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‘Wavepackets obtained as solutions of the flow equations linearised around the mean flow
have been shown in recent work to yield good agreement with the amplitudes and phases of
turbulent fluctuations in jets. Compelling agreement has been demonstrated up to Strouhal
numbers, St =~ 1. We extend the range of validity of wavepacket models to higher values,
1.0 < St < 4.0, by comparing Parabolised Stability Equation solutions with well resolved
large-eddy simulation data. The initial growth rates of the high-frequency fluctuations
continue to be well predicted, but saturation occurs earlier and agreement with simulation
begins to deteriorate upstream of the end of the potential core of the jet. Results show
that near-nozzle dynamics for a broad range of frequencies can be modelled using linearised
models, which capture well the spatial growth of Kelvin-Helmholtz wavepackets for all the
studied Strouhal numbers.

I. Introduction

Predicting and reducing the noise radiated by turbulent jets are two challenging long-term technological
problems. For commercial aircraft noise regulations are the driving factor; where military aircraft are
concerned hearing loss of personnel is pushing the military to search for noise-reduction solutions.! The
conception of effective strategies for jet-noise control is contingent on a thorough understanding of the
underlying flow physics, and on the availability of associated reduced-order models. In addition to the
lower computational expense that such models present, in comparison to large-eddy or direct-numerical
simulations, they have the added advantage of providing clear physical insight regarding the mechanisms of
sound generation.? 3

The coherent part of the velocity field of high-Reynolds-number turbulent jets comprises a wavepacket:
a hydrodynamic wave with amplitude growth due to the Kelvin-Helmholtz instability of the shear layer,
followed by saturation and decay. Such structures are characterised by low azimuthal wavenumber and
significant coherence in both radial and axial directions. While their contribution to the turbulent kinetic
energy is small, they dominate sound radiation to low polar angles (measured with respect to the jet axis).*

Wavepacket modelling is based on a linearisation of the Navier-Stokes system using the mean field as a
base flow. This linearised system neglects, at least explicitly, non-linear interactions between wavepackets
and turbulence; such interactions can only occur via the mean flow, which is mainly established by Reynolds
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stresses associated with the energy-containing turbulent eddies.*® Such models rely on two hypotheses:
a scale separation between wavepackets and turbulent eddies (necessary for neglect of the said non-linear
interactions) and low fluctuation amplitudes (the requirement for linearisation). The validity of such models
is usually demonstrated a posteriori by comparison with experimental data; in the past this comparison
involved forced jets,®7 more recently data from unforced jets has been used.® *°

The agreement observed between experiment and wavepacket-based reduced order models, particularly
in regions upstream of the end of the jet potential core, has motivated several studies. In addition to the
round subsonic jets studied in the work cited above, linear wavepacket models have been used to model
coaxial'’*12 and supersonic jets;'3 16 for the latter, wavepackets can be readily extended to the acoustic field
to obtain Mach-wave radiation. Recently, Sinha et al.'® compared wavepacket model predictions to results
from large-eddy simulations of cold and heated supersonic jets, and found encouraging agreement for the
peak far-field radiation. Sound radiation by wavepackets in subsonic jets is more subtle, and depends on
details of the amplitude envelope!” and on the two-point coherence.'® These mechanisms are the subject of
ongoing research, which considers either simplified, kinematic sound-source models'® 2! or the coupling of
dynamic wavepacket models with an acoustic analogy.?? 25

The purpose of the work described here is to investigate the limits of the underlying hypotheses in wave-
packet models by comparing solutions of the linear Parabolised Stability Equations (PSE) with experimental
data for a turbulent subsonic jet previously studied by this group.'® That work has shown that the axisym-
metric and first helical modes of the velocity field correspond to linear wavepackets, close agreement being
observed between PSE and experiment for Strouhal numbers ranging from 0.3 to 0.9, and for axial stations
ranging from the nozzle exit plane to the end of the potential core of the jet. The existence of wavepacket
structures at higher Strouhal numbers has not yet, to the best of our knowledge, been demonstrated.

