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A high-order mesh-free hydrodynamic stability analysis framework is developed based
on radial basis function-based finite differences (RBF-FD). The global linearized Navier-
Stokes operator is discretized using polyharmonic spline RBFs with polynomial augmentation
(PHS+poly). As a validation test case, the non-parallel flat-plate boundary layer within a
computational domain corresponding to a local Reynolds number of 0 ≤ Re𝑥 ≤ 6 × 105 is
considered. The computational domain is discretized using scattered nodes created by an
unstructured mesh generator. The discrete resolvent operator is constructed, and its singular
components are analyzed. The resulting optimal response modes are identified as Tollmien-
Schlichting (TS) wavepackets. These responses are optimally forced by the upstream tilted
structures that leverage the Orr mechanism. Favorable comparisons to previous literature, both
qualitatively and quantitatively, validate the novel framework.

I. Nomenclature

L𝑼 , 𝑳𝑼 = linearized Navier-Stokes operator around the base-flow and its discretization
𝑨 = RBF-based interpolation matrix
B, C = operator for input/output
𝑫 = global RBF-based differentiation matrix
𝑑 𝑓 , 𝑑𝑢 = energy density functions for forcings and responses
Δ𝑟 = local characteristic distance of the grid
d𝑉 = local control area of the grid
𝒇 = input/forcing vector, local and global
𝐹 = Normalized frequency
𝛾 = RBF interpolation coefficients
H , 𝑯 = resolvent operator and its discretization
L = linear operator
𝑚 = exponent of the polyharmonic spline
𝑛 = local stencil size
𝑁 = total amount of nodes
∇ = gradient operator
𝑝 = pressure
P, 𝑷 = prolongation operator and its discretization
𝑃(𝒙) = multivariate polynomial
𝑞 = degree of the polynomial augmentation
𝜙(𝑟) = radial function
𝑹 = discretized weighted resolvent operator
Re𝑥 , Re𝛿 = Reynolds numbers based on the length of the plate or the displacement thickness
𝜎 = resolvent singular value
𝑢, 𝑣 = horizontal and vertical velocity components
𝒖 = velocity vector, local and global
(𝑼, 𝑃) = base flow component
𝑤 = local RBF weights
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𝑾 𝑓 , 𝑾𝑢 = integration weight matrices
𝜔 = angular frequency
𝒙 = node location

II. Introduction
Flow instabilities and large-scale coherent structures are ubiquitous phenomena in fluid mechanics that have been

the focus of extensive research. In the past century, local linear stability analysis has been widely used to investigate the
growth of small perturbations in laminar flows, e.g., [1–5]. Jackson [6] and Zebib [7] were among the pioneers who
performed linear stability analysis in two-dimensional domains to investigate the vortex-shedding characteristics in
the wakes of bluff bodies. Readers are referred to Huerre and Monkewitz [8] for a comprehensive review of global
stability analysis. Later, linear global analysis has been used to analyze a wide range of flows, including cylinder wakes
[9–11], thin aerofoil wakes [12], boundary layers [13], and jets [14], where local analysis is not adequate. It has been
shown that an open flow can exhibit global linear stability despite displaying local convective instability. Subsequently,
global weakly nonlinear analysis was performed to characterize the dynamics of open flows with strong non-parallelism
[15, 16].

More recently, resolvent, or input-output analysis, has revealed its potential to accurately predict large-scale coherent
structures in a wide range of flows. The resolvent operator of the forced linearized system constitutes the transfer
function between external forcing and the system’s response. When applied to laminar flows, resolvent analysis has
been used to examine the linear response to external body forces and perturbations for channel flows [17, 18], boundary
layers [19–25], and jets [26–28]. Within the turbulent regime, the input-output perspective provides a mathematically
consistent framework for analyzing turbulent mean-flows by identifying the forcing with the Reynolds stresses in the
perturbation-interaction terms in the Reynolds-decomposed Navier–Stokes equations [29, 30]. Examples include near-
wall flows [29–31], boundary layers [32–34], incompressible [26] and compressible jets [27, 35, 36], and the flow over
an airfoil [37]. The major challenge for global stability, or resolvent, analysis remains the construction of the underlying
large stability matrices in complex domains that have to be decomposed into their eigen- or singular-components.

