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Coherent features of a turbulent Mach 0.9, Reynolds number 106 jet are educed
from a high-fidelity large eddy simulation. Besides the well-known Kelvin–Helmholtz
instabilities of the shear layer, a new class of trapped acoustic waves is identified
in the potential core. A global linear stability analysis based on the turbulent mean
flow is conducted. The trapped acoustic waves form branches of discrete eigenvalues
in the global spectrum, and the corresponding global modes accurately match the
educed structures. Discrete trapped acoustic modes occur in a hierarchy determined
by their radial and axial order. A local dispersion relation is constructed from the
global modes and found to agree favourably with an empirical dispersion relation
educed from the simulation data. The product between direct and adjoint modes is
then used to isolate the trapped waves. Under certain conditions, resonance in the
form of a beating occurs between trapped acoustic waves of positive and negative
group velocities. This resonance explains why the trapped modes are prominently
observed in the simulation and as tones in previous experimental studies. In the
past, these tones were attributed to external factors. Here, we show that they are
an intrinsic feature of high-subsonic jets that can be unambiguously identified by a
global linear stability analysis.
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1. Introduction
Large-scale coherent structures, or wavepackets, in turbulent jets have been

subjected to intensive study, largely because of their role in the noise production
of aircraft engines (Jordan & Colonius 2013). In the wake of early experimental
observations by Mollo-Christensen (1963) and Crow & Champagne (1971), theorists
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developed a number of instability wave theories to model these structures. Examples
include parallel and weakly non-parallel linear stability analyses by Michalke (1971,
1984) and Crighton & Gaster (1976), respectively. The use of parabolized stability
equations (PSEs) to model wavepackets was pioneered by Yen & Messersmith (1998).
Later, Gudmundsson & Colonius (2011) and Cavalieri et al. (2013) found close
agreement between their PSE solutions and the leading spectral proper orthogonal
modes (POD) obtained from experiment. An important implication of their work is
that linear analyses of the turbulent mean provide approximations to the statistically
averaged coherent structures.

The capability of linear global modes to capture both the hydrodynamic near-field
as well as the far-field acoustics was demonstrated by Nichols & Lele (2011) for
the example of a cold M = 2.5 laminar jet. Apart from the Kelvin–Helmholtz-type
(K–H) shear-layer instability, the global modes contained upstream-travelling acoustic
waves related to modes predicted from the local analysis of Tam & Hu (1989). In
some cases, these upstream-travelling waves may lead to resonance mechanisms. An
example occurs in impinging jets, where feedback between K–H wavepackets and
acoustic modes may lead to tones in the pressure field (Tam & Ahuja 1990). Although
some tones have also been observed in the near field of free high-subsonic jets (Suzuki
& Colonius 2006), their relation to a feedback mechanism has not been established.

The present paper considers the global stability of turbulent jets at high-subsonic
speeds, and provides a thorough comparison with experimentally validated large eddy
simulation data. We first show that large-scale coherent structures are a pertinent
feature of fully turbulent jets, and persist over a wide range of frequencies and
azimuthal wavenumbers. Spectral POD and cross-spectral density estimates are used
to educe these structures from the large eddy simulation (LES) data. Besides the
well-known K–H instability waves in the shear layer, acoustic waves that are trapped
inside the potential core are found. In particular, we investigate a novel class of
resonant acoustic modes, and show that they are a pertinent feature of high-subsonic
turbulent jets. Throughout the study, emphasis is placed on the mutual comparison of
the educed structures and linear global modes.

The paper is organized as follows. Our methodology is introduced in § 2, including
an overview of the LES database, the global stability approach and the coherent
structure eduction techniques. The identified coherent structures are discussed in § 3
and compared to linear global modes in § 4. A special class of resonant trapped
acoustic waves is investigated in detail in § 5. A dispersion relation of the latter
modes is reconstructed from the global modes and compared to the empirical
dispersion relation obtained from the LES. Our findings are summarized in § 6.
Details on the numerical aspects can be found in appendices A–D.

2. Methodology
2.1. Turbulent jet database

The present study builds on the LES of a Mj= 0.9, Re≈ 106 turbulent jet, performed
using the compressible flow solver ‘Charles’ developed at Cascade Technologies (Brès
et al. 2017). By Mj =Uj/aj we denote the Mach number, and by Re= ρjUjD/µj the
Reynolds number, respectively. The jet is isothermal with Tj/T∞= 1. The subscripts j
and ∞ denote jet and free-stream (ambient) quantities, a speed of sound, ρ density, D
nozzle diameter, µ dynamic viscosity, T temperature and Uj the centreline jet velocity
at the nozzle exit, respectively. We denote by q(x, t)=[ρuxuruθT]T(x, r, θ, t) the vector
of dependent variables, with ux, ur, uθ as the cylindrical velocity components in the
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streamwise x, radial r and azimuthal direction θ , respectively. All variables are
non-dimensionalized by their centreline nozzle value, pressure by ρjU2

j , lengths by
D and time by D/Uj. The frequency is represented by the dimensionless Strouhal
number St=ω/(2πMj), where ω is the angular frequency. The LES domain contains a
convergent-straight nozzle. Its turbulent exit characteristics match the conditions of the
tripped exit boundary layer of its experimental counterpart thanks to the introduction
of synthetic turbulence combined with a wall model. The reader is referred to Brès
et al. (2014, 2015, 2016) for further details and the extensive experimental validation,
and to Bodony & Lele (2008) for an overview of the use of LES in jet noise
prediction. The database used in this work consists of 104 snapshots, temporally
separated by 1tc∞/D = 0.2 and interpolated on a 656 × 138 × 128 cylindrical grid
spanning x, r, θ ∈ [0, 30] × [0, 6] × [0, 2π] i.e. excluding the nozzle. Data sampled in
a smaller domain but at a higher rate of 1tc∞/D= 0.05 are used only to construct
the frequency–wavenumber diagrams shown in figures 11–13.

The usual Reynolds decomposition

q(x, t)= q̄(x)+ q′(x, t) (2.1)

of any given flow quantity q(x, t) into a long-time mean q̄(x) and a fluctuation
part q′(x, t) is adopted. The visualization of the streamwise perturbation velocity u′x
presented in figure 1 highlights the wide range of spatial and temporal scales occurring
in the turbulent jet. Two lines of constant mean streamwise velocity ūx = 0.95 and
0.05 delineate the potential core and the radial extent of the jet. The same isolines at
ūx = 0.95 and 0.05 are reproduced in all later figures that show the streamwise-radial
plane.

