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The linear stability of the compressible flow in a streamwise corner is studied. The
steady laminar mean flow is obtained as a solution to the parabolized Navier–Stokes
equations with the asymptotic cross-flow velocity enforced on the far-field boundaries
via a sponge region and was found to be in good agreement with the corresponding
self-similar solution. The eigenvalue problem of linear stability theory is solved for
base flows at three different Mach numbers representing the incompressible limit
(Ma = 0.01), the subsonic (Ma = 0.95) and the supersonic (Ma = 1.5) velocity regime.
Particular attention is given to the subject of wave obliqueness. Owing to the break
of periodicity by the opposing wall the exact spanwise wavenumbers and associated
phase angles resolved in the computational domain are not known a priori. We address
this problem by imposing different phase angles on the far-field boundaries to obtain
the critical values of the Reynolds number, streamwise wavenumber and spanwise
wavenumber from a three-dimensional solution space. The stability characteristics
of the different types of modes present in the spectrum are discussed. An inviscid
corner mode with odd-symmetry not present in the subsonic regime and with a higher
amplification rate than its symmetric counterpart is identified in the supersonic case.
Acoustic modes are found in an enlarged computational domain and categorized with
respect to speed, symmetry and wall-boundedness, among them an acoustic corner
mode.
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1. Introduction
The flow along a corner formed by two perpendicular semi-infinite flat plates as

depicted in figure 1 has been the focus of numerous numerical and experimental
studies in the past and serves as a generic model geometry for the wing–fuselage
intersection of an airplane, rotor–hub junctions or supersonic engine inlets. Here, x is
the streamwise coordinate, y and z the spanwise coordinates with the corner located
at y = z = 0. The leading edge of the corner is located at x = 0. At distances
far away from the opposing plate the flow resembles the two-dimensional flat-plate
scenario in terms of streamwise velocity, wall-normal velocity, density and temperature
as indicated by the streamwise velocity profiles. In addition, a cross-flow velocity
component is induced by the displacement effect of the opposing wall in that limit.
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FIGURE 1. Schematic diagram of flow in a streamwise corner.

After early attempts by Carrier (1947) it was up to Rubin (1966) to derive a full
set of equations governing the laminar incompressible self-similar corner-flow problem
using matched asymptotic expansions. The solution of the asymptotic secondary cross-
flow was identified as the far-field boundary condition necessary for the calculation of
the internal flow field. A more detailed study of the asymptotic behaviour by Pal &
Rubin (1971) followed. In the same year, Rubin & Grossman (1971) obtained a first
numerical solution to the corner-flow equations. Further work on the incompressible
equations included reformulation in curvilinear coordinates (Zamir 1970), development
of more efficient numerical algorithms (Ghia & Davis 1974b), mapping of the far-field
boundaries to true infinity (Ghia 1975), extension to arbitrary angles (Barclay &
Ridha 1980), inclusion of a non-zero streamwise pressure gradient (Ridha 1992), wall
suction (Barclay & El-Gamal 1983, 1984) and combined free and forced convection
(Ridha 2002). A notable feature of the governing equations is the existence of a
dual solution for non-zero streamwise pressure gradients found by Ridha (1992). The
two existing solutions are distinguished by different values of wall shear for a given
pressure gradient parameter and referred to as upper and lower branch solutions. A
comprehensive study on the dual solutions was conducted by (Duck & Dhanak 1996).
The effect of compressibility was introduced by Weinberg & Rubin (1972) for a
model fluid at unity Prandtl number. Mikhail & Ghia (1978) dropped the model fluid
assumption and calculated solutions for different wall and free stream temperatures
with far-field boundary conditions imposed at true infinity. Self-similarity and shock-
free flow were assumed herein.

Along with the theoretical/numerical efforts, experimental investigations were
conducted by different authors. Particularly notable is the work by Zamir (1981)
who compares his results with numerous previous experimental studies (Nomura
1962; Zamir & Young 1970; Barclay 1973; El-Gamal & Barclay 1978; Zamir &
Young 1979) and theory. It is concluded from experimental evidence that the corner
layer is stable for local Reynolds numbers greater than about 104 only with some
favourable pressure gradient in the streamwise direction. At distances far from the
corner region the flow shows stability characteristics similar to the two-dimensional
flat-plate scenario. However, a high sensitivity to perturbations is attested to the
boundary layer in the vicinity of the corner. This results in a critical Reynolds number
that is about one order of magnitude lower as compared with the two-dimensional flat
plate. Departure from similarity manifests in an outward bulge of the velocity contours
on the plane of symmetry which was also theoretically ascertained by Nomura (1982).
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After transition to turbulence, reversal of the cross-flow direction from outgoing to
incoming was observed by Zamir & Young (1970).