This work introduced a mesh-free hydrodynamic stability analysis framework tailored for complex geometries, which
utilizes radial basis functions (RBFs) to construct large, sparse operators. By generalizing the classical finite-difference
(FD) methods to arbitrary node layouts, the RBF-FD methods provide a systematic way to approximate spatial derivatives
based on RBFs [38]. This method facilitates maximum flexibility in meshing complex geometries, local grid refinement,
and local adjustments of the order of accuracy. Gaussian (GA), multiquadric (MQ), and inverse multiquadric (IMQ)
are widely used RBFs for fluid flow problems. These RBFs all involve a shape parameter as a free parameter in the
computation, significantly impacting both numerical stability and accuracy. Recently, RBF-FD approximations based
on polyharmonic splines (PHS) that are augmented with polynomials (PHS+poly), which were first introduced in Flyer
et al. [39], have revealed their potential to achieve high-order accuracy. The accuracy and stability of the PHS+poly
RBF-FD method depend on the combination of the stencil size, PHS exponent, and the polynomial degree. Optimal
combinations of parameters have been investigated and discussed in Shankar and Fogelson [40], Chu and Schmidt [41],
and Le Borne and Leinen [42]. PHS+poly RBF-FDs have succeeded in simulating incompressible flows on scattered
nodes [41, 43–46]. In our previous study [47], we employed this discretization method to perform mesh-free global
stability and resolvent analyses on the incompressible cylinder wake within the 2-D laminar regime as the first test
problem.

Building upon our previous work, we here consider a significantly more challenging case of the non-parallel flat-plate
boundary layer. The latter is a classic example of a convectively unstable flow characterized by the amplification of
disturbances during downstream advection. The convective instability of boundary-layer flows has been comprehensively
studied via local linear stability analysis in the past century, e.g., [48–52]. It has been shown that Tollmien–Schlichting
(TS) waves manifest as unstable eigenmodes of the Orr–Sommerfeld equation. While these locally unstable waves are
damped within the global framework [13, 53, 54], investigations into the non-normality of the linearized Navier–Stokes
equations for open flows have demonstrated an alternative pathway for disturbance amplification [15, 55]. To analyze
the non-modal behavior of boundary-layer flows, the global input-output analysis has been conducted to determine
the optimal harmonic forcing that results in the largest asymptotic response [19, 20, 56–59]. The response flow field
consists of a TS wave packet, and the optimal forcing materializes as an upstream-located tilted wave train that suggests
the presence of the Orr mechanism. The TS and Orr mechanisms engage in a competitive interplay while simultaneously
contributing to the overall energy gain Sipp and Marquet [20].

As a validation test case, we adopt the configuration proposed by Sipp and Marquet [20], which entails a flat-plate
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boundary layer characterized by a Reynolds number of Re = 6×105, or Re𝛿 = 1332 based on the displacement thickness,
at the end of the optimization domain. The asymptotic Blasius solution is used as the base flow to investigate flow
instabilities through the proposed mesh-free resolvent analysis.

III. Radial basis function-based finite differences (RBF-FD)
The goal of the RBF-FD method is to compute the discrete representation of any linear differentiation operator L at

a given location 𝑥0 as a linear combination of the function values, 𝑔(𝒙 𝑗 ), such that

L𝑔(𝒙0) =
𝑛∑︁
𝑗=1

𝑤 𝑗𝑔(𝒙 𝑗 ). (1)

To obtain the unknown differentiation weights 𝑤 𝑗 , we use the RBF interpolant,

𝑠(𝒙) =
𝑛∑︁
𝑗=1

𝛾 𝑗𝜙(∥𝒙 − 𝒙 𝑗 ∥), (2)

to approximate the given function 𝑔(𝒙) by satisfying

𝑠(𝒙 𝑗 ) = 𝑔(𝒙 𝑗 ), 𝑗 = 1, 2, · · · 𝑛. (3)

Here, 𝜙(𝑟) is a smooth radial function, {𝒙}𝑛
𝑗=1 is a set of scattered nodes, and ∥ · ∥ denotes the standard Euclidean norm.

Combining equations (1-3) leads to the linear system
𝜙(∥𝒙1 − 𝒙1∥) 𝜙(∥𝒙1 − 𝒙2∥) · · · 𝜙(∥𝒙1 − 𝒙𝑛∥)
𝜙(∥𝒙2 − 𝒙1∥) 𝜙(∥𝒙2 − 𝒙2∥) · · · 𝜙(∥𝒙2 − 𝒙𝑛∥)

...
...