Higher-St wavepackets are particularly relevant where the effect of nozzle conditions on sound radiation is
concerned. The noise spectrum is changed over a broad range of frequencies when either nozzle contraction?®
or boundary-layer thickness at the nozzle exit?” are modified. The interpretation of results of such studies,
currently a subject of some controversy, would benefit from an extension of the results of wavepacket theory
to higher frequencies.

The above issues, and the fact that jet noise comprises a broad frequency spectrum, whose higher fre-
quencies have a greater relative importance due to the sensitivity of the human ear, make the extension of
wavepacket modelling to St > 1.0 of considerable practical interest. In what follows we will examine how
PSE-based wavepacket models behave for Strouhal numbers up to 4, with a comparison to simulation data
of a Mach 0.9 jet.

II. Mathematical model

The PSE system is obtained by considering the flow variables, q = [u,, u,, ug, p, T]T, to be decomposed
into a mean axisymmetric component, q(x), and a fluctuation, q’(x, t), that can be represented using normal
modes in azimuth and time, and a slow variation in the axial direction,

q/ (x, t) — q(% r)eif’ a(m’)dm/eimée—iwt7 (1)

where o = «- 4+ ia; is the complex axial wavenumber whose imaginary part is related to exponential growth
or decay of disturbances in z. Slow variations in = are assumed for both q and a.
Introducing this Ansatz into the linearised, compressible Euler, energy and continuity equations, a matrix
system is obtained,
! !

(A(c_l)—i—B(c_l,a,w))q—i-C(G)%—i-D((_l)E =0. (2)

Details of the derivation may be found elsewhere.22® A further condition is necessary in order to eliminate
the ambiguity between § and «, as the axial growth could be described by either the shape function § and/or
the complex amplitude e! Je(@)de" \We follow the normalisation proposed in Herbert et al.,® which removes
the exponential axial dependence from the shape function by imposing

o 0qx
q——rdr = 0.
/0 q B rdr =0 (3)
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Discretisation of equations 2 and 3 permits numerical solution for § and «.” The radial direction is
discretised using Chebyshev polynomials, providing a pseudo-spectral accuracy which is desirable on account
of the high Strouhal-numbers considered. Axial derivatives are computed using finite differences, and spatial
marching is performed using an implicit Euler method. A mapping function is used to transform the [-1 1]
Chebyshev domain to an infinite one. Dirichlet boundary conditions are imposed on the flow variables at
r — 00, and the centreline conditions are dealt with using the procedure described by Mohseni & Colonius?”.
Initial conditions for the shape functions § are provided by solving the locally parallel, spatial-stability

problem using the velocity profile at the first axial station.

III. Comparison of linear PSE with LES data

Wave-packet models, obtained with linear PSE, lead to good agreement with experimental results for
Strouhal numbers lower than 1.%'° However, it is difficult to obtain measurements for high St resolved into
azimuthal modes. A hot-wire sensor used to measure streamwise fluctuations on the jet centreline contains
solely the m = 0 signature and has a low noise level, but this remains too high to sense low-amplitude,
high-St wavepackets at that position. A second possibility is to use near-field microphone arrays, but as
these should be placed outside the jet it also becomes difficult to accurately measure disturbances related to
high-St wavepackets. As will be seen shortly, high-St wavepackets have radial support on a narrow region
surrounding the jet lipline, and present a fast exponential decay outside of this region, which lead to the
aforementioned experimental difficulties in educing high-St wavepackets.

A different alternative is pursued here, where large-eddy-simulation (LES) data is used. We use the LES
of Bres et al.,>* 32 which closely matched experiments of a Mach 0.9 jet in Poitiers by careful computations
of the turbulent boundary layer inside the nozzle. In particular, the simulation with 69 million grid points3?
has shown excellent agreement with the far-field sound up to St = 4, which is an important feature for the
present study. More details about the LES can be found in the cited papers.