In the beginning, stability calculations were restricted to one-dimensional
computations using linear stability theory (LST) for velocity profiles along the
blending boundary layer between the corner and the far-field region. Lakin & Hussaini
(1984) pioneered this approach, followed by Dhanak (1992, 1993) with improved
boundary conditions and by Duck & Dhanak (1996) who included the effect of a
streamwise pressure gradient. Balachandar & Malik (1993) were the first to perform
a two-dimensional stability analysis for the inviscid limit. Solutions for the viscous
problem were obtained by Parker & Balachandar (1999) including the effect of
pressure gradients and spanwise wave obliqueness on amplification rates. The critical
Reynolds number was found to be somewhat higher than for the two-dimensional
flat-plate scenario which contrasts observations made in experiment. Besides viscous
modes of varying spanwise wavenumbers, an inviscid even-symmetric corner mode
was identified. However, the inviscid corner mode exhibits no temporal amplification.
The existence of unstable inviscid modes in the spectrum suggested by an inviscid
stability analysis (Balachandar & Malik 1993) could not be supported. By solving the
parabolized stability equations (PSE) in their analysis, Galionis & Hall (2005) were
able to drop the parallel-flow assumption within a spatial framework. The authors
also readdress the influence of domain truncation on amplification rates and emphasize
the increasing importance of the inviscid mode with an increasing adverse pressure
gradient. Amplification rates were found in good agreement with linear theory for
small wave obliqueness angles. Most recently, Alizard, Robinet & Rist (2010) analysed
the sensitivity of incompressible corner flow with respect to base-flow variations. Their
study reveals a significant reduction of the critical Reynolds number for only slight
base-flow deviations.

The present study examines the linear stability properties of corner flow up to a
Mach number of 1.5 with adiabatic walls. Special attention is given to the influence
of compressibility effects and wave obliqueness. It is organized as follows. The
calculation of the laminar base flow by means of the parabolized Navier–Stokes
equations is addressed in § 2, followed by the description of the method and discussion
of the results of the linear stability analysis in § 3. Finally, a brief summary and
prospective view is given in § 4.

2. Base flow

The compressible flow in an axial corner with zero streamwise pressure gradient is
computed as a solution to the parabolized Navier–Stokes (PNS) equations. The self-
similar solution (Weinberg & Rubin 1972; Mikhail & Ghia 1978) can be obtained by
applying the appropriate asymptotic boundary conditions and coordinate transformation
in the transversal planes within the PNS method and converging the solution. For
a detailed review of the PNS approach the reader is referred to Rubin & Tannehill
(1992) and Tannehill, Anderson & Pletcher (1997, pp. 537–617). In the following,
the Cartesian velocity components u, v,w are non-dimensionalized by the potential
velocity u∞, density ρ and temperature T by their respective free stream values
(subscript ∞) and length scales by the local incompressible displacement thickness

δ1 =
∫ ∞

0

(
1− u

u∞

)
dy. (2.1)
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The incompressible definition of the displacement thickness is employed as the
influence of the corner on the density field can lead to a non-zero integrand outside
the boundary layer for the compressible definition. The following non-dimensional
numbers are used to describe the flow:

Re= ρ∞u∞δ1

µ∞
, Pr = cpµ∞

k∞
, Ma= u∞

a∞
. (2.2)

Here, Re is the local Reynolds number, Pr the Prandtl number and Ma the global
Mach number; µ∞, cp, k∞ and a∞ denote the dynamic viscosity, heat capacity
at constant pressure, thermal conductivity and speed of sound, respectively. The
pressure p is non-dimensionalized by twice the dynamic pressure ρ∞u2

∞. An ideal
gas governed by the equation of state

p= ρRT (2.3)

is assumed. Pressure, density and temperature are related through the ideal gas
constant R. The dependence of viscosity on temperature is given by Sutherland’s
law

µ(T)= µrT
3/2 1+ Tr

T + Tr
. (2.4)

Throughout this study, the following free stream values and fluid properties are
employed corresponding to dry air at standard conditions:

p∞ = 1.01325× 105 Pa, T∞ = 293.15 K, Pr = 0.714, (2.5a)
γ = 1.4, cp = 1005 J kg−1 K−1, R= 287 J kg−1 K−1, (2.5b)

µr = 1.735× 10−5 kg m−1 s−1, Tr = 280 K. (2.5c)

The heat capacity ratio γ = cp/cv is the ratio of heat capacity at constant pressure cp to
heat capacity at constant volume cv.

2.1. PNS equations
Dropping the unsteady and all viscous terms containing partial derivatives with
respect to the streamwise coordinate x from the full Navier–Stokes equations for a
compressible fluid results in the steady PNS equations. The resulting set of equations
for continuity, streamwise momentum, y momentum, z momentum and energy reads

∂ρu

∂x
+ ∂ρv

∂y
+ ∂ρw

∂z
= 0, (2.6)

ρu
∂u

∂x
+ ρv ∂u

∂y
+ ρw

∂u

∂z
=−∂p

∂x
+ ∂

∂y

(
µ
∂u

∂y

)
+ ∂

∂z

(
µ
∂u

∂z

)
, (2.7)

ρu
∂v

∂x
+ ρv ∂v

∂y
+ ρw

∂v

∂z
= −∂p

∂y
+ 4

3
∂

∂y

(
µ
∂v

∂y

)
+ ∂

∂z

(
µ
∂v

∂z

)
+ ∂

∂z

(
µ
∂w

∂y

)
− 2

3
∂

∂y

(
µ
∂w

∂z

)
, (2.8)

ρu
∂w

∂x
+ ρv ∂w

∂y
+ ρw

∂w

∂z
= −∂p

∂z
+ 4

3
∂

∂z

(
µ
∂w

∂z

)
+ ∂

∂y

(
µ
∂w

∂y

)
+ ∂

∂y

(
µ
∂v

∂z

)
− 2

3
∂

∂z

(
µ
∂v

∂y

)
, (2.9)
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ρucv
∂T

∂x
+ ρvcv

∂T

∂y
+ ρwcv

∂T

∂z
= −p

(
∂u

∂x
+ ∂v
∂y
+ ∂w

∂z

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+µ

[(
∂u

∂y

)2

+
(
∂u

∂z

)2

+
(
∂w

∂y
+ ∂v
∂z

)2
]