2.2. Global stability analysis
In what follows, we adopt the notion that ‘turbulence establishes an equivalent
laminar flow profile as far as large-scale modes are concerned’ (Crighton & Gaster
1976), implying that the mean Reynolds stresses are implicitly accounted for in the
turbulent mean flow that we draw from the LES. The fluctuating Reynolds stresses,
to the extent that they are significant at a given frequency, are assumed to act as a
disorganized forcing on the large-scale structures. This viewpoint has been adopted
in a number of studies exploiting resolvent analysis (e.g. Farrell & Ioannou 1993;
McKeon & Sharma 2010; Towne et al. 2015), and is supported by previous studies
comparing parabolized stability equation models for the coherent wavepackets in jets
to microphone and particle image velocimetry (PIV) data (Gudmundsson & Colonius
2011; Cavalieri et al. 2013). In the present case, in advance of a full resolvent
analysis of the jet, we further neglect this stochastic forcing and instead catalogue the
unforced behaviour of the linear modes of the turbulent mean flow field. Neglecting
nonlinear interaction terms in the governing equations, and assuming perturbations of
the normal-mode form with azimuthal wavenumber m

q′(x, r, θ, t)= q̂m(x, r)ei(mθ−ωt), (2.2)

yields the usual eigenvalue problem

(iω+Lm)q̂m = 0, (2.3)

where Lm = Lm(q̄) is the global linear stability operator based on the mean flow. In
our case, Lm represents the system of the linearized compressible continuity, Navier–
Stokes and energy equations for an ideal gas in cylindrical coordinates. The radial
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FIGURE 1. (Colour online) Instantaneous streamwise perturbation velocity ( , −0.5 6
u′x/‖u

′

x‖∞6 0.5) and streamwise mean velocity (—— (red), ūx= 0.95; – – – (red), ūx= 0.05)
of the LES: (a) streamwise plane and computational domain Ω used for the linear stability
analysis (—— (blue), solution domain; – – – (blue), sponge region) and (b–e) transverse
planes at x= 2, 5, 10 and 15, respectively.

streamwise plane is discretized by fourth-order summation by parts finite differences
developed by Mattsson & Nordström (2004), and the polar singularity is treated as in
Mohseni & Colonius (2000). Non-reflecting boundary conditions are enforced using a
sponge region.

The resulting discrete generalized eigenvalue problem reads

(ωI + Lm)q̂m = 0, (2.4)

where I is the identity matrix and q̂m = [ρ̂m ûx,m ûr,m ûθ,m T̂m]
T(x, r) the solution vector

of primitive variables. It is solved using a shift-and-invert Arnoldi algorithm. The
corresponding adjoint global stability eigenvalue problem

(ω∗I + L†
m)q̂

†
m = 0, (2.5)

is defined through the definition of the adjoint operator, 〈Lmq̂m, q̂†
m〉E = 〈q̂m, L†

mq̂†
m〉E in

the energy norm for a compressible gas

〈q, q〉E =
∫∫∫

qHdiag
(

T
γ ρM2

j
, ρ, ρ, ρ,

ρ

γ (γ − 1)TM2
j

)
qr dx dr dθ = qHWq, (2.6)

as derived by Chu (1965). Here, W is the discretized weight matrix, γ the specific
heat ratio and (∗) indicates the scalar complex conjugate, or the conjugate transpose
for vectors and matrices, respectively. For its ease of implementation, we chose the
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discrete-adjoint framework (Chandler et al. 2012). The adjoint eigenvectors q̂†
m are

normalized according to 〈q̂†
m, q̂m〉E = 1.

Direct and adjoint global modes are calculated in the computational domain Ω

outlined in figure 1(a) for a Reynolds number of Re = 105. Details on the grid
resolution, the sponge layer and the spatial discretization can be found in appendix A.
The influence of the sponge on the trapped acoustic modes is discussed in appendix B
and the effect of domain truncation is discussed in appendix C. Our choice to conduct
a linear stability analysis of the turbulent mean flow is motivated, and the effect of
the of Reynolds number on the global spectra is addressed in detail, in appendix D.

2.3. Coherent structure eduction techniques
As the jet is periodic in the azimuthal direction, the fluctuation field can be
decomposed into Fourier modes of azimuthal wavenumber m as

q′(x, r, θ, t)=
∑

m

q̃m(x, r, t)eimθ , (2.7)

and further, under the assumption of statistical stationarity in time, into spatio-
temporal modes

q̃m(x, r, t)=
∑
ω

˜̃qm,ω(x, r)eimθeiωt (2.8)

of angular frequency ω.
Spectra are estimated using Welch’s method by partitioning the time series into

sequences of 256 snapshots with an overlap of 50 %. This partition is found to be
a good compromise between a sufficiently high discrete frequency spacing and a
sufficiently high number Nb = 78 of statistically independent realizations, or blocks.
The power spectral density (PSD) for a given frequency and azimuthal wavenumber
is then estimated as

P̄qq(x, r)=
1

Nb

Nb∑
n=1

| ˜̃q(n)m,ω(x, r)|2, (2.9)

and the cross-spectral density (CSD) between any point (x, r) in the domain and a
specific location (x0, r0) as

C̄qq(x, r, x0, r0)=
1

Nb

Nb∑
n=1

˜̃q(n)m,ω(x, r) ˜̃q∗(n)m,ω(x0, r0). (2.10)

Alternatively, frequency domain or spectral POD can be applied to extract
coherent structures from the column matrix of short-time Fourier realizations
Qm,ω = [

˜̃q(1)m,ω,
˜̃q(2)m,ω, . . . ,

˜̃q(Nb)
m,ω ] through the solution of the eigenvalue problem

Ψ ∗Q∗m,ωWQm,ωΨ =Λ, (2.11)

where Qm,ωΨ is the column matrix of orthonormal spectral POD modes whose
energy is given by the eigenvalues along the diagonal of Λ. The spectral POD modes
optimally represent the data in terms of the energy norm induced by the inner product
〈q, q〉E (2.6) at each given frequency. As an example, CSD and spectral POD are
employed to extract the coherent portion of the flow field in figure 2. Figure 2(a–d)
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FIGURE 2. (Colour online) Spectral decomposition and coherent feature extraction for
m = 0, St ≈ 0.5 ( , ±0.5 of the maximum value): (a–d) the first two realizations
of the 256 snapshot based Fourier decomposition; (e–h) CSD using different correlation
points (x0, r0); (i,j) leading POD mode estimates. The pressure and streamwise velocity
component are shown in the left and right column, respectively. The CSD correlates each
point of the flow field with a location (x0, r0) marked by ‘+’, and the POD is based on
the volume weighted 2-norm.

shows the first two realizations in the ensemble of short-time Fourier decompositions
used for the spectral estimation.

The K–H instability and a monochromatic high-wavenumber fluctuation in the
potential core are observed in both realizations. We will show later that the wave
inside the core is acoustic and propagates upstream with a negative phase velocity.
In our parallel investigation, Towne et al. (2017) show that this latter disturbance
is an acoustic wave that experiences the shear layer as an annual duct and is
therefore trapped within the potential core. The CSD is particularly useful to identify
spatially correlated portions of the fluctuation field in a specific region. The K–H
instability, for example, is accentuated in figure 2(e, f ) for a correlation location
(x0, r0) = (5, 0.5) within the shear layer. Similarly, a location (x0, r0) = (0.1, 0.1)
close to the nozzle centreline in figure 2(g,h) highlights the acoustic wave. It also
shows that the fluctuations in the core are correlated with the shear-layer instability.
The K–H wavepacket is identified by POD as the most energetic structure based on
a global pressure 2-norm in figure 2(i,j).

