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This study investigates boundary layer transition over an open cavity under subsonic flow
conditions, motivated by the economic and environmental impact of reducing aerodynamic drag.
Using Direct Numerical Simulation (DNS), Linear Stability Theory (LST), and Spectral Proper
Orthogonal Decomposition (SPOD), the research examines how cavity-induced instabilities,
such as Rossiter (acoustic feedback-driven) and centrifugal modes, interact to drive transition,
building on prior work linking surface imperfections to bypass transition mechanisms. Results
reveal nonlinear couplings between these modes, with Rossiter modes persisting into turbulent
regions and centrifugal instabilities introducing three-dimensional flow distortions, highlighting
their combined role in destabilizing the boundary layer.

I. Nomenclature

𝐶𝑛 = Centrifugal mode 𝑛

𝐷 = Cavity depth
𝑓 = Frequency
𝐿 = Cavity length
𝑀 = Mach number
𝑁 = T-S spatial amplification ratio
𝐶 𝑓 = Friction Coefficient
𝑅𝑛 = Rossiter mode 𝑛

𝑅𝑒𝐷 = Reynolds number based on cavity depth
𝑅𝑒𝐿 = Reynolds number based on cavity length
𝑅𝑒𝛿∗ = Reynolds number based on displacement thickness
T-S = Tollmien-Schlichting wave
𝑈∞ = Free-stream velocity
𝑋 = Stream-wise distance normalized by displacement thickness
𝑌 = Wall-normal distance normalized by displacement thickness
𝛽 = Span-wise wave number
𝛿∗ = Displacement thickness
𝜆 = Span-wise wavelength
𝜎 = Amplification rate
𝜔 = Frequency
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II. Introduction
The shear forces in the boundary layer are characteristic of dissipative behavior. Specifically, in an aircraft, these

forces contribute to drag in the form of viscous skin friction. Moreover, a turbulent boundary layer significantly
increases drag. Consequently, engineering has an economic interest in studying transition. To illustrate the economic
and environmental impact, Schneider [1] quantified that a hypothetical 1% reduction in total aerodynamic drag of a
large commercial aircraft operating over long distances would result in fuel savings of 400, 000 liters and a reduction of
5, 000 kg in harmful gas emissions per year. Additionally, Marec [2] stated that approximately 50% of the total drag of
a typical civil transport aircraft is due to viscous drag.

In two-dimensional boundary layers, the fundamental instability mode is the Tollmien–Schlichting (T-S) wave,
named after Tollmien [3] and Schlichting [4]. For transition prediction, van Ingen [5] and Smith and Gamberoni [6]
independently proposed a semi-empirical method based on linear stability theory, known as the 𝑒𝑁 method. However,
other transition mechanisms may occur, such as transient growth or bypass transition [7]. Many studies investigate the
effect of surface imperfections on T-S wave amplification. Perraud et al. [8] compared variations in the 𝑁 factor (Δ𝑁)
computed via T-S wave growth in boundary layers with and without a gap. Forte et al. [9] conducted an experimental
study to validate the model proposed by Perraud et al. [10], providing evidence of bypass transition. Beguet et al. [11]
identified the limits for bypass conditions based on gap length and depth normalized by the displacement thickness,
with 𝐿/𝛿∗ ≥ 18 and 𝐷/𝛿∗ ≥ 2, respectively. Crouch and Kosorygin [12] conducted experimental studies correlating
step, regular protrusion, and gap effects on boundary layer transition. Crouch et al. [13] also presented experimental
Δ𝑁 correlations for cavity-induced transition for different cavity sizes. In one particular case where bypass transition
occurred, they observed a frequency higher than expected for the unstable T-S range in that flow configuration. Zahn
and Rist [14] numerically studied the influence of deep gaps on boundary layer transition by comparing T-S wave
growth (Δ𝑁) in flows with and without gaps. They concluded that a stationary acoustic wave inside the gap significantly
affected the growth of T-S waves. Mathias and Medeiros [15] compared the spatial evolution of wavepackets over a
gap and a smooth flat plate under the same conditions. The wavepackets exhibited local distortion over the gap, which
attenuated further downstream, except for a phase shift. The frequency spectrum revealed increased amplitude at higher
frequencies, while the effect was negligible in the lower frequency range.