+ 4
3
µ

[(
∂v

∂y

)2

+
(
∂w

∂z

)2

− ∂v
∂y

∂w

∂z

]
. (2.10)

The variables ρ, u, v, w and T denote density, the three Cartesian velocity components
and temperature, respectively. By omitting the streamwise pressure gradient and
linearization by lagging of coefficients the PNS equations are recast in matrix form

A
∂q
∂x
+ B

∂q
∂y
+ C

∂q
∂z
= 0 (2.11)

for the solution vector q = [ρ, u, v,w,T]T of primitive variables and the coefficient
matrices

A=



u ρ 0 0 0

0 ρu − ∂µ
∂y

− ∂µ
∂z

0

0
2
3
∂µ

∂y
ρu 0 0

0
2
3
∂µ

∂z
0 ρu 0

0 p 0 0 cvρu


, (2.12a)

B =



v 0 ρ 0 0

0 ρv − ∂µ
∂y
− µ ∂

∂y
0 0 0

RT 0 ρv − 4
3
µ
∂

∂y
− 4

3
∂µ

∂y
−1

6
µ
∂

∂z
− ∂µ
∂z

Rρ

0 0 −1
6
µ
∂

∂z
+ 2

3
∂µ

∂z
ρv − ∂µ

∂y
− µ ∂

∂y
0

0 −µ∂u

∂y

2
3
µ
∂w

∂z
+ p− 4

3
µ
∂v

∂y
−µ

(
∂w

∂y
+ ∂v
∂z

)
−k

∂

∂y
+ cvρv − ∂k

∂y


(2.12b)

and

C =



w 0 0 ρ 0

0 ρw− ∂µ
∂z
− µ ∂

∂z
0 0 0

0 0 ρw− ∂µ
∂z
− µ ∂

∂z
−1

6
µ
∂

∂y
+ 2

3
∂µ

∂y
0

RT 0 −1
6
µ
∂

∂y
− ∂µ
∂y

ρw− 4
3
µ
∂

∂z
− 4

3
∂µ

∂z
Rρ

0 −µ∂u

∂z
−µ

(
∂v

∂y
+ ∂w

∂z

)
2
3
µ
∂v

∂y
+ p− 4

3
µ
∂w

∂z
−k

∂

∂z
+ cvρw− ∂k

∂z


. (2.12c)

Superscript T refers to the vector transpose. The system of (2.11) can be solved
by space-marching transversal planes in the parabolized direction. This procedure
is valid for flows where gradients in the streamwise directions are expected to be
small compared with cross-flow gradients as in boundary-layer-type flows (Tannehill
et al. 1997, pp. 537–541). A pseudospectral collocation method based on Chebyshev
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polynomials is used to discretize the equations (details on the method are given in
§ 2.3). Within the pseudospectral framework, derivatives in the transversal directions
are replaced by Chebyshev differentiation matrices Dy and Dz (see § 2.3). In addition, a
sponge zone term (Bodony 2006) is introduced in the discretized equation to account
for the algebraic approach of the flow field towards the asymptotic far-field solution qr

(see § 2.2). The resulting discretized form of the PNS is given by

A

(
q(i+1) − q(i)

1x
+ O(1x)

)
+ BDyq(i+1) + CDzq(i+1) − σ (q(i+1) − qr)= 0. (2.13)

A first-order accurate implicit Euler method is used to spatially advance the solution
from q(i) to q(i+1) over a distance 1x. By collecting all terms containing q(i+1) in one
operator L and all other terms in a right-hand side vector r[

1
1x

A+ BDy + CDz − σ

]
q(i+1) = 1

1x
Aq(i) − σqr (2.14)

we obtain the linear system

Lq(i+1) = r. (2.15)

For a computational domain of N × N collocation points, the overall size of the linear
operator is 5N2. Equation (2.15) is solved using a standard algorithm for large sparse
systems (Davis 2006).

2.2. Boundary and initial conditions
Boundary conditions are enforced in a strong sense by modification of the
corresponding rows of L and r. Under the assumption of solid no-slip walls with
adiabatic heat transfer, the following boundary conditions hold

u= v = w= ∂T

∂n
= 0 (2.16)

for the three velocity components and the temperature. Here n corresponds to
the surface normal direction. For a zero wall-normal pressure gradient ∂p/∂n = 0
commonly assumed in boundary-layer-type flows, the wall density can be calculated
from the discretized version of the equation of state for an ideal gas (2.3)

ρ(i)
∂T (i+1)

∂n
+ T (i)

∂ρ(i+1)

∂n
= 0 (2.17)

linearized consistently with (2.11).
The far-field boundary imposes a challenging task as only algebraic approach of the

cross-flow towards the asymptotic solution can be expected (Rubin 1966; Weinberg &
Rubin 1972). This asymptotic behaviour is accounted for by the combined use of a
homogeneous Neumann boundary condition