The comparison of the different eduction techniques leads to the following choices
for the remainder of this paper. POD estimates are best suited to distil the average
K–H wavepacket as it represents the most energetic coherent structure. Acoustic waves
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FIGURE 3. (Colour online) Spectral estimation of pressure POD modes ( , −0.25 6
Ψp/‖Ψp‖∞ 6 0.25) for different Strouhal numbers: (a,c,e,g,i,k) m= 0; (b,d, f,h,j,l) m= 4.

inside the potential core are most unambiguously educed via a CSD of the pressure
field with respect to a point near the inlet and close to the jet axis.

3. Coherent features of the turbulent jet
The two families of coherent instabilities of interest for the present investigation

are the K–H wavepackets in the shear layer and the trapped acoustic waves in the
potential core. Their frequency and azimuthal wavenumber dependence is addressed
in §§ 3.1 and 3.2, respectively.

3.1. Kelvin–Helmholtz wavepackets
In figure 3, the K–H wavepacket is identified as the most energetic coherent structure
of the LES via POD for m = 0 (a,c,e,g,i,k) and m = 4 (b,d, f,h,j,l) over a range
of frequencies. The wavepackets are characterized by a monotonic increase in
wavenumber and a simultaneous decrease of their streamwise support with frequency.
Their phase speed is cph ≈ 0.8Uj in all cases and was estimated as explained below
in the context of figure 8.

The K–H instability amplifies to the end of the spatially unstable region of the
mean flow and subsequently decays. For intermediate frequencies, the support of
the resulting wavepacket extends from the nozzle up to approximately the end of
the potential core, and PSE (Gudmundsson & Colonius 2011; Cavalieri et al. 2013;
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Baqui et al. 2015) and linearized Euler solutions (Baqui et al. 2015) were found to
be in good agreement with measured or simulated structures. Recent studies based
on the resolvent operator (Garnaud et al. 2013b; Jeun, Nichols & Jovanović 2016;
Semeraro et al. 2016; Qadri & Schmid 2017; Tissot et al. 2017) furthermore showed
that, due to the non-normal nature of the operator, the K–H instability can be forced
efficiently through the Orr mechanism. In addition to the dominant K–H wavepacket,
the trapped-wave component in the potential core is also clearly visible in figure 3(c).

3.2. Trapped acoustic waves
Trapped acoustic waves are extracted by use of CSD in figure 4 for the same
Strouhal numbers considered in figure 3 above. The fluctuations inside the potential
core are strongly correlated with the K–H wave in all cases. Inside the potential
core, acoustic waves are observed for some St–m combinations, most prominently
in figure 4(c,e,g,i,j). These trapped acoustic modes can be characterized by a radial
order nr equal to the number of anti-nodes in the radial direction. By counting the
anti-nodes, we find nr = 1 in figure 4(c,e), nr = 2 in figure 4(g,j) and nr = 3 in
figure 4(i).

4. Global mode spectrum
The global linear stability eigenvalue problem (2.4) is solved as described in § 2.2

for 0 6 m 6 4. For each azimuthal wavenumber m, the spectrum is shifted to 43
positions along the real axis in the interval 1.5 6 σ 6 12, or 0.24 . St . 1.91
correspondingly. 35 eigenvalue/eigenvector pairs are converged at each position by
the standard shift-and-invert Arnoldi algorithm. The resulting spectra are presented
in figure 5. All eigenvalues are stable as expected. Two common features of the
spectra are of special interest for the present study. First, the discrete mode branches
indicated by their leading mode (blue), and second, a branch of continuous modes
from which they emerge. The structure of the spectra is similar, but with a shift
towards higher frequencies with increasing m. The discrete branches are located
approximately within the same frequency bands for all branches of even and odd m,
respectively. The least-damped mode marked as (0, 1, 1) in figure 5(a) is found for
m = 0 and St ≈ 0.37. In what follows, the modal structures of the continuous and
discrete modes are investigated in §§ 4.1 and 4.2, respectively.

4.1. Features of the continuous branch
Figure 6 shows three representative side-by-side comparisons of coherent structures
distilled from the LES via CSD (a,c,e) and global modes of the continuous branch
(b,d, f ). The eigenvalue corresponding to the mode shown in figure 6(b) is located
right below the least-damped mode (0, 1, 1) in figure 5, i.e. at St ≈ 0.37 and ωi ≈

−0.04. This mode is mainly of K–H type with only a weak acoustic component
inside the potential core. The modal shape compares well with the CSD from the
LES data shown in figure 6(a). Here, the correlation location of the CSD is chosen
such that it extracts the shear-layer instability component. A correlation location inside
the potential core brings to light the trapped acoustic wave, as discussed later in the
context of figure 7(a,b).

A remarkable agreement is found for m= 0 and St= 0.5 as depicted in figure 6(c,d).
Both the LES and the modal analyses identify a global structure that combines a K–H
wave train with an acoustic core mode. The regions of support and the wavenumbers
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FIGURE 4. (Colour online) CSD ( , −0.256 C̄pp/‖C̄pp‖∞6 0.25) correlating each point
of the flow field with the location (x0, r0)= (0.1, 0.1) marked as ‘+’ in the potential core
for different Strouhal numbers and (a,c,e,g,i,k) m= 0 and (b,d, f,h,j,l) m= 2.

of both components are accurately predicted by the global mode. A similar modal
structure can be seen in the m=2, St≈1 case in figure 6(e, f ). In this higher azimuthal
wavenumber and frequency example, the CSD extracts the K–H wavepacket as the
most energetic structure, whereas the trapped acoustic wave is dominant in the global
mode.

In the spectrum, the continuous modes are unavoidably rendered discrete due to
the numerical discretization. Changes in the numerical discretization scheme can
freely shift their eigenvalues along the underlying continuous branch. Changing the
computational domain size, as discussed in appendix C, is an example where such
behaviour can be observed.

The physical aspect of interest for the present study is that the continuous modes
consist of two coupled wave components: a downstream propagating K–H wavepacket,
and a trapped acoustic wave in the potential core.

4.2. Features of the discrete modes
The leading discrete global modes of the first three branches for m = 0, and the
first branch for m= 1 are depicted in figures 7(b,d, f ) and 7(h), respectively. Clearly,
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FIGURE 5. (Colour online) Global stability spectra for (a) m = 0, (b) m = 1, (c) m =
2, (d) m = 3, (e) m = 4. The leading discrete modes (→ (blue)) of each branch are
indicated by the triplet (m, nr, nx), where m is the azimuthal and nr and nx the radial and
streamwise integer wavenumbers, respectively. This distinction of the discrete modes is
addressed in the discussion of figure 8, below. Three continuous modes (→ (pink)) shown
in figure 6(b,d,e) are also indicated.

the discrete global modes represent the trapped acoustic mechanism. Unlike their
continuous counterparts seen in figure 6(d, f ) above, the discrete modes are confined
within a small region x. 2 close to the nozzle. Their radial order nr becomes apparent
by comparing modal shapes for different branches as in figure 7(b,d, f ). For higher
m, the nr = 1 branch is shifted towards a higher frequency as can be deduced from
figure 7(h) in comparison with the global spectra shown in figure 5. Note that all
discrete global modes also possess a weaker K–H component, in contrast with the
continuous modes which show K–H and trapped waves to be more strongly coupled.
By comparison with the CSD (figure 7a,c,e,g), it can be seen that the trapped acoustic
modes are evidently present in the LES data. Their spatial extent and waveforms are
accurately predicted by the linear global analysis. A similarly good agreement is
found for all m under consideration.

