
order finite difference [76] and a tenth-order filter for discretization. Very good agreement is observed within the frequency range 
0.15 ≲ St ≲ 1.2, with only a minor deviation at the peak value. This specific frequency range has been previously identified as the 
regime where different physical mechanisms are active in turbulent jets, see, e.g., [41,92,108,109,125,129,132].

To verify that large-scale coherent structures in the turbulent jet are accurately captured, we investigate the leading resolvent 
modes at three representative frequencies, as shown in Fig. 16. At St = 0.2, the optimal response exhibits a clear downstream 
16

(𝑥 ≳ 10) Orr-type wavepacket. The elongated structures tilted against the mean shear in the corresponding forcing are a clear 
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Fig. 16. Streamwise velocity component of the optimal response (a,c,e) and corresponding forcing modes (b,d,f) at three representative frequencies: (a-b) St = 0.2; 
(c-d) St = 0.6; (e-f) St = 1. The modes are interpolated onto a stretched Cartesian mesh with contours corresponding to ±0.6‖ ⋅ ‖∞ for visualization. The potential core 
and the jet width, shown in Fig. 14, are visualized for comparisons.

Fig. 17. RA-based wavemaker 𝜁𝑅𝐴 for: (a) St = 0.2; (b) St = 0.6; (c) St = 1. The region with the strongest feedback is marked as green ‘+’.

indicator of the Orr mechanism associated with the optimal non-modal spatial growth [109,128,129]. Similar flow structures have 
been reported in Garnaud et al. [41], Lesshafft et al. [66] and Pickering et al. [93]. For higher frequencies (St ≳ 0.6), the optimal 
response take the form of compact Kelvin–Helmholtz (KH) wavepackets localized upstream in the initial shear layer region of the 
jet (𝑥 ≲ 10), which can be identified as the modal KH-type shear-layer instability of the turbulent mean flow [45,59,125]. The 
corresponding forcing distributions near the lip line (𝑟 ≃ 0.5) remain indicative of the Orr mechanism, but this time with the KH 
instability [41,56,96,110,129]. Within the potential core, the optimal response exhibits duct modes at St = 0.6 and trapped acoustic 
waves at St = 1. The presence of the latter is a general feature of resonance mechanisms between propagating waves associated 
with the isothermal and transonic jet, as previously described in [108,132]. Notably, comparable patterns can be observed in the 
corresponding forcings, indicating the nearly self-adjoint nature of the trapped instability mechanism. We confirmed the modal 
shapes are almost identical to those obtained using the numerical scheme outlined in Schmidt et al. [109] (not shown).

Fig. 17 shows how the RA-based wavemaker, 𝜁𝑅𝐴, unveils different physical mechanisms that are active in the turbulent jet. Most 
notably, the wavemaker region and its overall peak move upstream as the frequency increases from St = 0.2 to 1. At St = 0.2, the 
optimal forcing and response modes are spatially separated (see panels 16(a,b)), resulting in a very weak wavemaker signature in 
the downstream self-similar region. This result is anticipated, as the responses at low frequencies are purely triggered by the Orr 
mechanism without being associated with a single global mode or a local feedback mechanism that leads to the creation of waves 
in a localized region. This is indicative of a non-modal convective instability. At St = 0.6, the wavemaker peaks at the centerline at 
𝑥 ≃ 5. This is the end of the potential core, where upstream traveling acoustic modes are generated, also known as duct modes, as 
previously described by Towne et al. [132]. Parallel-flow models accurately predict the occurrence of duct modes, but the wavemaker 
potentially reveals the location where duct modes originate, which is not predicted by the theory. The wavemaker at St = 1 peaks 
within the shear layer, which is associated with the KH instability, but it also exhibits a comparable magnitude at the upstream 
region of the potential core, which identifies the resonance mechanisms that trigger trapped acoustic modes [108,132]. That is, the 
wavemaker analysis confirms the phase-linking between downstream KH waves and upstream traveling waves at St = 1. Note that 
17

this is not the case for St = 0.6, where the wavemaker is solely associated with the duct modes.
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6. Summary and discussion

In this study, a novel higher-order mesh-free framework for hydrodynamic stability analysis is developed. The framework has 
been demonstrated and validated on three benchmark problems for open flows: a canonical laminar cylinder wake, a non-parallel 
flat-plate Blasius boundary layer, and a transonic turbulent jet. It also provides new insights into well-known physics. The proposed 
framework incorporates PHS-type RBFs with polynomial augmentations to discretize large hydrodynamic stability matrix problems 
on scattered nodes with high accuracy, stability, and computational efficiency. The resulting differentiation matrices are employed 
to construct the discrete linearized Navier-Stokes operator for conducting LST and RA. We propose a set of parameters to address 
the trade-off between accuracy and computational efficiency for PHS+Poly RBF-FD discretizations that provide best practices. In the 
context of scattered nodes, the practical implementations of various boundary conditions arising in hydrodynamic stability analysis 
are discussed and addressed.