∂q
∂n
= 0 (2.18)

on the far-field in conjunction with a sponge zone (Bodony 2006) which smoothly
ramps the solution towards the asymptotic solution in an enlarged computational
domain. The difference between the current state vector q(i+1) and a reference state qr

spatially weighted by some function

σ = cΨ√
Re

(2.19)
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is introduced as a source term in (2.13) for that purpose. The divisor
√
Re ensures

constant local weighting in the space-marching procedure while c is a constant weight
factor. A function Ψ : R2 → [0, 1]2 separates the sponge region from the physical
solution and uses a fifth-order polynomial to smoothly ramp the source-term influence
from zero at the beginning of the sponge zone (denoted by subscript s) up to its
full magnitude on the far-field boundary (subscript max). In preliminary simulations it
was found sufficient to enforce the far-field boundary-parallel cross-flow velocity w1 in
order to converge the flow field to close agreement with the self-similar solution for
large Reynolds numbers. This observation leads to the following choice for qr and Ψ :

qr = [0, 0,w1,w1, 0]T, (2.20)
Ψ = [0, 0,Ψv,Ψw, 0]T, (2.21)

Ψv =
{

6ỹ5 − 15ỹ4 + 10ỹ3 for ys 6 y6 ymax
0 for y< ys

(2.22a)

Ψw =
{

6z̃5 − 15z̃4 + 10z̃3 for zs 6 z6 zmax
0 for z< zs

(2.22b)

with ỹ= (y− ys)/ymax, z̃= (z− zs)/zmax . The velocity w1 is calculated as the secondary
compressible cross-flow induced by superposition of the displacement effects of two
perpendicular flat plates. In the limit of a large distance from the opposing wall, w1 is
governed by the cross-flow momentum equation

µ0
d2w1

dη2
+
[

dµ0

dη
+ ρ0(ηu0 − v1)

]
dw1

dη
+ ρ0u0w1 = β1 (2.23)

subject to the boundary conditions

w1(0)= 0, w1(η→∞)= β1 (2.24)

where

β1 =
∫ ∞

0
1− u0

T0
dη (2.25)

is a constant related to the displacement thickness and

η = y∗√
2x∗
√

Rex (2.26)

the similarity coordinate. Here, we follow Ghia & Davis (1974a) who derived (2.23)
using first higher-order potential flow approximations for the cross-flow pressure
gradient in the corresponding momentum equation. An asterisk * indicates dimensional
values and Rex is the Reynolds number based on the dimensional distance from
the leading edge. ρ0, u0, v1 and µ0 comprise solutions to the classical flat-plate
boundary-layer problem for a general compressible fluid. The enforcement of the
asymptotic cross-flow through a sponge region was found to yield better convergence
characteristics than direct enforcement via non-homogeneous Dirichlet boundary
conditions. It also allows the flow a certain deviation from the self-similar solution
in regions where the latter is not applicable, e.g. close to the leading edge at
the beginning of the integration.

The flow field is initialized with its free stream values qx=0 = [ρ∞, u∞, 0, 0,T∞]T
corresponding to a state upstream of the leading edge with downstream influence of
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the corner walls neglected. The linear system (2.11) is now advanced in space given
the initial conditions.

2.3. Numerical method
The use of spectral methods in fluid mechanical applications was pioneered in the
early 1970s by Kreiss & Oliger (1972) and Orszag & Patterson (1972). Details
on the various methods are given in the books by Canuto et al. (1988), Boyd
& Boyd (2001) or Trefethen (2000). The corner-flow problem is solved using a
pseudo-spectral Chebyshev–Chebyshev collocation method in the transversal planes. In
the pseudospectral methodology, partial derivatives are replaced by the corresponding
differentiation matrices

∂q
∂y
= Dyq,

∂q
∂z
= Dzq, (2.27)

whose entries are given by algebraic relations (e.g. Trefethen 2000). A computational
grid of dimension N × N is constructed from Gauss–Lobatto points

ŷj = ẑj = cos
jπ

N
, j= 1, 2, . . . ,N (2.28)

which comprise the extrema of the Nth-order Chebyshev polynomial defined by
TN(y) = cos(N cos−1 y) on the interval [−1, 1]. This choice of points is optimal in
terms of accuracy of the method. However, the grid clustering going along with
the cosinusoidal point distribution is advantageous only near the wall where large
gradients in the solution are expected. For the far-field region, a wider grid spacing is
favoured. A transformation of the form

y= a
1+ ŷ

b− ŷ
, a= yiymax

ymax − 2yi
, b= 1+ 2a

ymax
(2.29)

serves this purpose (z-direction treated in an analogous manner). Equations (2.29)
transforms the Gauss–Lobatto grid defined on [−1, 1] to the physical domain [0, ymax]
and allows for a clustering of one half of the grid points to the interval [0, yi] (Schmid
& Henningson 2001).

2.4. Base-flow results
The laminar corner-flow problem was solved for three different Mach numbers
representing the incompressible limit (Ma = 0.01), subsonic (Ma = 0.95) and
supersonic (Ma = 1.5) flow respectively. The lower Mach number cases were
calculated on a 35 × 35 and the supersonic case on a 40 × 40 collocation point
grid with ymax = 45, ys = zs = 0.75ymax and yi = ymax/25. The spatial integration step
was set to 1x= 0.02/δ1 for the incompressible limit, 1x= 0.0002/δ1 for the subsonic
and 1x = 0.000 15/δ1 for the supersonic case. It was observed that the solution
converges to the self-similar solution for higher Reynolds numbers with the second-
order asymptotic cross-flow enforced as described in § 2.2. Comparisons between the
PNS and the self-similar solution from the pioneering work by Weinberg & Rubin
(1972) are presented in figure 2. Good agreement was found for all three Mach
numbers for the streamwise (a) and cross-flow (b) velocities along the corner bisector.
The isolines of the cross-flow velocity v are depicted in (c) for the supersonic case at
a local Reynolds number of 1585. They show a local maximum on the corner bisector
and a jet-like cross-flow profile close to the wall at z= 0 as typical for the corner-flow
problem. The profiles of streamwise velocity, density and temperature are generally in
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FIGURE 2. (a) and (b) Velocity profiles along symmetry line: (lines) self-similar solution
of Weinberg & Rubin (1972), (◦) PNS for Ma = 0.01, (♦) PNS for Ma = 0.95, (�) PNS
for Ma = 1.5; (a) streamwise velocity u, (b) cross-flow velocity v. (c) Isolines of cross-flow
velocity v in the transversal plane at Re = 1585 and Ma = 1.5: (solid lines) v > 0, (dashed
lines) v < 0, (+) v = vmax .