The pressure profile along the jet axis shown in figure 8(a) reveals the internal
structure of the modes within a given branch. It can be seen that the absolute pressure
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FIGURE 6. (Colour online) Comparison between (a,c,e) CSD of the LES with location
(x0, r0) marked by ‘+’ and (b,d, f ) global modes: (a,b) m = 0, St ≈ 0.37; (c,d) m = 0,
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0.25).

signal possesses an increasing number of anti-nodes (now with respect to the x axis)
with increasing frequency. This suggests the definition of an integer streamwise
wavenumber nx equal to the number of anti-nodes. Individual discrete modes can
be identified by the triplet (m, nr, nx). The latter observation also has an important
physical implication. The corresponding eigenvalues are reproduced in the detail of
the spectrum in figure 8(b) for comparison. Figure 8(c) depicts the phase velocity of
the same modes estimated as ω/(∂θp/∂x) along the jet axis, where θp = arg(p̂) is the
local phase of the eigenvector pressure component. A jump discontinuity separates
the pressure signal of each mode into part with a negative phase speed of cp ≈−0.2,
and a part with a positive phase speed of cp & 0.8Uj. The radial order nr previously
addressed in the discussion of figure 7, is demonstrated in figure 8(d) in terms of
radial velocity profiles of the leading modes of the first three branches for m = 0.
In our parallel investigation, Towne et al. (2017) show that these waves behave like
acoustic waves that experience the potential core as a cylindrical duct with a pressure
release surface. Accordingly, they are effectively trapped within the potential core
and their radial structure takes the form of Bessel functions. Therefore, we refer to
them as duct modes.

5. Resonant acoustic modes
5.1. Comparison with LES

We next examine the structure of the discrete modes in more detail by comparing the
modes of the (0, 1) branch with the simulation in terms of the estimated PSD defined
by (2.9). In order to account for the small frequency spacing between individual
modes, the spectral estimation is based on a larger number of 1024 snapshots in the
following. This results in a smaller ensemble of Nb = 19 realizations for the same
overlap.
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FIGURE 7. (Colour online) Comparison between (a,c,e,g) CSD of the LES with location
(x0, r0) marked by ‘+ (blue)’ and (b,d, f,h) global modes: (a,b) m = 0, St ≈ 0.37, mode
(0, 1, 1); (c,d) m = 0, St ≈ 0.87, mode (0, 2, 1); (e, f ) m = 1, St ≈ 0.6, mode (1, 1, 1).
Modes are compared in terms of their normalized pressure components ( , −0.25 6
Re( ˜̃pm,ω)/‖Re( ˜̃pm,ω)‖∞ 6 0.25, −0.25 6 Re(p̂m)/‖Re(p̂m)‖∞ 6 0.25).

Figure 9 shows that we find a very good agreement between the global modes and
the LES in terms of the location and structure of the trapped acoustic waves. The
number of maximum nodes agrees precisely with our definition of the streamwise
wavenumber nx, as introduced in the context of figure 8(a). The trapped acoustic
waves are spatially confined in the streamwise direction. In the inlet plane, we find
that the nozzle impedance associated with the LES simulation is well mimicked by
the inlet sponge boundary condition. This favourable agreement was found robust
with respect to changes in the sponge layer intensity, as detailed in appendix B.
The length of the region over which the trapped waves have support is frequency
dependent. For example, mode (0, 1, 1) in figure 9(a) has a streamwise spatial
support of 0 . x . 2, whereas mode (0, 1, 6) shown in figure 9(a) is confined within
0 . x . 3.5. The observation is explained by the existence of a frequency-dependent
end condition related to the streamwise contraction of the potential core. We identify
this end condition using weakly non-parallel stability theory in Towne et al. (2017),
and compare the prediction to the spatial support of the global modes in § 5.6.

5.2. Experimental observations
Figure 10 compares discrete mode frequencies to spectra obtained from two sets of
experimental data. In a recent experimental campaign dedicated to the validation of
the present LES, the near-field pressure of a M = 0.9 turbulent jet was measured in
the ‘Bruit and Vent’ jet noise facility of the Pprime Institute, Poitiers. In a similar
experiment by Suzuki & Colonius (2006, appendix B) for Mj=0.98, Tj/T∞=0.84 and
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FIGURE 8. (Colour online) Characterization of trapped acoustic modes in the potential
core for m = 0: (a) pressure magnitude along the jet axis; (b) detail of the spectrum
showing the (0, 1)-branch (q(red), p(blue) and f(green), modes from (a,c); u(black),
other discrete modes; E, continuous modes); (c) local phase velocity of the pressure
along the jet axis; (d) pressure magnitude profiles at x= 1. All quantities are normalized
with respect to their maximum value. The discrete modes are labelled as (m, nr, nx),
corresponding to their azimuthal wavenumber m, their radial order nr obtained as shown
in (d) and their streamwise order obtained as shown in (a), respectively.

Re = 16 × 105, the measured tones were attributed to an acoustic duct phenomenon
upstream of the nozzle. Both experiments used a six microphone ring array located
in the near-nozzle region. Spectra for the axisymmetric and first helical Fourier
components are reproduced in panels 10(a) and 10(b), respectively. It can be seen
that the peaks in the spectra agree well with the frequencies of the leading discrete
modes found by the global analysis.

5.3. Frequency–wavenumber analysis
Our next goal is to describe the trapped acoustic instabilities in the frequency–
wavenumber domain. For a fixed frequency ω and azimuthal wavenumber m, the
streamwise wavenumber content of the trapped modes can readily be obtained from
a Fourier decomposition of pressure signal on or parallel to the jet axis. Here, we
chose ˜̃pm,ω(0 6 x 6 5, r0), and denote by k the streamwise wavenumber. The exact
length and radial location of the line segment used for the decomposition has no
significant effect on the results, as long as it remains located inside the potential core.
Windowing or padding of the segment is not necessary for the same reasons.

The resulting frequency–wavenumber diagram for m = 0 is shown in figure 11.
The PSD is estimated by means of equation (2.9). In the positive k-plane, energy is
concentrated along the line of constant slope ω/k≈ 0.8Uj (—— (pink)), corresponding
to the typical downstream propagation velocity of the initial jet shear-layer instability.
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FIGURE 9. (Colour online) Comparison between the pressure components of LES power
spectral density estimate ( , 0 6 P̄pp/‖P̄pp‖∞ 6 1) and global mode (p̂mp̂∗m, —— (blue))
for branch (0, 1): (a) St≈ 0.374, mode (0, 1, 1); (b) St≈ 0.382, mode (0, 1, 2); (c) St≈
0.39, mode (0, 1, 3); (d) St≈ 0.397, mode (0, 1, 4); (e) St≈ 0.405, mode (0, 1, 5); ( f ) St≈
0.41, mode (0, 1, 6). Contours of p̂mp̂∗m correspond to 20 %, 40 %, 60 % and 80 % of its
maximum value.
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FIGURE 10. Near-nozzle exit spectrum comparing Strouhal numbers of the least-damped
global modes (· · · · · ·) to the sound pressure level (SPL) of recent ‘Bruit and Vent’
measurements (——), and the data of Suzuki & Colonius (2006) (– – –) for Mj = 0.98,
Tj/T∞ = 0.84: (a) m= 0; (b) m= 1.