It is important to accurately fit the velocity profiles in the region near the nozzle, as high-St wavepackets
depend on the details of the profile due to their relatively small wavelength. To fit the profile shape, we have
used an expression similar to the one in Fontaine et al., given, with the present non-dimensional variables,

v =21t (12 [ £ 2] - o (g2 [0 - 2. (@

Sample fits of the near-nozzle velocity profiles are shown in fig. 1, showing that the expression represents
the data closely.

As in previous works a Proper Orthogonal Decomposition (POD) is used to extract the coherent
part of velocity and pressure fluctuations. The procedure applied here is similar to Sinha et al.,'® and further
details can be found in that paper. In what follows we will consider the axial velocity u and the pressure p
taken from the first POD mode from the LES data (hereafter denoted POD mode 1), which are compared
to PSE results. All the results in this paper refer to the axisymmetric mode (m = 0).

Figures 2 and 3 shows respectively pressure and axial velocity comparisons between the POD mode 1
from the LES data and the PSE results, here for St = 0.95, which is around the maximum value evaluated in
previous works. For positions downstream of /D = 0.4, up to /D = 1, close agreement between LES and
PSE is found for both quantities, as in previous works. The typical Kelvin-Helmholtz signature is clearly
observed in the first POD mode, with the double bump in the axial velocity which is a sign of a phase jump
of .19 Some differences appear, however, most prominently for /D = 0.2 but also for other positions with
r close to 0. For this Mach 0.9 jet, besides the Kelvin-Helmholtz instability there are other relevant modes,
which correspond to trapped acoustic waves in the potential core; further details can be found in Towne et
al.33 The said acoustic waves are responsible for the radially-oscillatory behaviour seen for both pressure
and velocity. As PSE calculations focused on the Kelvin-Helmholtz mode, these low r oscillations are not
captured by the model.

Downstream of /D = 1 the PSE solutions start to saturate, and then decay slowly. This can be seen in
the results for /D = 2 and 3. In this decay region, the agreement between PSE and the first POD mode
worsens, as previously seen.'® This trend is seen for all Strouhal numbers. In what follows, we will focus on
the near-nozzle region x/D < 1, where the Kelvin-Helmholtz wavepackets have spatial amplification.

Similar comparisons are performed for St = 2 in figs. 4 and 5. We notice that a good agreement between

9,10,16
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Figure 1. Sample fits of the mean velocity profiles from the LES.
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Figure 2. Comparison of pressure from POD mode 1 (full lines) and linear PSE (dashed lines), for St = 0.95

PSE and POD mode 1 is also seen for this Strouhal number, at least for 0 < /D < 1; the downstream

behaviour is similar to what was seen for St = 0.95 and is not shown here.

Fluctuations become more

concentrated around the jet lipline, and both LES and PSE results have sharper radial decays, a feature
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Figure 3. Comparison of axial velocity for POD mode 1 (full
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Figure 4. Comparison of pressure from POD mode 1 (full lines) and linear PSE (dashed lines), for St = 2

Results for St = 3.04 are shown in figures 6 and 7. Here the spatial growth of the Kelvin-Helmholtz
mode is limited to a region very close to the jet nozzle, and hence results are shown for /D = 0.1, 0.2, 0.3
and 0.4. The last plot is for /D = 1 to allow comparisons with results for lower St. We again observe good
agreement of PSE with the first POD mode from the LES, and the radial decay outside the lipline is even
sharper than for St = 2. At the downstream position /D = 1 this agreement is already seen to deteriorate.

To present the agreement for several values of St and z/D in a compact manner, we have calculated the
metric

B(x, St) =

~ Nlapse(z,r, St)|[[lipop (z,r, St)|

(upse(x,r,St),apop(x,r,St))
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Figure 5. Comparison of axial velocity from POD mode 1 (full
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Figure 6. Comparison of pressure from POD mode 1 (full lines) and linear PSE (dashed lines),

107

1072

St=3.04, x/D=0.10

0 02040608 1
r/D

107

1072

St=3.04, x/D=0.20

.