Early investigations reported the presence of instabilities associated with cavity flows, as noted by Krishnamurty
[16], Plumblee et al. [17], and Rossiter [18]. The latter empirically proposed a physical mechanism explaining acoustic
radiation characterized by distinct frequencies. Vortices shed from the cavity leading edge collide with the trailing
edge, generating acoustic waves that destabilize the mixing layer at the leading edge, thus closing the feedback loop.
Sarohia [19] performed experiments to determine the threshold for the onset of cavity oscillations. Yamouni et al. [20]
conducted global stability analyses and observed amplification overshoots of unstable Rossiter modes when interacting
with standing waves described by Plumblee et al. [17]. Mathias and Medeiros [21] studied the influence of Mach number
and displacement thickness on gap stability, concluding that the incoming boundary layer influences the selection of
Rossiter modes, while the Mach number enhances both acoustic energy transfer and temporal growth rate. Furthermore,
cavity flows exhibit three-dimensional oscillatory modes associated with centrifugal instability. Brés and Colonius
[22] numerically investigated the stability of three-dimensional perturbations in two-dimensional cavity flows. Their
results showed unstable modes with wavelengths on the order of the cavity depth, differing in frequency range. They
attributed this instability to a non-acoustic centrifugal mechanism. The mode showed low sensitivity to Mach number
but was influenced by Reynolds number, which affected instability and mode hierarchy. De Vicente et al. [23] and
Meseguer-Garrido et al. [24] analyzed centrifugal instability in regimes without Rossiter modes, producing neutral
stability diagrams and amplification curves for different spanwise wavenumbers and Reynolds numbers. Sun et al. [25]
compared results from linear stability analysis and three-dimensional DNS, warning that cavities with large aspect
ratios showed strong nonlinear interactions between 2D and 3D modes, which deviated from linear theory predictions.
Mathias and de Medeiros [26] numerically investigated interactions between Rossiter and centrifugal modes. In 3D
simulations, the Rossiter-related spectral peaks were broader compared to 2D simulations. The authors attributed this to
spanwise modulation of Rossiter modes caused by centrifugal instabilities, which could potentially alter the base flow
and its stability. Victorino et al. [27] computationally identified a link between bypass transition and unstable cavity
modes, such as Rossiter and centrifugal instabilities. In their DNS study, nonlinear interaction between centrifugal and
Rossiter modes led to transition.
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III. Methodology
We use Direct Numerical Simulation (DNS) and a time-stepping algorithm based on the Arnoldi method [28]

to approximate the eigenvalues and eigenfunctions for modal analysis. Both codes were developed in-house and are
open-source∗. The DNS solves the compressible Navier–Stokes Equations (NSE), given by Eqs. 1, 2, 3, 4, and 5.

𝜕𝜌
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Where the viscous stress tensor and heat flux are defined as:
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𝜕𝑇
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Scalar quantities such as density 𝜌, energy 𝑒, temperature 𝑇 , and pressure 𝑝 are used, while the velocity vector is
represented as ®𝑉 = 𝑢𝑖 + 𝑣 𝑗 + 𝑤𝑘̂ . All variables are non-dimensionalized using reference scales. The non-dimensional
parameters 𝑅𝑒, 𝑃𝑟 , and 𝑀 represent the Reynolds, Prandtl, and Mach numbers, respectively. The computational domain
is defined using a Cartesian, structured, and stretched mesh. Buffer zones are applied near open boundaries to damp
reflective oscillations by increasing node spacing and lowering the spatial accuracy order. Spatial derivatives are
approximated using a spectral-like scheme based on [29] and [30]. A spatial anti-aliasing filter adapted from [31] is
used to suppress unresolved motion. Time integration is carried out using a fourth-order Runge–Kutta method.

The upstream boundary condition assumes uniform flow with constant energy and zero streamwise pressure gradient.
Outlet and outflow boundaries are imposed with zero second derivatives and a prescribed pressure. At the bottom
boundary, a free-slip wall model is used with zero streamwise wall-normal velocity gradient (𝜕𝑈/𝜕𝑦). The flat plate is
maintained at a constant isothermal condition, with no-slip and no-penetration conditions applied to the velocity field.
A zero normal pressure gradient is also enforced. For globally unstable flows, selective frequency damping can be
activated inside the domain following [32], enabling convergence to a time-invariant base flow. Domain decomposition
for parallel execution follows the method described in [33].