The present mesh-free approach accurately predicts flow instabilities in wakes behind a 2D cylinder, including the vortex-shedding 
frequency, corresponding coherent structures, and structural sensitivity. The results are in good agreement with previous studies 
[10,43,72,94]. In the case of the Blasius boundary layer, the present framework accurately identifies the TS wavepackets and yields 
favorable quantitative and qualitative comparisons with those previously reported in the literature [1,20,84,120]. Furthermore, the 
RA-based wavemaker confirms the high non-normality of the boundary layer and the transition in dominant mechanisms from TS 
to Orr as the frequency increases. When applied to the mean flow of a turbulent jet, the mesh-free RA yields results that are almost 
identical to those reported by Schmidt et al. [109]. The application of RA-based WM analysis identifies distinct dominant physical 
mechanisms operating at different frequencies. These mechanisms include the Orr mechanism in the downstream region with a very 
weak wavemaker signature at St = 0.2, prominent duct-like structures near the end of the potential core at St = 0.6, and the phase 
coupling between the KH and trapped acoustic mechanisms at St = 1. These results closely align with the findings documented in 
prior literature, e.g., [59,66,108,109,132], and provide a new, global perspective on modal and non-modal growth in jets, as well as 
on the origins of these instabilities.

Building upon the pioneering work of Hardy [47], RBF discretizations have been widely employed in canonical problems, ex-
hibiting a continual evolution through advancements like RBF-FDs [130] and PHS+poly RBFs [36]. More recently, this mesh-free 
approach has garnered attention in computational fluid dynamics (CFD) for physical exploration or engineering applications, see, 
e.g., [27,111–113,138]. While RBF-FDs demonstrate the capability to construct sparse differentiation operators, the potential appli-
cations in hydrodynamic stability analysis have not been thoroughly explored. The current work is the first demonstration of such 
applications. Future extensions encompass applications involving 3D and complex geophysical or engineering fluid flows.
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Appendix A. Governing equations for compressible flows

The compressible Navier-Stokes equations govern the motion of a general, compressible Newtonian fluid,

𝜕𝜌

𝜕𝑡
= −∇ ⋅ 𝜌𝐮,

𝜕𝜌𝐮
𝜕𝑡

= −1
2
∇ ⋅ (𝐮 ∶ 𝜌𝐮+ 𝜌𝐮 ∶ 𝐮) − ∇𝑝+ 1

Re
∇ ⋅ 𝝉 ,

𝜕𝜌𝑒

𝜕𝑡
= −∇ ⋅ 𝜌𝑒𝐮+ 1

(𝛾 − 1)RePrMa2∞
∇ ⋅ 𝑘∇𝑇 −∇ ⋅ 𝑝𝐮+ 1

Re
∇ ⋅ 𝝉𝐮,

(A.1)

where, 𝑒 is the total energy. For a Newtonian fluid, the viscous stress tensor is 𝝉 = 𝜇
(
∇𝐮+∇𝐮𝑇

)
− 2

3𝜇(∇ ⋅ 𝐮)I. All flow quantities 
18

are non-dimensionalized by their dimensional free-stream values, denoted by (⋅)∗∞, and the coordinates by the jet diameter 𝐷. 
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The dimensionless Reynolds number Re = 𝜌∗∞𝑢∗∞𝐷∕𝜇∗
∞, Prandtl number Pr = c∗p𝜇

∗
∞∕𝑘∗∞, and Mach number 𝑀 = 𝑢∗∞∕𝑎∗∞ then fully 

describe the flow. Here, 𝜇∗
∞, 𝑘∗∞, 𝑐∗𝑝 , 𝛾, 𝑎∗∞ are the free-stream values of the dynamic viscosity, heat conductivity, heat capacity at 

constant pressure, heat capacity ratio, and speed of sound, respectively. Closure of the equations is achieved under the assumption 
of an ideal gas, and using Sutherland’s law to compute the dynamic viscosity from the local temperature.
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