very good agreement with their one-dimensional self-similar flat-plate counterparts.
Pressure fluctuations induced by the instant enforcement of the no-slip boundary
condition in the first integration step are minimized by linearly ramping ymax = zmax
from 10 to the final domain height during the first 75 (Ma = 0.01, Ma = 0.95) or 300
(Ma= 1.5) space steps.

Interestingly, the present PNS approach is confronted with a Mach number limit of
Ma≈ 2 above which no stable solution was obtained. The same observation was made
for the self-similar solution by Weinberg & Rubin (1972) and elaborated in further
detail by Mikhail & Ghia (1978).

3. Linear stability
A very detailed description of the formalism and history of linear stability is

given by Mack (1984) who pioneered the compressible branch of the theory. Two-
dimensional LST is comprehensively summarized by Theofilis (2003). The general
approach is shortly reviewed in the following § 3.1.

3.1. Stability equations
The Navier–Stokes equations are linearized by decomposition of the flow quantities
in a time varying perturbation q′ and a steady primary state q0 which satisfies the
Navier–Stokes equations itself:

q(x, y, z, t)= q0(x, y, z)+ q′(x, y, z, t). (3.1)

Under the assumption of parallel flow and small perturbations of the normal mode
form

q′(x, y, z, t)= q̂(y, z) · ei(αx−ωt), (3.2)

the problem is reduced to a generalized eigenvalue problem of the form

A q̂= ωBq̂. (3.3)
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In the above, q̂ is the eigenvector of the eigenvalue problem formed by the
coefficient matrices A and B, α streamwise wavenumber and ω the complex-valued
angular frequency. Temporal growth of infinitesimally small disturbances is attested
to solutions with Im(ω) > 0. Details on the treatment of pressure perturbation terms
and terms containing spatial derivatives of the perturbation viscosity can be found in
Groskopf, Kloker & Marxen (2010). The entries of the coefficient matrices A and B
are derived analogous to their one-dimensional counterparts as can be found in Mack
(1984).

3.2. Boundary conditions
At solid walls, zero velocity and temperature fluctuations are assumed

û= v̂ = ŵ= T̂ = 0 (3.4)

with no boundary condition necessary for the perturbation density. Sommerfeld’s
radiation condition

∂ q̂
∂n
= iβq̂ (3.5)

permits specification of a phase angle given by tan−1(β/α) on far-field boundaries
(Parker & Balachandar 1999). This leads to the formation of oblique travelling waves.
A positive value of β is associated with waves travelling away from the corner bisector
while negative values of β indicate incoming waves. Choosing β = 0 corresponds
to enforcing a standing wave pattern. The phase angle tan−1(β/α) enforced by (3.5)
and the spanwise wavenumbers β dictated by the domain extent ymax = zmax are not
compatible in general as the latter is not known a priori and varies within the
spectrum. Incompatibility leads to deformations of the eigenfields towards the far-field
boundaries. This topic is further addressed in §§ 3.4.2 and 3.4.3.

3.3. Numerical method
A Krylov subspace-based shift and invert Arnoldi algorithm is used to solve the
large eigenvalue problem posed by (3.3). ARPACK routines (Lehoucq, Sorensen &
Yang 1998) are employed for this purpose. Base-flow results were interpolated on the
stability grid using cubic spline interpolation.

3.3.1. Computational grid and domain size
A thorough study on grid refinement and the influence of the domain extent

on amplification rates has been undertaken by Parker & Balachandar (1999) for
incompressible self-similar corner flow. Following these authors the domain size was
set to ymax = 29 corresponding to η = 35 if not stated otherwise to guarantee proper
resolution of the viscous modes. The grid transformation by means of (2.29) allows
for a significant reduction of collocation points by densifying grid points towards the
walls where the instability modes are active. A value of yi = ymax/5 was found best
suited for most parameter combinations in this regard. Figure 3 shows an example of a
spectrum at Re = 980, Ma = 0.95, α = 0.2, β = 0, ymax = 29 and yi = ymax/5 for four
different numbers of collocation points. Here c = Re(ω)/α is the perturbation phase
speed and Im(ω) the amplification rate. A total of 25 modes were calculated using
the shift and invert Arnoldi algorithm for each resolution. The arc-shaped line-up of
eigenvalues corresponds to the continuous branch of Tollmien–Schlichting (TS) modes
with differing spanwise wavenumbers. The spanwise wavenumber cannot be enforced
directly by means of the domain size as the extent of the perturbation field area
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FIGURE 3. Eigenvalue spectrum for Re = 980, Ma = 0.95, α = 0.2, β = 0, yi = ymax/5: (�)
N = 35, (•) N = 45, (�) N = 55, (◦) N = 65; Latin numbers indicate increasing spanwise
wavenumbers, (-E) even/symmetric TS modes, (-O) odd/antisymmetric TS modes and (C)
corner mode.