...

𝜙(∥𝒙𝑛 − 𝒙1∥) 𝜙(∥𝒙𝑛 − 𝒙2∥) · · · 𝜙(∥𝒙𝑛 − 𝒙𝑛∥)

︸                                                                   ︷︷                                                                   ︸
𝑨


𝑤1

𝑤2
...

𝑤𝑛


=



L𝜙(∥𝒙 − 𝒙1∥)
��
𝒙=𝒙0

L𝜙(∥𝒙 − 𝒙2∥)
��
𝒙=𝒙0

...

L𝜙(∥𝒙 − 𝒙𝑛∥)
��
𝒙=𝒙0


, (4)

which can be solved directly to obtain the weight vector 𝒘 = [𝑤1, · · · , 𝑤𝑛]𝑇 . An implicit assumption for equation (4) is
that the derivative of the basis function, L𝜙, is continuous.

A. RBF-FD method with polynomial augmentations
Polynomial augmentation is commonly applied to the RBF-FD method to enforce consistency with Taylor expansion-

based FD approximations [39, 60–63]. The two-dimensional augmented RBF-FD method takes the form

L𝑔(𝒙0) =
𝑛∑︁
𝑗=1

𝑤 𝑗𝑔(𝒙 𝑗 ) +
(𝑞+1) (𝑞+2)/2∑︁

𝑖=1
𝑐𝑖𝑃𝑖 (𝒙0), (5)

where 𝑃𝑖 (𝒙) are multivariate polynomials up to degree 𝑞. To match with the local Taylor series, additional constraints
for the differentiation weights,

𝑛∑︁
𝑗=1

𝑤 𝑗𝑃𝑖 (𝒙 𝑗 ) = L𝑃𝑖 (𝒙0) for 1 ≤ 𝑖 ≤ (𝑞 + 1) (𝑞 + 2)
2

, (6)

are included in the computation.
The use of the above constraints, also known as the vanishing momentum conditions [64], ensures that the RBF

approximations locally replicate polynomial behaviour up to degree 𝑞 [65] and decay in the far-field [66]. A more
general and compact representation of equations (5-6) are[

𝑨 𝑷

𝑷𝑇 0

] [
𝒘

𝒄

]
=

[
L𝝓

L𝑷

]
, (7)
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where 𝑨 is the same interpolation matrix as previously defined in equation (4). Only the weight vector 𝒘 is used in
equation (1) to approximate the differentiation operator L. Motivated by recent studies (see, e.g., [39, 65, 67, 68]), we
use polyharmonic splines (PHS),

𝜙(𝑟) = 𝑟𝑚, (8)

as the basis functions, where 𝑚 is an odd positive integer. The remainder of this paper is dedicated to constructing the
discrete linearized Navier-Stokes (LNS) and then resolvent operators using PHS+poly RBF-FDs.

IV. RBF-FD-based global hydrodynamic stability analysis for incompressible flows

A. Governing equations
The motion of a general incompressible Newtonian fluid is governed by the Navier-Stokes equations,

𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇) 𝒖 = −∇𝑝 + Re−1∇2𝒖, (9a)

∇ · 𝒖 = 0, (9b)

All variables are nondimensionalized by the velocity scale 𝑼∞ and the length scale 𝐿, and Re denotes the Reynolds
number. Within the laminar regime, we decompose the flow quantity into a base flow component (𝑼, 𝑃), which is a
steady-state solution of equation (9), and a fluctuation component 𝒒′ = [𝒖′, 𝑝′], such that

𝒖 = 𝑼 + 𝒖′, 𝑝 = 𝑃 + 𝑝′. (10)

The resulting governing equation for the fluctuations can be written compactly as

𝜕

𝜕𝑡

𝒖′

0

 = L𝑼

𝒖′

𝑝′

 +
 𝒇 ′

0

, (11)

where

L𝑼 ≡
− (𝑼 · ∇) () − [() · ∇]𝑼 + Re−1∇2 −∇

∇ · () 0

 (12)

is the linearized Navier-Stokes (LNS) operator around the base flow. The remaining nonlinear interaction

𝒇 ′ = − (𝒖′ · ∇) 𝒖′ (13)

is generally not negligible of finite amplitude fluctuations and can be interpreted as external forcing to the otherwise
linear dynamics. This interpretation was first proposed by McKeon and Sharma [29] for the resolvent framework of
turbulent flows.