The curved bands of energy in the angular sector of negative phase velocities
−aj 6 cp 6 Uj − aj are the signatures of the trapped acoustic modes. These bands
can be interpreted as empirical dispersion relations of the K–H and trapped acoustic
modes, as they relate their frequency to their wavenumber. The lowest band originates
from trapped acoustic modes of radial order nr = 1, the second of nr = 2 and so forth.
Note that the shape of the energy bands implies that multiple waves with negative
phase velocity can coexist at certain frequencies. Furthermore, it can be observed
that the two ends of each band asymptotically approach the lines Uj − aj and −aj,
respectively. These two limits correspond to acoustic duct behaviour (– – – (green))
with waves propagating against the jet velocity inside the potential core and acoustic
free-stream behaviour (– – – (blue)), with waves propagating upstream in the ambient
flow.
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FIGURE 11. (Colour online) Frequency–wavenumber diagram ( , P̄pp(0 6 x 6 5, r0))
of the LES data in the potential core region for m = 0 and r0 = 0.1. Lines of constant
propagation velocity cp = ω/k= cg = ∂ω/∂k and their corresponding values are shown in
colour. cp = 0.8Uj corresponds to the propagation speed of K–H instabilities.
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FIGURE 12. (Colour online) LES power spectral density in form of a frequency–
wavenumber diagram obtained from the pressure signal along the jet axis in the potential
core x∈ [0 5]: (a) m= 0; (b) m= 1; (c) m= 2; (d) m= 3; (e) m= 4. The Strouhal numbers
of the leading global modes of each discrete branch (· · · · · · (red); marked by ‘→ (blue)’
in figure 5) are shown for comparison.

Details focusing on the trapped acoustic instability mechanism for higher azimuthal
wavenumbers are presented in figure 12. It can be seen that the onset of the acoustic
instability is shifted towards higher frequencies with increasing azimuthal wavenumber
m. A comparison with the global stability spectra shown in figure 5 confirms that
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FIGURE 13. (Colour online) Reconstruction of the dispersion relations of the trapped
acoustic and K–H instabilities from a spectral analysis of the pressure signal along the
jet axis in the potential core x ∈ [0 5]: (a) frequency–wavenumber diagram comparing
LES ( , P̄pp) as in figure 12(a), and global modes (u(red), mode (0, 1, 1); —— (red),
– – – (red), trapped-mode branches; – – – (green), – – – (blue), continuous modes; —— (pink),
K–H component); (b) LST spectrum around branch (0, 1) (u(red), mode (0, 1, 1); + (red)
branch intersection mode; E(red) other (0, 1) modes; C(blue), @(green) continuous
modes); (c) wavenumber spectrum of mode (0, 1, 2). Colours and symbols in (a) and (b)
correspond. Since all modes comprise a K–H component, it is not indicated in (b).

the the local minima (valleys) occur precisely at the frequencies of the leading global
modes of each discrete branch. For m= 0 and m= 1, the PSD peaks within the nr= 1
energy bands, whereas higher radial order modes are most energetic for m> 1.

5.4. Reconstruction of the dispersion relation from global modes
We now focus on the wavenumber content of the global modes for a direct comparison
with the LES. A frequency–wavenumber diagram analogous to figure 11 can be
constructed from the global modes using exactly the same method as described
above. For each mode, a Fourier decomposition of the pressure p̂m(0 6 x 6 5, r0)
yields a wavenumber spectrum as depicted in figure 13(c). In the particular case of
mode (0, 1, 2) in this example, the spectrum exhibits three distinct peaks denoted by
‘k−’, ‘k+’ and ‘K–H’.

The ‘k−’, ‘k+’ and ‘K–H’ peaks are identified for all discrete modes. Connecting
them in the St–k plane yields the red lines in figure 13(a). Analogously, the leading
(– – – (blue), free-stream behaviour) and trailing (– – – (green), duct behaviour) sections
are found by connecting the dominant peaks in the spectrum of the continuous
modes in negative k-plane. Continuous segments can now readily be interpreted as
reconstructed dispersion relations for the trapped waves and the K–H waves.

A detail of the spectrum around branch (0,1) is reproduced in figure 13(b) using the
same colours and symbols as in the frequency–wavenumber diagram in figure 13(a)
for comparison. The concave part (red) of the lower band is directly associated with
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the discrete branch (0, 1) modes. Analogously, the upper band at St& 0.8 is associated
with the (0, 2) branch.

The mode located at the discrete-continuous branch intersection (+ (red)) in
figure 13(a,b) separates continuous from discrete, and also continuous duct modes
from continuous free-stream modes. The local slope along each segment of the
dispersion relation determines the group velocity of the instability wave at the
corresponding wavenumber and frequency. This motivates the distinction between a
k+ (—— (red)) segment of positive, and a k− (– – – (red)) segment of negative group
velocity, respectively. A remarkable agreement between the reconstructed and the
empirical dispersion relations is found. The discrete global modes contain both the
k+ and the k− wave. This observation shows that these two waves are intimately
linked, and suggests a resonance phenomenon, as we will confirm in the following.

Of particular interest are the two end points of the k+ segment as they mark zeros of
the slope of the dispersion relation, and therefore points of zero group velocity. These
points are of particular interest as they determine the long-time behaviour of a system
in a fixed laboratory reference frame (Briggs 1964). The lower point, denoted as S1,
is associated with the leading mode and the upper one, denoted by S2, with the mode
that marks the intersection of the discrete branch with the continuous spectrum. These
points describe the transition from a mechanism that is predominantly active close to
or inside the shear layer, i.e. continuous free-stream modes, to a duct-like behaviour
inside the core, i.e. to continuous core modes. The anti-nodes used to determine the
integer streamwise wavenumber nx, and as seen in figures 8(a) and 9, can now be
interpreted in the light of the above discussion as a beating

eik+x
+ eik−x

= 2 cos
(
1k±

2
x
)

exp
(

i
k+ + k−

2
x
)

(5.1)

resulting from the superposition of the k+ and the k− waves. As an example, consider
mode (0, 1, 3) with k+ =−7.1, k− =−13.0 and a resulting difference of 1k± = 5.9.
The corresponding wavelength of the beating, λ± = 4π/1k± = 2.1, can be seen to
accurately match twice the distance of the maximum nodes of mode (0, 1, 3) in
figure 8(a). The average wavenumber (k+ + k−)/2 on the other hand determines the
wavelength seen in instantaneous, or visualizations of the real part as in figure 7.
Together with the observation that the acoustic modes are confined within a short
region in the streamwise direction by end conditions, it can be concluded at this point
that a resonance between the k+ and k− segments occurs. The resonance phenomenon
in turn explains the high energy content along the frequency band in which k+ and k−
coexist. For the same reason, the corresponding modes appear as discrete eigenvalues
in the spectrum.