influenced by the corner is not known in advance. Therefore, modes are not identified
by their exact spanwise wavenumber. Instead, Latin numbers distinguish modes of
increasing spanwise wavenumbers, i.e.1/4 (I), 3/4 (II), and 1 (III) waves are resolved
in the computational domain. We refer to mode I as to the fundamental mode. -O
indicates odd or antisymmetric and -E indicates even or symmetric mode shape with
respect to the corner bisector. The inviscid corner mode is denoted by C. More
examples of the modal structure are given in the § 3.4. Good correspondence of the
eigenvalues can be seen for N = 65, N = 55 and N = 45 in the upper half plane of
the spectrum. Eigenvalues calculated with N = 35 depart from their higher resolved
counterparts even for low spanwise wavenumbers.

The eigenvalue convergence of the four leading viscous modes and the inviscid
corner mode is further investigated in figure 4. An absolute error defined as the
difference to the solution obtained at the highest resolution under consideration
(N = 65) is plotted against the number of collocation points N for the growth
rate 1Im(ω) (a) and the phase speed 1c (b). It can be seen that no significant
improvement of accuracy is achieved by increasing the number of collocation points
beyond N = 45. The phase speed error shows a comparable behaviour for N > 40. A
resolution of N ≈ 65 is required for comparable convergence without grid clustering by
means of (2.29). This leads us to the choice of N = 45 for the following calculations if
not stated otherwise.

3.4. Linear stability results

The basic features of the modal corner-flow stability problem are reviewed in § 3.4.1.
The following § 3.4.2 is concerned with the influence of wave obliqueness on temporal
amplification rates. The neutral stability in three-dimensional parameter space spanned
by Re, α and β is addressed in § 3.4.3. Finally, some remarks on the appearance and
form of acoustic modes in the supersonic regime are given in § 3.4.4.
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modes and the corner mode for Re = 980, Ma = 0.95, α = 0.2, β = 0, yi = ymax/5 in terms
of the difference to the solution obtained at N = 65: 1Im(ω) = Im(ω(N) − ω(N = 65)),
1c = Re(ω(N) − ω(N = 65))/α, (solid symbols, -E) even/symmetric TS modes, (empty
symbols, -O) odd/antisymmetric TS modes, Latin numbers indicate increasing spanwise
wavenumbers, (?, C) corner mode.

3.4.1. Spectra and eigenfields
The basic structure of the corner-flow spectrum resembles that of the flat-plate

scenario with some additional modes active in the corner region only. The latter modes
appear distinct in the spectrum while TS-type instabilities form continuous branches
rendered discrete by the restriction to certain wavelengths through the finite extent of
the computational domain.

The fundamental TS branch can be seen in figure 3. TS modes appear in pairs
of even- and odd-symmetry with respect to the corner bisector. While all viscous
modes appear in pairs of even- and odd-symmetric, no odd-symmetric equivalent of
the corner mode is observed in the subsonic regime. The spatial structure of an
odd-symmetric (a) and the inviscid corner mode (b) are visualized in figure 5 by
means of streamwise velocity contours. It can be seen that the influence of the corner
is spatially restricted to its close vicinity. As the wave obliqueness angle is enforced
on the far-field boundaries, no influence on the inviscid corner mode can be expected.

3.4.2. Wave obliqueness and temporal amplification
The influence of wave obliqueness on corner-flow stability was first considered by

Parker & Balachandar (1999) and later by Galionis & Hall (2005) in their study of the
incompressible spatial stability problem using the parabolized stability equations.

The spatial structure of incoming (a) and outgoing (b) oblique waves is visualized
in figure 6 by contours of the streamwise velocity component at a constant distance
z= 1 from the lower wall in the y, t-plane. The spatiotemporal structures clearly reveal
the oblique nature of the disturbances. Disturbances enter the computational domain
through the far-field boundary at y = ymax for the case with β < 0 (a) and leave the
domain part (b) with β > 0. Temporal decay is observed in both cases.

Figures 7, 8 and 9 show the modal dependence of temporal amplification on β

for Ma = 0.01, Ma = 0.95 and Ma = 1.5, respectively, at the critical Reynolds
number and corresponding spanwise wavenumber of the one-dimensional far-field
profiles with zero spanwise wavenumber. For each value of β, 20 eigensolutions
were calculated using the implicitly restarted Arnoldi algorithm around the solution
of the corresponding one-dimensional far-field stability problem. Cross-correlation of
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FIGURE 5. Eigenfields of the streamwise perturbation velocity û for Re = 602, Ma = 0.95,
α = 0.245, β = −0.85; (solid lines) û > 0, (dashed lines) û < 0: (a) real part of mode III-O,
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FIGURE 6. Temporal evolution of streamwise perturbation velocity contours over 1.5 periods
for Re = 1373, Ma = 0.95, α = 0.2 at constant wall distance z = 1; (thick lines) û > 0, (thin
lines) û < 0, (dashed line) û = 0: (a) incoming oblique waves of mode IV-O for β = −0.5,
(b) outgoing oblique waves of mode IV-E for β = 0.0745.