By assuming a normal mode form for the fluctuating components, [𝒒′, 𝒇 ′] (𝒙, 𝑡) = [𝒒̂, 𝒇 ] (𝒙)ei𝜔𝑡 + 𝑐.𝑐., where 𝜔 is
the angular frequency, or equivalently by taking the Fourier transform, we obtain the frequency-domain representation
of the governing equation (11), (

i𝜔PP𝑇 − L𝑼

)
𝒒̂ = P

(
B 𝒇

)
, (14a)

𝒖̂ = P𝑇 (C 𝒒̂) . (14b)

Here, P is the prolongation operator that extends the velocity vector [𝑢, 𝑣]𝑇 into [𝑢, 𝑣, 0]𝑇 , and its transpose is the
restriction operator that extracts the velocity vector from the extended state vector. The linear operators B and C are
used to select spatial regions of interest. We write equations (14) in a compact form as

𝒖̂ = H(𝜔) 𝒇 , (15)

where H(𝜔) = P𝑇C
(
i𝜔PP𝑇 − L𝑼

)−1 PB is known as the resolvent operator. The global operators, such as L𝑼

and H , which arise in both stability and resolvent analyses, can be discretized straightforwardly using differentiation
matrices.
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B. Global Jacobians and mesh-free hydrodynamic stability analysis
In this work, we leverage the flexibility and accuracy of the PHS+poly RBF-FDs for the construction of differentiation

matrices on a set of scattered nodes, {𝒙𝑖}𝑁𝑖=1. For differentiation operators L = 𝜕(𝛼+𝛽)

𝜕𝑥𝛼
1 𝜕𝑥

𝛽

2
in two-dimensional with

𝛼 + 𝛽 ≤ 2, we seek differentiation matrices 𝑫
𝑥𝛼

1 𝑥
𝛽

2
that satisfy


𝑤11 𝑤12 · · · 𝑤1𝑁

𝑤21 𝑤22 · · · 𝑤2𝑁
...

...
...

𝑤𝑁1 𝑤𝑁2 · · · 𝑤𝑁𝑁

︸                             ︷︷                             ︸
𝑫

𝑥𝛼1 𝑥
𝛽

2


𝑔(𝒙1)
𝑔(𝒙2)

...

𝑔(𝒙𝑁 )


=



𝜕(𝛼+𝛽)

𝜕𝑥𝛼
1 𝜕𝑥

𝛽

2
𝑔(𝒙1)

𝜕(𝛼+𝛽)

𝜕𝑥𝛼
1 𝜕𝑥

𝛽

2
𝑔(𝒙2)
...

𝜕(𝛼+𝛽)

𝜕𝑥𝛼
1 𝜕𝑥

𝛽

2
𝑔(𝒙𝑁 )


. (16)

Here, (𝑥1, 𝑥2) are the spatial coordinates. The 𝑗 th row of the matrix 𝑫 contains the 𝑛 ≪ 𝑁 non-zero weights that
approximate the derivative at node 𝒙 𝑗 . The resulting matrix is hence sparse 𝑁 × 𝑛 nonzero elements. In a slight change
of notation, to enhance readability, we now denote by 𝒖 = 𝒖(𝒙) and 𝒗 = 𝒗(𝒙) the global velocity fields, and by 𝒑 = 𝒑(𝒙)
the global pressure field in the computational domain Ω.

Using these differentiation matrices, we assemble the discrete global LNS operator from equation (12) as

𝑳𝑼 =


𝑺 − diag (𝑫𝑥𝑼) + Re−1 (𝑫𝑥𝑥 + 𝑫𝑦𝑦

)
−diag

(
𝑫𝑦𝑼

)
−𝑫𝑥

−diag (𝑫𝑥𝑽) 𝑺 − diag
(
𝑫𝑦𝑽

)
+ Re−1 (𝑫𝑥𝑥 + 𝑫𝑦𝑦

)
−𝑫𝑦

𝑫𝑥 𝑫𝑦 0

, (17)