0 02040608 1
r/D

107

1072

St=3.04, x/D=0.30

|

0 02040608 1
r/D

107

1072

St=3.04, x/D=0.40

0 02040608 1
r/D

107

1072

Figure 7. Comparison of pressure from POD mode 1 (full lines) and linear PSE (dashed lines),

where the inner product is defined as

(), g(r)) = /0 = g ()
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Perfect agreement for a given x, St pair would lead to f = 1, and the other extreme, 5 = 0, occurs when
PSE predictions are orthogonal to the first POD mode. Results are shown in figure 8, where a dashed line
indicates the position where &(a) = 0 in the PSE results, which is an indication of the switch between spatial
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growth and decay in wavepackets. We observe that the agreement metric can be as high as 0.9, particularly
for St < 1, as in our previous study.'® However, significant values of 3 are also found for Strouhal numbers
of up to 4. The region with good agreement between PSE and the first POD mode is seen to lie upstream of
the dashed curve, indicating that the Kelvin-Helmholtz mode has exponential spatial growth in this region.
Once it saturates, agreement worsens considerably, leading to [ values near zero. This is similar to what is
observed for St < 1, but for higher Strouhal numbers the agreement deteriorates rather fast.

B for m=0

0.9

0.8

0.7
0.6
0.5
0.4

0.3
0.2
0.1

XID

Figure 8. Absolute value of 3 for the axisymmetric mode, between PSE results and POD mode 1 for the axial velocity.

Although not shown here, agreement between PSE and turbulent fluctuations is not good for the axisym-
metric mode at Strouhal numbers of about 0.1—0.2, as in Cavalieri et al.'® The 3 values in figure 8 start to
have lower values for the lowest St. The reasons for the discrepancies remain unclear, and are the object of
ongoing work.

IV. Conclusions

Detailed comparisons between PSE and LES data (processed by taking its first POD mode) were presented
in order to investigate the presence of wavepackets for Strouhal numbers higher than 1. The availability of a
highly-resolved LES, with close agreement to experimental results up to St = 4, enabled this comparison. The
LES data included the nozzle in order to reproduce experimental conditions, where the boundary layer inside
the nozzle is tripped such that the shear layers are turbulent from the outset. This allows an investigation
of whether the agreement of linear wave-packet models can be extended to higher frequencies, which remain
important for the jet noise problem.

Moreover, the capabilities of modelling these high-St behaviour with linear PSE shed light on the role
of the upstream boundary layer on jet dynamics and noise. In the simulations of Bres et al.>' an accurate
model of the turbulent boundary layer inside the nozzle was seen to be important for accurate jet noise
predictions. When the jet LES was carried out in a configuration where the boundary layer in the nozzle was
laminar, overpredictions of the radiated sound for St > 1 were observed. The thickness of an initially laminar
shear layer increases slowly, due to viscous diffusion, in contrast with the much faster spread of a turbulent
shear layer. These low thicknesses of laminar shear layers should lead to more unstable high-St wavepackets,
which could explain the overpredictions of sound radiation. Further work on that matter appears promising.

The results presented here show that wavepacket models represent accurately the near-nozzle dynamics
for up to St &~ 4. All these results are for the axisymmetric, m = 0 mode. Although not shown here, similar
results were obtained for modes m = 1, 2, 3 and 4. The spatial growth of disturbances in the near-nozzle
region can thus be modelled as a linear process, with a linearisation taken around the turbulent mean flow,
even for relatively high Strouhal numbers and azimuthal wavenumbers. For downstream positions, linearised
models predict a decay of wavepackets, which is not observed in experiments or simulations. This difference
can be attributed to non-linearity, where wavepackets are forced by other turbulent fluctuations.?® Linear
models can be potentially enhanced to include stochastic forcing of background turbulent disturbances, as
in Towne et al.36
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