Due to the strong non-parallel effects in the flow over the gap, linear stability analysis is performed using the global
stability approach. The eigenvalues and corresponding eigenfunctions of the Jacobian matrix are approximated using a
time-stepping method based on [28, 34]. In summary, a small perturbation is added to a previously obtained base flow,
and the DNS solver is iteratively run for a fixed time. After each iteration, a new orthogonal disturbance is generated for
the next step, contributing a new column to the upper Hessenberg matrix 𝐻. After sufficient iterations, the complex
eigenvalues and eigenvectors of 𝐻 closely approximate those of the original system. The real part of the eigenvalues
represents temporal growth—positive values indicate instability—while the imaginary part corresponds to the circular
frequency of the mode. The eigenfunction captures the spatial structure of the mode at a particular phase. For details on
the implementation, accuracy, validation, and input parameters, refer to [35].

IV. Results

A. Three-dimensional flow
A three-dimensional simulation was conducted using the parameters shown in Table 1. This case was selected

because it allowed the identification of distinct regions of interest. These regions are as follows: the inlet region
upstream of the cavity, which is not relevant for analysis as the flow is laminar and only acoustic waves are present
from the cavity; the gap region, which is of particular interest due to the presence of flow structures that are convected

∗https://github.com/marlonsmathias/GATT_DNS
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Table 1 Case parameters.

Parameter Value
𝑅𝑒𝛿∗ 734
𝑀𝑎 0.5
𝐷/𝛿∗ 6.11
𝐿/𝛿∗ 12.22
𝐿/𝐷 2

Number of Snapshots 13000

downstream; the transition region, starting from the cavity’s trailing edge to where turbulence develops; and finally, the
region of fully developed turbulence.

Figure 1 shows these four regions using isosurfaces of 𝜆2, colored by turbulent kinetic energy production. Figure 2
presents the friction coefficient, calculated using a time average in the spanwise direction. In Fig. 1, both two- and
three-dimensional structures are visible within the cavity, as well as two-dimensional structures convected downstream.
These structures eventually break down into Λ vortices and evolve into turbulent flow.

Fig. 1 Isosurface using the 𝜆2 criterion, colored by turbulent kinetic energy production at a given time step.

By analyzing the behavior of 𝐶 𝑓 in Fig. 2, we observe a region where the flow stabilizes and progresses toward fully
developed turbulence. This behavior suggests a possible memory effect from the modes within the cavity, influencing
part of the turbulent region.

Based on these observations, linear stability analysis was performed using the group’s biglobal solver. In addition,
Spectral Proper Orthogonal Decomposition (SPOD) was employed to analyze the modal content of the flow. A total of
13,000 snapshots of the three-dimensional flow were used in this analysis.

B. Comparison Between LST Prediction and SPOD Modes
To investigate the modes potentially present in the cavity, biglobal linear stability theory (LST) was applied. The

spanwise wavenumber was scanned from 0 to 𝜋, in increments of 0.1𝜋. For the two-dimensional case (𝑘𝑧 = 0), only one
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Fig. 2 Comparison of the friction coefficient obtained from time-averaged and spanwise-averaged values,
alongside theoretical predictions for laminar and turbulent cases.

unstable mode—a Rossiter mode of type I—was found. For the three-dimensional case, three types of centrifugal modes
described by Brés and Colonius [22] were identified. The dominant mode was centrifugal type I, followed by type III.

Fig. 3 Growth rate of the most unstable mode for each spanwise wavenumber predicted by LST.

Figure 4 shows three distinct frequency bands, clearly identifying the three centrifugal modes. The most unstable
modes are the stationary (centrifugal type I) and the second non-stationary (centrifugal type III). Time-frequency
analysis was used to focus on these non-stationary modes.