where 𝑺 ≡ −
(
𝑼 ◦ 𝑫𝑥 + 𝑽 ◦ 𝑫𝑦

)
, and ◦ denotes the Hadamard product. The discretized form of equation (15) can now

be assembled as

𝒖̂ = 𝑯(𝜔) 𝒇 , (18)

where

𝑯(𝜔) =
[
1 0 0
0 1 0

]
𝑪
©­­«i𝜔


1 0 0
0 1 0
0 0 0

 − 𝑳𝑼

ª®®¬
−1 

1 0
0 1
0 0

𝑩 (19)

is referred to as the discrete resolvent operator.
Input-output, or resolvent analysis, seeks pairs of optimal forcings and corresponding responses that maximize the

gain, 𝜎2, defined as the ratio of the energy of the response to the energy of the forcing,

𝜎2 ( 𝒇 ;𝜔) = ∥𝒖̂∥2
𝑢

∥ 𝒇 ∥2
𝑓

=

〈
𝑯(𝜔) 𝒇 ,𝑯(𝜔) 𝒇

〉
𝑢〈

𝒇 , 𝒇
〉
𝑓

. (20)

The energy of the response and the forcing are measured in the norms ∥ · ∥𝑢 and ∥ · ∥ 𝑓 , induced by the inner products

⟨𝒖̂1, 𝒖̂2⟩𝑢 = 𝒖̂∗
2𝑾𝑢𝒖̂1 and

〈
𝒇 1, 𝒇 2

〉
𝑓
= 𝒇

∗
2𝑾 𝑓 𝒇 1 (21)

on the output and input spaces, respectively. We further define the modified, or weighted, resolvent operator

𝑹(𝜔) ≡ 𝑾
1
2
𝑢𝑯(𝜔)𝑾− 1

2
𝑓

= 𝑼̃𝚺𝑭̃
∗ (22)

to account for the kinetic energy on the input and output spaces. The optimal input forcings, 𝒇 𝑗 , are determined as the
solutions of the eigenvalue problem

𝑾−1
𝑓 𝑯(𝜔)∗𝑾𝑢𝑯(𝜔) = 𝜎2

𝑗 𝒇 𝑗 . (23)

5

D
ow

nl
oa

de
d 

by
 O

liv
er

 S
ch

m
id

t o
n 

Fe
br

ua
ry

 6
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

3-
35

67
 



The optimal input and output modes are related through

𝑹(𝜔) 𝒇 𝑗 = 𝜎𝑗 (𝜔)𝒖̂ 𝑗 , (24)

which provides a physical interpretation of the singular values and vectors. The response and forcing modes are orthogonal
in their respective inner products, that is,

〈
𝒖̂ 𝑗 , 𝒖̂𝑘

〉
𝑢
=

〈
𝒇 𝑗 , 𝒇 𝑘

〉
𝑓
= 𝛿 𝑗𝑘 , and are ordered by their corresponding singular

values, 𝜎𝑗 .

V. Application to Blasius boundary-layer flow
We consider a two-dimensional Blasius boundary layer developing over a flat plate with a local Reynolds number of

Re𝑥 = 𝑈∞𝑥/𝜈 ∈
[
0, 6 × 105] or Re𝛿 = 𝑈∞𝛿(𝑥)/𝜈 ∈ [0, 1332] for 𝑥 ∈ [0, 1]. Here, 𝑥 is the distance from the leading

edge, and 𝛿(𝑥) = 1.72
√︁
𝜈𝑥/𝑈∞ is the displacement thickness of the asymptotic Blasius similarity solution. Above the

critical Reynolds number of Re𝛿,𝑐 ≈ 520, this boundary-layer flow exhibits convective instability due to the Orr and
Tollmien–Schlichting (TS) mechanisms [48, 50]. Hereafter, we use the notations Re = Re𝑥=1 and 𝛿 = 𝛿(𝑥 = 1) for
simplicity.

Fig. 1 Global (a) and local (b,c) computational grids. The spatial location of panels (b) and (c) are highlighted
as yellow and magenta boxes in panel (a), respectively. For the following figures, we only depict the near-wall
region within the red box, see, e.g., figure 4. The flow instability is investigated specifically within the red box (see
figure 4 below).