For frequencies below the lowest radial order discrete branch, e.g. St . 0.37 for
m = 0, the potential core does not support duct modes. The absence of the duct
mechanism appears to be directly related to the sudden drop of the eigenvalues at low
St in the global stability spectra, as seen in figure 5 above. This becomes particularly
apparent at higher azimuthal wavenumbers. For m= 3 in figure 5(d), for example, all
modes are heavily damped up to St ≈ 1. As soon as duct modes are supported, the
discrete mode branch (3,1) appears above a branch of K–H modes which now support
acoustic core waves.

A caveat on the comparison between the reconstructed and the empirical dispersion
relations is that the discrete nature of the trapped acoustic modes is not evident from
the LES data. In the LES frequency–wavenumber diagram, the energy appears to
be smoothly distributed along the individual bands. Presumably, a much longer time
series would be needed to converge the statistics of individual discrete modes.
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FIGURE 14. (Colour online) Same as figure 9 but comparing LES power spectral density
estimate ( , 06 P̄pp/‖P̄pp‖∞6 1) and the isolated trapped acoustic modes (‖q̂m(x0, r0)‖ ·
‖q̂†

m(x0, r0)‖, —— (blue)). Contours of the product map correspond to 20 %, 40 %, 60 %
and 80 % of its maximum value.

5.5. Isolation of the trapped acoustic waves
In classical local stability theory, each spatial mode is associated with a complex
wavenumber given by its eigenvalue. By contrast, a single global mode of a specific
complex frequency can encapsulate a variety of waves. We are interested in isolating
the trapped acoustic wave component from the global modes to determine their spatial
support, and for comparison with local theory.

We have observed that adjoint trapped modes have a negligible K–H component.
Examples and a brief discussion of the adjoint modes used here can be found in
appendix E. Hence, the map of the local product

‖q̂m(x0, r0)‖ · ‖q̂†
m(x0, r0)‖ (5.2)

is a way of isolating the trapped-wave mechanism from the K–H wavepackets. In
a different context, such maps have been used by Chomaz (2005) and Giannetti
& Luchini (2007) to determine an upper bound for the sensitivity of eigenvalues to
spatially localized feedback. Figure 14 compares the map of the direct-adjoint product
with the estimated PSD from the simulation.

The analysis clearly identifies the maximum nodes of the pressure PSD as the
regions of highest sensitivity, and therefore closely resembles the PSD distribution of
the global modes as seen in figure 9. Comparing figures 9 and 14, it becomes
evident that multiplying the direct solution by the adjoint largely removes the
shear-layer wavepackets. We can thus make use of the direct-adjoint product as
a filter. The K–H instability constitutes a convective non-normality characterized by
an upstream–downstream separation of the spatial support of the adjoint and direct
modes (Sipp et al. 2010; Nichols & Lele 2011). It is therefore widely eliminated
from the product and the trapped waves are clearly isolated. Furthermore, the match
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between the PSD and the isolated trapped modes suggests that the trapped instability
mechanism is nearly self-adjoint.

5.6. Local linear theory
The study of the resonant trapped acoustic modes in terms of local and weakly non-
parallel spatio-temporal linear theory is at the core of the parallel investigation by
Towne et al. (2017). Here, we revisit one of the main findings of the weakly non-
parallel theory regarding the end condition of the resonant modes, as it allows for a
direct comparison with the global modes. In particular, we are interested in finding
saddle points in the complex k-plane, i.e. the points k0 at which ∂ω/∂k= 0. In such
saddle points, k0 is a double root of the dispersion relationship. These points are
relevant to provide end conditions if they are formed between a k+ and a k− mode
(Huerre & Monkewitz 1990). Defining ω0 = ω(k0) (i.e. ω0 and k0 satisfy the locally
parallel dispersion relationship), if ω0 is real, a saddle point presumably corresponds
to the points S1 and S2 in the reconstructed dispersion relation shown in figure 13.
The reader is referred to Towne et al. (2017) for a detailed discussion. Under the
assumption of a locally parallel flow, i.e. homogeneity in the streamwise direction, the
normal-mode ansatz (2.2) takes the form

q′(r, θ, t)= q̂m(r)ei(kx+mθ−ωt), (5.3)

where the streamwise wavenumber k∈C is a free parameter. The resulting eigenvalue
problem for ω at some streamwise location x0 takes the same form as in 2.3, but
with Lm = Lm(q̄(x0, r), k) now as the local linear stability operator. Saddle points
are identified in the complex k-plane by solving the local eigenvalue problem over a
range of complex wavenumbers k and subsequently finding the zeros of the complex
derivative of ω(k) for a specific mode. In figure 15, the acoustic core modes of radial
order nr = 1 are traced in the complex plane. Two saddles S1 and S2 are found
for x locations close to the nozzle. Both saddles reside on the real axis, and move
closer together with increasing downstream distance, as seen in figure 15(a–c). At a
certain streamwise location, the two saddles collide. For locations further downstream,
no saddle points with real valued k0 are found. Beyond this point, no k+-mechanism
exists, and resonance cannot occur. This case is depicted in figure 15(d).

In figure 16, the frequency of the two saddle points is plotted over the streamwise
location (—— (red), – – – (red)) for three representative branches. The (0, 1) branch
is considered in figure 16(a) and higher azimuthal wavenumber and radial order
examples in panels 16(b) and 16(c), respectively. The isolated resonant acoustic
modes (p(blue)) and the branch intersection mode (p(green)) are shown in the
same plots for comparison. A good agreement between the spatial support of the
resonant waves, as identified by the global stability analysis and the location of the
S1 saddle, is found in all cases. It becomes apparent that the saddle point serves
as an end condition for the trapped acoustic modes. With increasing St, resonance
first occurs for the leading discrete mode of axial order nx = 1 at the lowest possible
frequency that permits the interaction between two waves of opposite group velocity
with k+ ≈ k−. At higher frequencies, the beating between the two waves k+ > k−
causes the observed modulation of the trapped modes of streamwise order nx> 1. The
frequency of the highest streamwise wavenumber mode approximately coincides with
the minimum frequency of the S2 saddle. Beyond this point, no resonant core modes
are to be found. Apparently, the S2 saddle provides an alternative end condition. In
contrast to the S1 saddle, S2 is associated with a k− wave which apparently has a
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FIGURE 15. (Colour online) Saddle point location of the (0, 1) branch in the complex
wavenumber plane obtained from local spatio-temporal stability theory at different
streamwise positions: (a) x= 0; (b) x= 1.5; (c) x= 2.5; (d) x= 3.8. Isolines of the real
and imaginary part of the complex frequency (—— (blue), ωr; —— (red), ωi) are shown,
and the locations of the two saddle points (u(red), saddle S1; E(red), saddle S2) are
obtained as the zeros of the complex derivative Re(∂ω/∂ks)= Im(∂ω/∂ks)= 0 (– – – (blue),
Re(∂ω/∂k); – – – (red), Im(∂ω/∂k). Note that in (d), the saddles S1 and S1 cannot be
distinguished, and the assignment is therefore arbitrary.

lower reflection coefficient at the nozzle than the duct modes. This becomes apparent
from an inspection of the branch intersection modes (p(green)). The signature of
the S1 saddle is clearly visible, but the fluctuation levels between the nozzle and
S1 are much lower than for the discrete modes. From the detail views depicted in
panels 16(d) and 16(e), respectively, the influence of the S2 saddle can be inferred
in the case of the (0, 1) and (1, 1) branches, respectively. A clear beating signature
is visible only between the nozzle exit and S2, whereas the fluctuation has a richer
wavenumber content between S1 and S2.