the eigenfunctions was used for mode tracking. Parts (a) of each figure show the
spectra for the corresponding Mach number at β = −0.85. Figure 7 reproduces the
findings by Parker & Balachandar (1999) for the incompressible limit. Growth rates of
disturbances travelling towards the opposing wall are enhanced while waves travelling
away from the wall are suppressed. The maximum modal growth rate is observed
to occur at lower values of β with increasing spanwise wave number. Also, the
overall effect of β on amplification rates by means of the difference between modal
maxima and minima increases with spanwise wavenumber. The extrema indicate the
proper values of β for compatibility between modal spanwise wavelength and the
far-field phase angle imposed by (3.5) for incoming (maxima) and outgoing (minima)
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FIGURE 8. Same as figure 7, but for Ma= 0.95, α = 0.245.

disturbances. Different amplification rates of outgoing and incoming disturbances of
the same spanwise wavelength can be explained by the break of symmetry through the
corner as opposed to the flat-plate scenario where no such distinction exists (Parker
& Balachandar 1999). As presumed, the corner mode exhibits no dependence on the
obliqueness angle enforced at the far-field. Similar general trends are observed for the
Ma= 0.95 case (figure 8). In all three cases, the overall maximum amplification rate is
found somewhat close to the one of the one-dimensional far-field for β = 0.
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The supersonic flow case as shown in figure 9 exhibits an additional mode which
is not present in the subsonic cases. It comprises an antisymmetric counterpart to the
inviscid corner mode. Visualizations of the even (a) and odd (b) symmetric corner
mode by means of temporal isosurfaces of the streamwise perturbation velocity
are presented in figure 10. The calculation with the highest growth rate of the
even-symmetric corner mode corresponding to β = −0.25 at Re = 699 is used for
visualization. It can be seen from figure 10(a) that the even mode is no longer spatially
restricted to the vicinity of the corner, hereby revealing viscous properties. Starting
at some distance from the corner a transitions towards wave-like patterns of some
distinct spanwise wavenumber as common for the viscous instability is observed. This
effect is also indicated by the emerging dependence of the growth rate on β with its
maximum at β ≈ −0.5 (compare figure 9(b), symbol ?). The odd-symmetric corner
mode possesses a globally higher amplification rate almost independent on β.

3.4.3. Neutral stability and critical Reynolds number
Neutral stability curves for the six most amplified modes of the TS branch and the

corner mode are depicted in figure 11 for a fixed value of β = 0 at Ma= 0.95. Neutral
refers to the state of zero amplification, i.e. isolines of Im(ω)= 0. The neutral stability
curve of the one-dimensional far-field flow is given as a reference (dashed line). It can
be seen that the pairs of even and odd modes possess comparable neutral curves for
the fundamental TS wave and the first higher harmonic. The corner mode exhibits a
higher critical Reynolds number in comparison with the fundamental TS wave.

However, the critical Reynolds number for the compressible corner-flow problem
for a given Mach number is located somewhere in the three-dimensional parameter
space spanned by Reynolds number Re, streamwise wavenumber α and phase angle
tan−1(β/α) or spanwise wavenumber β accordingly. The latter can only be fixed
indirectly via the extent of the computational domain. The following stability analysis
is restricted to discrete spectra with distinct spanwise wavenumbers predetermined
by the fixed computational domain size. In order to estimate the critical parameters
equation (3.3) was solved for all combinations of 15 Reynolds numbers, 15 values
of α and 18 values of β resulting in a total of 4050 calculations for each
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Mach number. The parameter space was chosen Re, α, β ∈ [500, 800]×[0.15, 0.375]×
[−0.45, 0.1] for Ma = 0.01, Re, α, β ∈ [550, 850] × [0.13, 0.29] × [−0.45, 0.1] for
Ma = 0.95 and Re, α, β ∈ [650, 1000] × [0.1, 0.22] × [−0.45, 0.1] for Ma = 1.5.
The problem of finding the appropriate phase angle to be enforced via the far-
field boundary condition for each spanwise wavenumber is addressed by taking this
approach. Neutral surfaces were extracted and interpolated on a finer grid using
cubic spline interpolation to extract the critical parameters listed in table 1. The
critical Reynolds number and streamwise wavenumber decrease with increasing Mach
numbers while no clear trend can be deduced for the critical value of β. In all three

http://journals.cambridge.org/flm
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Ma Recrit αcrit βcrit Mode

0.01 551 0.260 −0.161 II-E
0.95 611 0.240 −0.117 II-E
1.50 668 0.175 −0.256 II-E

TABLE 1. Critical values of Re, α and β determined from the neutral stability surfaces for
Ma= 0.01, Ma= 0.95 and Ma= 1.5.

Mach number cases, the first even harmonic (II-E) of the TS branch was identified
as the critical mode. This result is notable as it contradicts the expectation deduced
from the limiting flat plate scenario for incompressible flow where a two-dimensional
wave is most amplified according to Squire’s theorem. Here, the mode with the lowest
spanwise wavenumber permitted by the computational domain extent possesses the
highest amplification rate. We suggest two possible explanations. Physically, the break
of symmetry through the opposing wall can lead to a lower amplification rate as
compared to the periodic case with β = 0. Second, numerical damping through the
far-field boundary condition can not be ruled out as a possible cause. In addition, the
effect of domain truncation as elaborated by Parker & Balachandar (1999) has to be
mentioned.