SPOD [36, 37] was applied to the three-dimensional flow to analyze the flow’s limit cycle and compare it with the
modes predicted by theory. For this, 13,000 snapshots were analyzed, considering the first 20 spanwise wavenumbers.
These modes contain over 85% of the total flow energy, making them representative for preliminary analysis. Figure 5
shows the frequency spectra of the most energetic mode at each frequency.
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Fig. 4 Frequency of the most unstable mode for each spanwise wavenumber predicted by LST.

Fig. 5 SPOD energy spectrum of the most energetic mode for each frequency, computed for the first twenty
spanwise wavenumbers.

The spectrum reveals a mode at the same frequency as the Rossiter type I predicted by LST. Additionally, its first two
harmonics are present. For non-zero wavenumbers, energy peaks are observed around the Rossiter frequency and its
harmonics. At lower frequencies, energy peaks appear near the predicted region of the centrifugal modes. For 𝑘𝑧 > 10,
an inflection in the energy spectrum suggests a change in modal dynamics in the frequency range 10−2 < 𝑓 < 10−1.
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Focusing now on eigenfunctions, Fig. 6 presents the LST-predicted Rossiter type I mode for the 𝑉 component. The
linear theory predicts the highest energy concentration within the cavity, with a residual effect extending about five
cavity lengths downstream.

Fig. 6 Eigenfunction of Rossiter mode I obtained via LST for the 𝑉 component.

The SPOD-derived counterpart is shown in Fig. 7, exhibiting similar spatial structures. However, it shows a more
extended memory of the Rossiter mode into the transition region and even into the turbulent region. This suggests that
the Rossiter mode contributes to the boundary layer transition process. Nevertheless, being two-dimensional, additional
mechanisms are required to induce the observed three-dimensional turbulence.

Fig. 7 Eigenfunction of Rossiter mode I obtained via SPOD for the 𝑉 component.

Moving on to the three-dimensional modes, LST predicts centrifugal modes characterized by internal cavity
recirculation. Figure 8 shows the eigenfunction of the most unstable non-stationary centrifugal mode. The energy is
primarily confined within the gap, with a small portion convected downstream.

Fig. 8 Eigenfunction of the most unstable non-stationary centrifugal mode obtained via LST for the𝑉 component.

Figure 9 presents the corresponding SPOD result. The energy remains mostly inside the gap, with a small wake
being convected downstream. However, the spatial shape of the mode appears more deformed compared to the LST
result.

The interaction between Rossiter and centrifugal modes may lead to secondary instabilities, contributing to boundary
layer transition. However, fully understanding this process requires further investigation.
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Fig. 9 Eigenfunction of the most unstable non-stationary centrifugal mode obtained via SPOD for the 𝑉

component.

V. Conclusion
The literature indicates that cavities can anticipate the boundary layer transition process. Both two-dimensional and

three-dimensional instability modes associated with cavities have been observed, particularly Rossiter and centrifugal
modes.

To investigate cavity-induced transition, a cavity with an aspect ratio of 2 was selected under subsonic Mach number
conditions. Using linear stability theory, several modes were predicted, including Rossiter mode I and both stationary
and non-stationary centrifugal modes.

A DNS of the same configuration was performed, generating 13,000 snapshots, which enabled SPOD to be applied
with high frequency resolution. In this case, transition of the boundary layer downstream of the gap was observed, with
Λ vortices developing from structures convected out of the cavity.

SPOD analysis revealed several modes whose frequencies aligned with those predicted by linear theory, enabling the
extraction and comparison of eigenfunctions. The Rossiter mode eigenfunctions obtained from both LST and SPOD
were similar. The main difference was downstream of the cavity, where the SPOD-based eigenfunction exhibited high
energy content in the transition region and retained memory into the turbulent region.

For the centrifugal modes, only non-stationary modes were analyzed, and comparable frequencies were found.
Unlike Rossiter modes, the centrifugal mode eigenfunctions showed deformation and a convected wake emerging from
the cavity.

The presence of Rossiter mode memory in the transitional and turbulent regions suggests its contribution to boundary
layer transition. However, as a two-dimensional mode, some form of three-dimensionalization is necessary for turbulence
to fully develop. A potential mechanism for this could be the interaction with centrifugal modes. Further studies will be
conducted to deepen the understanding of this transition mechanism.
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