The side-by-side comparison of local and global stability results in figure 16
highlights the complementary merits of both approaches. The global mode analysis
reveals the connection between the different stability phenomena, identifies internal
feedback and predicts the acoustic resonance. On the other hand, the local approach
provides further physical insight about the physical identity of the waves and the
nature of the end conditions.

6. Summary and conclusions
Linear global stability modes are found to well represent large-scale coherent

structures in a natural turbulent Mj= 0.9 jet. Coherent structures were extracted from
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FIGURE 16. (Colour online) Comparison between local spatio-temporal stability theory
(—— (red), first saddle point location; – – – (red), second saddle point location), isolated
trapped modes (blue areas), and mode at the branch intersection (green areas), denoted
by ‘+ (red)’ in figure 13(a,b) for branch (0, 1)). The normalized direct-adjoint product is
shown along the jet axis for m = 0, and along r0 = 0.25 for m = 1 in (b). The trapped
modes clearly confined between the inlet and the saddle point locations.

the LES database by means of spectral estimation techniques, and directly compared
to the global modes. The favourable agreement extended over a range of frequencies
and for azimuthal wavenumbers 0 6 m 6 4.

Apart from the well-known K–H wavepackets in the shear layer, trapped acoustic
waves that are confined within the potential core are observed. In the global stability
spectrum, these trapped acoustic waves appear in two forms. They are either part
of the continuous branch, or appear in branches of lightly damped discrete modes.
The continuous acoustic waveforms can be further distinguished into two categories.
Continuous duct modes are strictly confined within the potential core and propagate
upstream with cp & Uj − aj, whereas continuous free-stream modes propagate with a
phase velocity of cp .−aj. This associates them with the ambient flow outside of the
shear layer.

Branches of discrete acoustic modes appear in the spectrum in a hierarchical order
determined by their radial wavenumber. They possess two wave components, both
of negative phase velocity, but of group velocities of opposite sign denoted as k+
and k− waves, respectively. The contraction of the potential core with downstream
distance imposes a frequency-dependent end condition on the trapped acoustic waves.
The nozzle impedance in the inlet plane provides the second end condition. At certain
frequencies, the distance from the nozzle to the downstream end condition becomes
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an integer multiple of the wavenumber difference of the two waves, and an acoustic
resonance in the form a beating occurs. The dispersion relation of the trapped acoustic
modes was reconstructed from the global modes, and found in remarkable agreement
with an empirical frequency–wavenumber diagram extracted from the LES.

In Towne et al. (2017), we suggest that the upstream and downstream end
conditions for the resonance are provided by turning points originating from the
nozzle impedance and the streamwise contraction of the potential core, respectively.
The interpretation that the saddles in the complex k-plane act as turning points for
the trapped waves is confirmed by the favourable agreement between the saddle point
locations and the spatial support of the global modes. A simplified cylindrical vortex
sheet model also allows us to study the Mach number dependency of the trapped
acoustic mechanism. The model predicts two neutral saddle points, and therefore
resonance, in the narrow range of Mach numbers 0.82 < Mj < 1 for isothermal jets.
For Mach numbers outside of this range, the model predictions are consistent with
the findings of Tam & Hu (1989).

The present study shows that intrinsic stability mechanisms, such as the resonant
trapped acoustic modes, are brought to light by laminar global linear stability analysis
of the turbulent mean flow. They appear as distinct eigenvalues in the spectrum, and
the corresponding eigenvectors accurately represent the average coherent structures
educed from the data. The underlying assumption of the approach is hence justified
a posteriori.

Further details may be found in the appendices. Appendix A motivates the choice
of parameters for the global stability study, and gives details on the numerical
discretization and the damping region. The appendices B, C, D and E address the
influence of the inlet sponge layer on the trapped acoustic modes, the effect of
domain truncation, the effect of the Reynolds number, and the adjoint solutions to
the trapped acoustic modes, respectively. In appendices B–D, the spectrum of the
production run set-up with a solution domain of size x, r ∈ [0, 25] × [0, 2.25], a
Reynolds number of Re= 105, and sponge intensity of εsponge = 5 is reproduced as a
reference.
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Appendix A. Computational set-up
The computational domain Ω outlined in figure 1(a) is discretized by a 1150× 250

points Cartesian grid. The solution domain x, r ∈ [0, 25] × [0, 2.25] is padded by
a sponge region to prevent reflections from the boundaries. The resulting overall
domain size is x, r ∈ [−1.2, 26.2] × [0, 2.8]. A parallel flow corresponding to the inlet
profile q̄(0, r) is assumed in the inlet sponge layer region x < 0. The domain is
constructed by first defining an equidistantly spaced mesh over x, r ∈ [−0.5, 25.5] ×
[0, 2.5], and second applying an exponential grid stretching of the form exp(1.5η)
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to the region outside of the solution domain. 0 6 η 6 1 is the normalized coordinate
normal to the respective boundary, or the local sponge layer coordinate. Inside this
region, the base state is assumed to be parallel, and the solution is penalized by a
forcing of the form −εsponge(6η5

− 15η4
+ 10η3), where η is now normalized with

respect to the stretched coordinate. A fifth-order polynomial distribution smoothly
ramps the source term from zero to εsponge = 5. The support of the trapped acoustic
modes that are the main subject of the linear stability study is limited to the
potential core in the downstream and radial directions. The sponge has therefore
a negligible influence on these modes in these directions. In absence of the nozzle in
the computational domain, the inlet sponge layer plays an important role in mimicking
the inlet impedance experienced by upstream-travelling waves in the core, as further
addressed in appendix B.

The spatial resolution used was found sufficient to resolve the increasingly fine
modal structures up to St ≈ 2. In the radial direction, the resolution is chosen such
that the jet boundary layer in the inlet plane, and therefore the initial shear layer,
is resolved by δinlet/1r = 0.08/0.010 = 8 grid points. Under the assumption that the
dominant shear-layer instability advects at a phase speed of cph ≈ 0.8Uj (see § 4.2), a
resolution of λK–H/1x = 0.39/0.023 ≈ 17 grid points per wavelength is achieved at
St= 2, the maximum Strouhal number considered.

Appendix B. Inlet sponge layer influence

The nozzle exit plane plays a crucial role as an end condition for the resonating
trapped modes, as discussed in § 5. If is therefore important that the inlet sponge layer
region correctly accounts for the unknown nozzle impedance.