Cross-correlation of the eigenfunctions was successfully applied to separate modes
in the three-dimensional parameter space for the Ma = 0.01 case. Neutral stability
surfaces of the first three even modes and the corner mode are presented in figure 12.
The critical values occurring for mode II-E (grey) correspond to the values given in
table 1. The critical value of β for each mode decreases with increasing streamwise
wavenumber. The onset of viscous behaviour of the corner mode (magenta) for
negative values of β as described in § 3.4.2 is observed for the incompressible case
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as well. The neutral stability surface of the corner mode is almost independent of β
for β > −0.01. All modes share the property that their individual critical point occurs
at some negative value of β, i.e. for incoming waves.

3.4.4. Acoustic modes
Unlike in the incompressible case, acoustic disturbance modes are present in

supersonic corner flow. In general, acoustic modes in boundary-layer-type flows can be
divided in fast and slow travelling modes of phase speed

c= 1± 1
Ma

. (3.6)

Figure 13 shows a part of the full spectrum calculated using QZ factorization for
Ma = 1.5. The flow state was chosen as that of the neutral point of the corresponding
one-dimensional far-field. The domain size had to be extended to ymax = 80 to cover
the maxima of some acoustic waves. Insufficient domain size led to overpredicted
amplification rates for the acoustic modes in previous calculations. This behaviour
is typically observed for acoustic disturbances in boundary-layer-type flows, i.e. by
Hanifi, Schmid & Henningson (1996) for the flat-plate scenario. The number of
collocation points was increased to N = 60 to guarantee proper spatial resolution.
As the domain extent of the LST calculation exceeds that of the PNS solution the base
flow was extrapolated onto the enlarged domain assuming constant asymptotic values

q(y, z)|y>ymax∨z>zmax =


q(ymax, z) for y> ymax ∧ z6 zmax
q(y, zmax) for y6 ymax ∧ z> zmax
q(ymax, zmax) for y> ymax ∧ z> zmax .

(3.7)

No disturbance of the eigenfields was observed as a result of the extrapolation. The
continuous spectrum vertically located at c ≈ 1 is the most prominent feature present
in the figure. The fundamental TS branch can be seen at 0.5 . c . 0.6, flanked by
the even- (right, c ≈ 0.6) and odd-symmetric (left, c ≈ 0.5) corner mode. Two highly
dampened higher harmonic TS branches are also distinguishable at c ≈ 0.4. Slow
travelling acoustic modes form a horizontal branch with phase speeds c . 0.33 while
fast travelling modes are found at c& 1.67 in accordance with (3.6).
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Visualizations by means of isosurfaces of some representative acoustic modes are
depicted in figure 14. The modes presented can be separated into even- (14a,c,f ) and
odd-symmetric (14b,d,e), wall-bounded (14d–f ), and non-wall-bounded (14a–c), as
well as slow (14c–f ), and fast (14a,b). In contrast to the TS and corner modes, even
wall-bounded acoustic modes expand far into the potential flow far-field. An acoustic
corner mode (14f ) of rapidly decaying perturbation amplitude away from the corner
was identified within the slowly travelling acoustic branch of the spectrum (note the
reduced transversal plane scale of 14f to one quarter of part 14a–e). All acoustic
modes observed for the Ma = 1.5 case were damped. It is known from the flat-plate
scenario (Fedorov 2003) that acoustic modes become an important facet in stability
and transition when boundary-layer and acoustic modes synchronize at higher Mach
numbers.

4. Summary and outlook
The study at hand complements the existing knowledge on the incompressible

linear stability characteristics of the streamwise corner-flow problem by extending
the analysis to the compressible regime. Special attention has been paid to the
appropriate treatment of wave obliqueness to extract the critical values of Reynolds
number, streamwise wavenumber and spanwise wavenumber. The modal stability
analysis predicts perturbations similar to those active in the flat-plate boundary
layer, i.e. TS waves. They appear in pairs of odd- and even-symmetric modes with
respect to the corner bisector and form branches of distinct spanwise wavenumbers.
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As each spanwise wavenumber necessitates the corresponding phase angle to be
adequately imposed on far-field boundaries, we have expanded the linear stability
analysis by one parameter and extracted the critical values from neutral surfaces in
the three-dimensional parameter space. Results for three representative Mach numbers
have been compared. They show a general trend of increasing critical displacement-
thickness-based Reynolds number and decreasing critical streamwise wavenumber with
increasing Mach number, comparable to the flat-plate boundary layer. No such trend
is found for the critical spanwise wavenumber. An odd-symmetric corner mode is
identified for the case of supersonic free stream conditions which is not observed
in the subsonic regime. Notably, it exceeds the growth rate of its even-symmetric
counterpart also present in the spectrum. In addition, the supersonic corner-flow
spectrum includes slow and fast travelling acoustic modes of even- and odd-symmetry.
Among them an acoustic corner mode is found.

Unfortunately, no validation with experimental data is possible as no such data
exists as a consequence of the difficulty in establishing a steady and symmetric corner
flow in experiment without imposing a favourable pressure gradient. Prospectively, an
extension of the analysis to higher Mach numbers is desirable as inviscid mechanisms
comparable to those active on a single flat plate as described by Mack (1984) are
very likely to be encountered. It is not yet clear whether the discrepancy of one
order of magnitude in the critical Reynolds number between theory and experiment
stems from experimental shortcomings. Another hypothesis is a different transition
mechanism not yet identified. Following this line, Galionis & Hall (2005) suggest a
nonlinear mechanism through the interaction of higher harmonics and various viscous
modes while an inviscid mechanism or large transient growth is brought into the
discussion by Alizard et al. (2010). An investigation of the full three-dimensional, non-
parallel and nonlinear problem by means of direct numerical simulation is currently in
progress.
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