The computational domain, Ω ∈ [0.02, 1.27] × [0, 0.05], is discretized using 𝑁 = 726143 scattered nodes,
corresponding to 2.2 × 106 degrees of freedom. In comparison, Sipp and Marquet [20] employs degrees of freedom of
13.7 × 106. The characteristic distances of the grid are Δ𝑟 = 0.069𝛿 near the flat plate (𝑦/𝛿 < 4), Δ𝑟 = 0.077𝛿 near the
inlet (𝑥 < 0.025), and average at 0.081𝛿 over the whole domain. The calculation of Δ𝑟 follows Chu and Schmidt [41].
Local node distributions are shown in figure 1. The leading edge (𝑥 < 0.02) is removed to avoid the singularity of the
Blasius solution. Homogeneous boundary conditions are prescribed on the inlet and the flat plate. Symmetric boundary
condition with 𝑣′ = 𝜕𝑢′/𝜕𝑦 = 0 is applied at the far-field. A stress-free outflow condition, −𝑝′𝒏 + Re−1∇𝒖′ · 𝒏 = 0,
where 𝒏 = [1, 0]𝑇 is the outflow direction, is enforced at the outflow.

Following the set up by Sipp and Marquet [20], we also restrict the stability analysis within the interior domain
𝑥 ≤ 1 such that the forcing optimizes the ratio between the restricted kinetic energy,

∬
𝑥≤1

(
|𝑢̂ |2 + |𝑣̂ |2

)
d𝑥d𝑦, and the
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Fig. 2 RBF stencils (red shaded circles) for a given node (blue star): (a) interior nodes; (b) wall-normal
derivatives. The stencil size is 𝑛 = 19. The area of each circle represents the corresponding local radial control
volume, d𝑉𝑖 .

integral of forcing within the whole computational domain,
∬
Ω

(
| 𝑓𝑢 |2 + | 𝑓𝑣 |2

)
d𝑥d𝑦. In the computation, these two

integrals are approximated using the integration matrices

𝑾𝑢 = 𝑾 𝑓 ≡
[
1 0
0 1

]
⊗ diag(d𝑉1, d𝑉2, · · · , d𝑉𝑁 ) (25)

in equation (21) to account for the kinetic energy, where d𝑉𝑖 ∝ 𝜋(Δ𝑟𝑖)2 is the local radial control volume for each grid,
and ⊗ denotes the Kronecker product. In practice, we set d𝑉𝑖 for 𝑾𝑢 to zero if the node 𝒙𝑖 lies outside the restricted
region. To balance computational efficiency and physical accuracy and ensure stability, the PHS+poly RBF-FDs use a
stencil size of 𝑛 = 19, PHS exponent of 𝑚 = 3, and polynomial degree of 𝑞 = 2. Figure 2 shows two examples of RBF
stencils used for spatial discretization. For the wall-normal derivatives required for boundary conditions, we employ a
specialized stencil that is constructed using a weighted Euclidean distance metric The practical implementation of the
PHS+poly RBF-FDs follows Flyer et al. [39].

Fig. 3 Resolvent gains (solid lines) and peak frequencies (dashed lines) for the flat-plate boundary layer and
Re = 6 · 105, compared to previous results by Sipp and Marquet [20] (blue).

7

D
ow

nl
oa

de
d 

by
 O

liv
er

 S
ch

m
id

t o
n 

Fe
br

ua
ry

 6
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

3-
35

67
 



We first examine the leading resolvent singular value as a function of the normalized frequency, 𝐹 = 106 · 𝜔/Re, in
figure 3. Favorable agreements are observed between the present results and the one reported by Sipp and Marquet [20]
for the overall spectra and their peak values. The slight deviation of the peak and the resolvent gains beyond the peak
(𝐹 ≳ 88) are most likely attributed to differences in the base flows, that is, the self-similar Blasius solution in the present
study and the fully non-parallel simulation data of Sipp and Marquet [20]. The discrepancy at higher frequencies is
potentially also related to the truncation of the leading edge, where the asymptotic Blasius solution becomes singular.

Fig. 4 Optimal and suboptimal resolvent forcings (b,d) and corresponding responses (a,c) at 𝐹 = 106 ·𝜔/Re = 100.
The normalized stream-wise velocity components are shown in 𝑥, 𝑦 ∈ [0.02, 1.27] × [0, 4𝛿]. The Blasius
displacement thickness, 𝛿(𝑥), is highlighted as the white dashed line.