Figure 17 compares global mode pressure fields and pressure profiles along the
centreline to the LES data. The least damped global mode (0, 0, 1) is chosen as an
example. It can be seen that the global mode pressure fields in figure 17(b–d) are in
good agreement with the LES CSD in figure 17(a) despite the wide range of sponge
intensities 0.25 6 εsponge 6 50. The centreline profiles reproduced in figure 17(e) allow
for a more quantitative comparison. The LES PSD pressure peak location and profile
shape of the trapped disturbance is accurately predicted by the global analysis for the
two higher sponge gain cases. The comparison is less favourable for the εsponge= 0.25.
The low gain in this case allows the trapped wave to penetrate into the sponge layer,
and the pressure peak gets shifted towards the inlet. An intermediate value of εsponge=

5 was found adequate to prevent reflections from any of the boundaries, and to mimic
the inlet impedance at the same time. The favourable agreement between the modal
structures predicted by the linear analysis and those extracted from the LES seen in
figures 7, 9 and 14 confirms this statement.

Appendix C. Domain size influence

We first study the effect of the radial domain extent by comparing the reference
spectrum to one obtained using a 44 % higher computational domain in figure 18. In
the following, the lengths rend and xend denote the domain length excluding the sponge
region in the radial and streamwise directions, respectively. The number of grid points
is increased accordingly to keep the radial grid spacing comparable. The two spectra
coincide to a large degree for all but the lowest frequencies St . 0.35. At these low
frequencies, an inspection of the eigenvectors shows that they get truncated in the
radial direction towards the end of the domain. For the Strouhal number regime of
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FIGURE 17. (Colour online) Influence of the sponge gain εsponge on trapped acoustic
modes and comparison with LES: (a) CSD of the LES as in figure 7(a); global modes
with (b) εsponge = 50, (c) εsponge = 5, and (d) εsponge = 0.25; (e) centreline pressure profiles.
The same contour levels as in figure 7 are used in (a–d), and all profiles are normalized
to unit maximum amplitude in (e). The LES PSD (P̄pp, —— (red)) in (e) corresponds to
the PSD along the axis in figure 9(a). The vertical magenta line indicates the beginning
of the inlet sponge region in x< 0.

interest, and in particular for the trapped acoustic modes, the radial domain size of
the reference grid is found sufficient.

The effect of domain truncation in the streamwise direction is more critical for
convection dominated flows and was addressed in detail by Nichols & Lele (2011)
and Garnaud et al. (2013a). The latter authors found that the heads of the branches
that correspond to upstream-propagating subsonic modes described by the local theory
of Tam & Hu (1989) remained fixed within the spectrum for their enlarged domain
while the continuous K–H mode branches get significantly shifted. Similarly, the
continuous mode branches in our calculations get shifted downwards and upwards
when the domain length is decreased as can be seen in panels 19(a) and 19(b),
respectively. Below a certain frequency, this behaviour is not observed. In any case,
the eigenvalues of the trapped acoustic modes that are the main focus of this paper
are not influenced by the axial domain truncation. This observation is in accordance
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FIGURE 18. (Colour online) Influence of the far-field boundary location on the global
spectrum: the reference solution with rend = 2.25 (u(grey), reference) is compared to an
enlarged domain (u(blue), higher domain) with rend = 3.25. The number of grid points in
the radial direction is increased to Nr = 350 for the higher domain. The computed area of
each spectrum is outlined in the respective colour.
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FIGURE 19. (Colour online) Influence of the domain length on the global spectrum: the
reference solution with xend = 25 (u(grey), reference) is compared to a shortened domain
with xend = 20 (u(blue), shorter domain) in (a), and an elongated domain with xend = 30
(u(pink), longer domain) in (b). The computed area of each spectrum is outlined in the
respective colour.

what Nichols & Lele (2011) observed for the closely related upstream-propagating
subsonic modes in their supersonic laminar jet.

Appendix D. Reynolds number effects
A crucial parameter for this study is the Reynolds number, and since we investigate

the stability of a turbulent mean flow, the choice is not obvious. The turbulent mean
flow is a solution to the Reynolds-averaged Navier–Stokes (RANS) equations with an
appropriate turbulence model. The RANS equations can be linearized about the mean
flow, as demonstrated by Crouch, Garbaruk & Magidov (2007) and Meliga, Pujals
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FIGURE 20. (Colour online) Influence of the Reynolds number on the global spectrum:
(a) u(green), Re = 103; (b) u(red), Re = 104; (c) u(blue), Re = 5 × 104; (d) u(pink),
Re=15×104; (e) Strouhal number and ( f ) amplification rate dependence of mode (0,1,1).
The reference solution with Re = 105 (u(grey), reference) is reproduced in (a–d) for
comparison. The computed area of each spectrum is outlined in the respective colour
in (a–d).

& Serre (2012). The results, however, are not necessarily superior to those obtained
by using the linearized Navier–Stokes equations based on the molecular viscosity, as
shown by Mettot, Sipp & Bézard (2014). Garnaud et al. (2013b), for example, chose
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FIGURE 21. (Colour online) Comparison of direct (a,c,e,g) and adjoint (b,d, f,h) global
modes: (a,b) least damped mode (0, 1, 1); (c,d) higher streamwise order mode (0, 1, 3);
(e, f ) higher radial order mode (0, 2, 1); (g,h) higher azimuthal wavenumber mode (1, 1, 1).
The normalized pressure ( , −0.1 6 Re(p̂m)/‖Re(p̂m)‖∞ 6 0.1) is shown.

a molecular viscosity corresponding to Re = 1000 for their study of a turbulent jet
mean flow model, noting that the choice is rather arbitrary. Other authors like Jeun
et al. (2016) considered the inviscid limit by linearizing the Euler equations.

To address the Reynolds number effect, we compute spectra for different Reynolds
numbers spanning two orders of magnitude, and compare them in figure 20(a–d).
At the lowest Reynolds number Re = 103 in figure 20(a), the spectrum appears
more damped and the trapped acoustic modes are not observed. This is an imported
result as it indicates that crucial physical aspects can be missed when the Reynolds
number is chosen too small. When the Reynolds number is increased to Re = 104

in figure 20(b), the trapped modes clearly appear in the spectrum. Increasing the
Reynolds number further reveals that the first trapped acoustic mode branch becomes
effectively Reynolds number independent for Re & 5× 104. This is also observed for
the higher radial mode branches, but at higher Reynolds numbers. The convergence of
the frequency and amplification rate of the leading mode (0, 1, 1) is further detailed in
panels 20(e) and 20( f ), respectively. Notably, the Strouhal number changes only in the
third significant digit over the three orders of magnitude considered. The continuous
mode branches, however, get shifted up with increasing Reynolds number. This
result is in accordance with the findings by Garnaud et al. (2013b), who observed
increased resolvent gain rates with increased Reynolds number. The determination of
an appropriate efficient Reynolds number for turbulent jets remains subject of future
research.
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Appendix E. Adjoint global modes
Direct and adjoint trapped acoustic modes at different radial and axial orders as

well as azimuthal wavenumbers are compared in figure 21. The signature of the
trapped acoustic waves inside the potential core appear evidently isolated in the
adjoint modes for the reasons discussed in § 5.5 above. This is a clear indication for
the tapped acoustic modes being nearly self-adjoint, which is a consequence of their
acoustic nature. We exploit this property in figures 14 and 16. The calculation of
adjoint continuous modes is beyond the scope of this work. It is more challenging
as the adjoint solution of these convective instabilities is comprised of very fine
structures that are orientated against the mean shear close to the nozzle. This is
a typical observation, and explains the modes’ potential for large transient growth
through the Orr mechanism.
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