Figure 4 shows the optimal and suboptimal forcings and corresponding responses in terms of the stream-wise
velocity at 𝐹 = 100. The optimal response takes the form of Tollmien–Schlichting (TS) wavepackets in the downstream
region. The upstream tilted structures in the optimal forcing indicate that the Orr mechanism actively extracts energy
from the mean shear via the Reynolds stress [69]. The clear spatial separation between leading resolvent forcing and
response modes indicates the streamwise non-normality of the system [15, 70, 71]. The suboptimal forcing and response
are similar to the leading modes but exhibit two local maxima. This modulation ensures the orthogonality in their
respective inner products. Qualitative comparisons with previous work by Åkervik et al. [13], Monokrousos et al.
[19], Brandt et al. [72] and Sipp and Marquet [20] confirm the capability of the present framework for identifying the
convective instability of the boundary-layer flow.

As a quantitative assessment of the flow structures, we examine the energy density functions,

𝑑 𝑓 (𝑥) =
∫ 𝑦max

0

(
| 𝑓𝑢 |2 + | 𝑓𝑣 |2

)
d𝑦, and 𝑑𝑢 (𝑥) =

∫ 𝑦max

0

(
|𝑢̂ |2 + |𝑣̂ |2

)
d𝑦, (26)

in figure 5 for the modes shown in figure 4. The present results for both optimal and suboptimal modes are almost
identical to those reported by Sipp and Marquet [20], validating the accuracy of the present framework. The spatial
distribution of the optimal forcing unambiguously identifies the location of the upstream neutral point (branch I) from a
local stability analysis at 𝑥 = 0.3 and the corresponding response is localized at 𝑥 = 0.89, which is in close proximity to
the downstream neutral point (branch II).
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Fig. 5 Spatial distributions of energy density for optimal (dot-dashed) and suboptimal (dotted) forcings and
corresponding responses (solid and dashed, respectively) at 𝐹 = 100. The results (red) are compared to those
reported by Sipp and Marquet [20] (blue). The two vertical solid lines represent the upstream neutral point
(branch I) and the downstream neutral point (branch II) from a local stability analysis.

Fig. 6 Energy density distributions for the optimal forcings (a) and responses (b) as a function of frequency.
The locations of maximum energy densities are marked as red circles. The results reported by Sipp and Marquet
[20] are shown as blue stars for comparison. The neutral curve obtained from a local linear stability analysis is
shown as the magenta line.

Figure 6 shows the energy density distributions of the optimal forcing and response as a function of frequency. Here,
the stream-wise coordinate is given in terms of the local Reynolds number, Re𝛿 (𝑥) . The optimal forcings exhibit a high
level of agreement with the findings of Sipp and Marquet [20] and their maxima effectively delineate the convectively
stable/unstable boundary (branch I) obtained using the local stability theory. The Orr and TS mechanisms coexist and
compete while both contributing to the overall energy gain of the global resolvent analysis. The decrease in the spatial
support of the Tollmien-Schlichting-like optimal responses with increasing frequencies suggests that only a limited
region of the shear layer is capable of supporting the TS mechanism at high frequencies. Similar to the deviation in the
resolvent gain spectra shown in figure 3, we observe that the optimal responses peak slightly downstream compared to
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the results reported Sipp and Marquet [20] for increasing frequency (𝐹 ≳ 130). However, these discrepancies are minor.
Based on the qualitative comparisons presented above, the global mesh-free resolvent analysis is shown to accurately
identify the flow instability of the non-parallel flat-plate boundary layer.

VI. Summary
This study validates a novel higher-order mesh-free framework that was specifically developed for hydrodynamic

stability analysis. The proposed method employs PHS-type RBFs with polynomial augmentation to discretize large
hydrodynamic stability matrix problems on scattered nodes with high accuracy, stability, and computational efficiency.
The resulting differentiation matrices are utilized to construct the discrete linearized Navier-Stokes operator for
global resolvent analysis. As a validation test case, we considered a non-parallel flat-plate boundary layer in a larger
computational domain to fully resolve the Tollmien–Schlichting waves. The leading resolvent modes accurately identify
the TS wavepackets that are optimally triggered through the Orr mechanism, as identified by the optimal forcings. The
favorable quantitative and qualitative comparisons between the present results and those reported by Sipp and Marquet
[20] highlight the feasibility and accuracy of this novel numerical framework.
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